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Abstract—Unmanned Aerial Vehicles (UAVs), or drones, 

offer the ability to collect cost-effective fine-scale imagery 

that is suitable for the capture of concurrent turbulence and 

faunal data within tidal stream environments. This is a 

necessary stage of information gathering to inform tidal 

energy device design, advise control and maintenance 

strategies and better inform environmental consenting 

processes. 

For this study a total of sixty-three UAV surveys were 

undertaken within the Inner Sound of the Pentland Firth, 

Scotland, UK, over two 4-day periods in 2016 and 2018. The 

aims of this data collection effort were to characterise 

bathymetrically driven turbulence features, including 

distribution, presence, and area, as well as marine life such 

as seabird distributions, presence, and orientation relative 

to the flow. To achieve this, a method to extract quantifiable 

metrics from UAV imagery was required.  

This paper details the processes and methodology to 

create a graphical user interface (GUI) to provide these 

outputs rather than examining specific results. It includes 

an explanation of the criteria that the GUI needed to meet to 

be able to process the imagery, a description of the 

workflow and an explanation of the sub-routines required 

such as image registration and calibration. The outputs of 

the GUI, and their relevance to tidal energy developments, 

are also discussed. Finally, this paper details future work 

incorporating machine learning techniques to improve the 

accuracy, reliability, and processing speed of the GUI. 
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I. INTRODUCTION 

NMANNED aerial vehicles (UAVs), colloquially 

known as drones, are increasingly being utilised 

within the scientific community for a diverse range 

of research purposes [1]. Battery powered multirotor 

UAVs, characterised by being highly manoeuvrable and 

able to hover and vertically take-off, are a particularly 

attractive option for carrying out fine-scale (<1 m and <1 

min) photogrammetric assessments across a range of 

distances from targets of interest [2]. 

Remotely sensed imagery is a permanent data set that 

can be referenced to or reanalysed in the future [3]. Image 
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Fig. 1.  The Inner Sound area of the Pentland Firth, Scotland, UK. 
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processing tools allow for the extraction of relevant metrics 

and is a rapidly evolving field with computer vision 

enabling the development of increasingly autonomous 

techniques [4]. However, at the basis of any image 

processing tool a graphical user interface (GUI) is required. 

A GUI allows a user to manipulate, implement 

georectification, save/load and extract relevant features 

from imagery [5]. As a result, a GUI can allow for a highly 

customisable approach to the quantification of UAV 

derived data. 

Tidal stream environments are areas where UAVs and 

image processing show great promise, with usage already 

highlighting success for environmental studies [6]–[11]. 

Tidal-stream environments are characterised as turbulent 

areas of marine coastline that produce predictable high 

current velocities greater than 1 m/s [12]. These 

environments are highly heterogeneous in nature, due to 

site-specific topography and bathymetry, and produce 

complex, ephemeral, turbulent features that vary across 

fine spatio-temporal scales (<10 m and <1 min) [13]. 

Characterisation of turbulence is of importance to tidal 

energy developers to inform turbine design, control and 

maintenance strategies, micro-siting and environmental 

consenting processes [14]. It is also key to understanding 

biophysical interactions occurring within the environment 

itself. This is because tidal stream environments have 

predictable, and localised, areas of prey which are then 

heavily utilised by foraging top predator species, such as 

seabirds and marine mammals [13]. 

UAV imagery therefore offers a cost-effective, and 

practical, way to capture turbulence and faunal data 

simultaneously at the surface [6], [15]. However, for data 

to be applicable, relevant embedded information must be 

extracted from what is essentially just a ‘digital 

photograph’. To achieve this, a GUI was developed to 

process imagery taken from UAV surveys within the Inner 

Sound area of the Pentland Firth, Scotland, UK. This 

allowed for the final output to be achieved: extraction of 

georeferenced, quantifiable metrics of turbulence and 

faunal targets, hereafter known as objects of interest (OOI), 

which could be analysed relative to pertinent 

environmental covariates. 

The aim of this paper is to detail the steps and individual 

processes involved (from input to output), the 

implications of the results to relevant stakeholders and 

future work to enhance development. 

II. METHODS 

A. Study Site 

Due to proximity with the Environmental Research 

Institute (approx. 15 km), and being host to the MeyGen 

tidal energy project, the Inner Sound, within the Pentland 

Firth, was chosen as the study site for this work (Fig. 1.). 

The Pentland Firth is a large channel (c. 20 km wide) of 

water that separates mainland Scotland and the Orkney 

Isles in the UK and connects the North Atlantic and the 

North Sea [16]. The Inner Sound is a contributing channel 

of this, with an average depth of approximately 30 m [17]. 

Due to a large variance in tidal phase when moving from 

either entrance of the channel, and topographic features, 

recorded current velocities can exceed 3 m/s [18]. During 

flood spring tides, current speeds have been recorded to 

reach 6 m/s, with an estimated energy potential of around 

1.9 GW [17].  

These conditions make the Inner Sound one of the most 

prominent tidal lease sites both within the UK and 

globally. Currently it includes the MeyGen project owned 

by SIMEC Atlantis Energy. This has a total planned 

capacity of 398 MW and since 2017 has installed four 1.5 

MW turbines outputting over 43 GWh in total energy 

generation as of July 2022 [19]. 

B. Data Collection 

In total sixty-three UAV surveys were conducted within 

the Inner Sound over four-day periods, across differing 

phases of the tidal cycle (ebb/flood), in both 2016 (23-25th 

June) and 2018 (21-24th July). For both years standard flight 

durations were 10-30 min with approx. 200 images taken 

each time. While this was achieved using different UAV, 

camera type, flight height, image type and sampling 

interval between the two years (Table. I.), these did not 

impact the overall aim of quantifying OOIs from within 

the imagery as will be discussed in section II E. All flights 

were undertaken in line with the current regulations, set 

out by the Civil Aviation Authority (CAA) for drone 

operation, as well as using current recommended best 

practise guidelines for UAV usage within scientific 

research [20], [21]. 

UAV take-off occurred from a consistent location on the 

deck of the MRV Scotia, of a known height above sea level 

(10.6 m). During operation, all surveys were manually 

flown at a consistent positioning (100 m) and speed ahead 

of the vessel. This allowed for vessel-based observers to 

maintain visual contact with the UAV to note when OOIs 

were under the drone. It was also done to comply with 

CAA regulations of flying within visual line of sight (<500 

m). For safety, flights only occurred at windspeeds <5 m/s, 

which was significantly lower than the recommended 

value suggested by the UAV manufacturer [22]. All flights 

were conducted against the prevailing current direction to 

avoid the miscounting of OOIs and to better account for 

the movement of water under the drone’s field of view 

(FOV). All flights were conducted during daylight hours. 
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C. Image Registration 

To align the UAV images in space, each image needed 

to undergo a process called image registration. On-board 

telemetry data was used to obtain altitude, heading, and 

coordinate (of the central point) values of each individual 

image, for each flight undertaken. Pitch and roll values 

were not needed due to the stabilisation from the gimbal-

mounted camera. These values were extracted from 

image’s extensible metadata platform (XMP) data 

(embedded metadata contained within each image). 

Relative altitude (relative to the take-off altitude) was 

corrected to absolute altitude to obtain the actual elevation 

above mean sea level using the take-off height. The 

observation deck, utilised as the launch point, was a 

standard and known height (10.6 m above sea level), and 

used for this purpose. Once registration was completed a 

second sub-routine was developed to convert the pixel 

length in an image into metres. 

D. Calibration Factor 

To negate the difference in UAV model, flight height, 

and camera type between the two years, and to maximise 

the accuracy of OOI measurements, a calibration factor 

was required. The purpose of this was to convert the 

standard scale of images (pixels) into a useable distance 

metric (metres).  A unique calibration factor was required 

per image, as opposed to for each survey, as UAV altitude 

varied slightly in each image around the mean flight 

height recorded. Equations (1), (2) and (3) were used to 

achieve this. These calculations, implemented in MATLAB 

2019b, converted pixels into metres utilising the length and 

width of the image in pixels, the relative altitude of the 

UAV (when that image was taken) and the vertical field of 

view (VFOV) of the camera. 

 

 

 

𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 = 𝑊𝑖𝑑𝑡ℎ[𝑚]/
𝑊𝑖𝑑𝑡ℎ[𝑝𝑥]  

        = (2 × 𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒) × 𝑡𝑎𝑛(𝑉𝐹𝑂𝑉/2)/
𝑊𝑖𝑑𝑡ℎ[𝑝𝑥]  

(3) 

 

 𝑡𝑎𝑛 (𝑉𝐹𝑂𝑉\/2) = 𝑊𝑖𝑑𝑡ℎ[𝑚]/(2 × 𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒)  (1) 

 
𝑊𝑖𝑑𝑡ℎ[𝑚] = (2 × 𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒) ×  𝑡𝑎𝑛(𝑉𝐹𝑂𝑉

/2) 
(2) 

 

 

E. Image Coverage 

To be able to view the physical area over ground, UAV 

coverage from hereon, the corner coordinates of each 

individual image had to be determined. However, the 

image registration process only provided the centre point 

of each image. Factors that had to be considered included 

spatial overlap (the distance between each image), image 

orientation and the footprint of each picture. Using the 

function “reckon()”, within MATLAB 2019b, it was 

possible to compare the image centre point against that of 

another, and calculate the distance, in metres, between 

them. The function finds the coordinates of a point at a 

specified distance and azimuth from a starting point with 

coordinates. This function was also able to utilise heading 

values, from XMP data, to allow for an image’s orientation, 

in space, to be properly displayed. By using the camera 

specifications, in this case pixel length/width and vertical 

field of view (VFOV), in combination with overlap and 

heading values, it was possible to represent each image as 

a polygon. To do this the distance in metres between the 

centre and the corners of each image had to be calculated. 

This was equal to the distance in pixels multiplied by the 

image calibration factor that considered the earth’s radius 

(to account for the curvature of the earth), UAV relative 

altitude/heading and the size in pixels of the image in 

question. 

TABLE I 

COMPARISON OF UAV CAMERA SPECIFICATIONS AND SAMPLING 

METHODS BETWEEN 2016 AND 2018 SURVEYS. 

UAV and Camera 

Specifications 
2016 2018 

 

UAV 

 

SwellPro 

SplashDrone 3+ 

DJI Phantom 4 

Advanced V2.0 

 

Camera 

 

 

GoPro HERO4 

Black (12 MP) 

 

1-inch CMOS Sensor 

(20 MP) 
 

Aspect Ratio 4:3 (4000 x 3000 

pixels) 

 

3:2 (5472 x 3648 pixels) 

Average relative 

altitude flown 

46 m  70 m 

   

Image type taken 

 

Sampling interval 

between images/ 

image pairs 

JPEG 

 

1 second  

(subsampled to 

match 2018 data) 

Simultaneous pairs of 

RAW and JPEG 

 

5 seconds 

   

   

   

   

   

Vertical lines in tables are deprecated. Statements that serve as 

captions for the entire table do not need footnote letters.  
aThe Admiralty measured mile and Admiralty knot should not be 

used to avoid confusion. 
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With this information, the MATLAB 2019b function 

“kmlwritepolygon()” was then implemented to create a 

geographical polygon for each image in the form of a 

Keyhole Markup Language (KML) file. This function 

writes the geographic latitude and longitude data that 

define the polygon vertices, to a specified file in the KML 

format. As a result, an Excel spreadsheet containing image 

name and coordinates of the corner positions was 

recorded. Finally, using the software QGIS, these Excel 

files were combined and converted into a shapefile to 

provide a graphical output of the total survey coverage 

(Fig. 2.).  This was carried out for all surveys that were 

processed within the GUI.  

III. GUI WORKFLOW 

A. Objectives 

To extract quantifiable information about turbulence 

features and marine fauna from UAV-derived imagery, 

several criteria had to be met. Firstly, multiple images, 

within a single survey, had to be collated to allow for the 

tracking of OOI between images to avoid misidentification 

and overestimation. Secondly, it needed to be possible to 

annotate images with information including: OOI location, 

number, classification and then take relevant 

measurements from the target. Finally, this had to be 

stored in an Excel file output, alongside relevant 

image/telemetry information, for succinct data analysis 

and presentation. 

B. Initialisation 

Before accessing the GUI an initialisation process, 

developed in MATLAB 2019b, was completed. This 

implemented necessary sub-routines (image registration, 

image coverage and calibration factor) and displayed key 

GUI variables (Fig. 3.). If any sub-routines were missing 

the user was asked to enter the correct file path for these 

functions before moving forward. 

If all related functions were found, the initialisation 

process asked the user to select the image folder to process. 

After the image folder was selected the registration sub-

routine ran and the framework of the output table was 

created. This contained each image name, a time stamp 

and the relevant telemetry data previously described in the 

image registration section. At this point the user was asked 

to input the height of the launch point for relative altitude 

to be calculated. Finally, the initialisation process asked the 

user to select a location to name and save the overall 

output file. If the file name already existed in this location 

a dialog box asked the user if they wished to restart or 

continue from the last image viewed within that folder. 

The GUI was activated once the initialisation process 

ended, culminating in the last stage of the entire workflow 

(Fig. 3.). 

 

C. Data Processing 

The GUI itself (Fig. 4.), developed within MATLAB 

2019b, using code developed from the GUI Layout 

Toolbox, allowed a user to sequentially move through all 

images within a selected folder and log an unlimited 

number of OOIs [23]. The user could click and mark the 

estimated central point of each OOI thus obtaining a 

positional measurement (in pixel coordinates) (Fig. 4.). 

Drawing functions then facilitated the measurement of 

length and area (in pixels) (Fig. 4.). A menu then allowed 

for that OOI’s characteristics to be registered. The 

information that was recorded here included a 

classification (faunal species or turbulence type), a 

confidence factor related to how certain the user was with 

 

 
Fig. 3.  The complete workflow of imagery collection and GUI 

usage, detailing the inputs (white), processes (black) and outputs 

(blue). 

 

 

 

 
Fig. 2.  UAV area coverage of all surveys carried out in both 

2016 and 2018. 
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that identification, and if the OOI was present on the 

previous image (Fig. 4.). Once stored, this information 

could be saved temporarily, within the GUI memory itself, 

to allow for editing, before being inputted into the final 

Excel output file. If any classification or measurement 

information was missing, the GUI was able to alert the user 

to this. Finally, the GUI allowed for the flexibility to delete 

the previous click, and measurements, and to permanently 

delete information about a specific OOI from the GUI 

memory entirely. 

 

IV. DISCUSSION 

The use of UAVs to capture fine-scale imagery of tidal 

stream environments, and relevant OOI, is an emerging 

and highly novel, area of research. It can provide a new 

perspective, comparative to existing ecological and 

physical survey methods, as it has the capability of 

capturing fine-scale turbulence and faunal data 

concurrently. Data collection requires a specific method to 

extract quantifiable metrics. The developed GUI (Fig. 4.) 

allows for a tailored approach to the extraction, and 

quantification, of UAV imagery from within a tidal stream 

environment to be achieved. The type of output includes 

OOI position, classification, and relevant measurements. 

These can be visually displayed or included in analysis 

against relevant environmental variables. This offers a 

user-friendly tool, for relevant stakeholders, to process 

and analyse photogrammetric assessments of tidal stream 

environments in a relatively short timeframe (hours/days). 

As shown in this paper, the GUI is also not site or 

equipment limited, with simple alterations to camera 

specifications within the code allowing compatibility with 

most downward facing cameras in any environment.  

The outputs created by the GUI have implications for 

tidal energy developers and regulators. The technique was 

demonstrated in a recent paper, which characterised 

turbulent feature (kolk-boil) distribution, presence, and 

area at the surface, and discussed relevance for tidal 

stream turbines and foraging seabirds [11]. Kolk-boils are 

formed through the interaction of water flow and 

bathymetry, creating vortices that move upward through 

the water column which erupt at the surface as smooth 

patches of water encompassed by a visible perimeter [24]. 

Characterisation of kolk-boils is key to micro-siting and for 

the development of turbines themselves as sustained 

turbulence will have a detrimental effect on the longevity 

and reliability of material components, compared to 

laminar flow conditions [14]. The collection of fine-scale 

(metres and seconds), empirical, turbulence data is 

therefore a crucial aspect of habitat characterisation 

assessments for tidal energy devices. The outputs of the 

GUI can facilitate this, providing enough information to 

create individual datasets that stand alone or which can be 

complementary to a larger collection effort. To allow for 

wider public useability, code will be transitioned to R and 

Python.  

We also highlight that the GUI provides the ability to 

gain accurate positional data, and other fine-scale 

measurements (metres and seconds), of animals at the 

surface. These outputs can provide further understanding 

into fine-scale animal usage patterns and interactions with 

previously described turbulent features [7]. This is 

important for understanding the bio-physical interactions 

occurring within the habitat, and to be able to fully 

describe the potential effects of tidal energy developments 

throughout deployment and operational lifecycle for 

required environmental assessments [15]. 

While the GUI was able to produce highly relevant 

outputs from UAV imagery, there are areas that can still 

be enhanced and developed. The main drawback to 

manual image processing, is the time (hours and days) 

required to systematically process through large UAV 

imagery datasets manually. Although this allows for the 

creation of quantifiable metrics, not achievable through 

simple observation of the images, this can be a significant 

bottleneck that can negate using a UAV to increase 

surveying efficiency in the first place [25]. However, 

machine learning techniques are a rapidly developing area 

that offer an ability to address this [4].  

Machine learning involves the incorporation of 

algorithms that are trained to automatically detect and 

classify OOIs [26]. Deep learning is a form of machine 

  
Fig. 4.  Examples of the GUI display presented to users when 

processing imagery, highlighting the ability to record both faunal (top 

image) and turbulence (bottom image) data. 

 

 

Position
Measurements

Classification (Behaviour/Family)

Classification (Type)

Measurements

Position

Confidence
Factor (Type)

OOI present on
previous image

Confidence
Factor 

(Behaviour
/Family)

OOI present on
previous image
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learning that utilises artificial neural networks to learn 

directly from the data, meaning it can automatically 

extract relevant features unlike conventional methods 

where this must be done manually as part of a training 

process [27]. These methods are also capable of “end-to 

end learning” where an algorithm will autonomously 

learn how to achieve a given task and will develop its own 

way to achieve this [28]. A recent study using UAV 

imagery found that when using deep learning techniques, 

to detect seabirds on the water, accuracy of overall 

classification (of true positives) reached 98% [29]. Finally, 

deep learning algorithms, can learn from previous inputs 

and are able to refine techniques with the more 

information that it is given [28].  

   Machine and deep learning algorithms could be used to 

decrease the time taken to locate images containing OOI 

within datasets. Automated filtering would decrease data 

processing times (days/hours to minutes) by detecting 

images containing OOIs and only allowing those to be put 

forward for further analysis. This would allow for an 

effective addition of automation that would complement 

the existing GUI infrastructure. 

V. CONCLUSION 

In conclusion, a user-friendly graphical user interface 

was developed to allow for a tailored approach to 

processing fine-scale UAV imagery of a tidal stream 

environment. This permitted the processing of imagery 

containing concurrent turbulent features (kolk-boils), and 

faunal targets (seabirds and marine mammals), and has 

led to the ability to gain quantifiable metrics with regards 

to position, classification, and measurements at the 

surface. These can then be examined in relation to 

pertinent environmental variables and utilised to further 

explore biophysical interactions occurring within these 

environments and to aid in the continued development of 

tidal energy devices through habitat characterisation. This 

has already been observed with the methodology 

producing published insights into the characterisation of 

turbulent features at the surface and interactions of diving 

seabirds with them. 

However, this GUI is not solely restricted to tidal stream 

environments and can be easily manipulated for use with 

alternative downward facing camera specifications. With 

the aid of deep learning techniques this tool will also 

continue to be developed in its efficiency, and accuracy, of 

processing large UAV imagery data sets.  
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