
FINITE SAFETY MODELS FOR HIGH-ASSURANCE

SYSTEMS

by

John C. Sloan

A Dissertation Submitted to the Faculty of

The College of Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

Florida Atlantic University

Boca Raton, Florida

August 2010

Copyright by John C. Sloan 2010

ii

iii

ACKNOWLEDGMENTS

I would like to thank Dr. Taghi M. Khoshgoftaar for his invaluable guidance

and support of my research and graduate studies at Florida Atlantic University. He

is truly a world-class researcher and mentor. I also thank Dr. Martin K. Solomon,

Dr. Xingquan Zhu, and Dr. Hanqi Zhuang for serving on my dissertation committee.

Finally, I wish to thank Dr. W.M.P (Wil) van der Aalst of Technische Universiteit

Eindhoven, and Dr. J.J.M.M. (Jan) Rutten, Dr. Farhad Arbab, and Dr. Dave

Clarke of Centrum Wiskunde & Informatica, all of whom encouraged me to study

the topics that led to this dissertation. My research at FAU would not have been

possible without initial funding from the U.S. Department of Defense and more recent

funding from the FAU Center for Ocean Energy Technology (COET).

iv

ABSTRACT

Author: John C. Sloan

Title: Finite Safety Models for High-Assurance Systems

Institution: Florida Atlantic University

Dissertation Advisor: Dr. Taghi M. Khoshgoftaar

Degree: Doctor of Philosophy

Year: 2010

Preventing bad things from happening to engineered systems, demands im-

provements to how we model their operation with regard to safety. Safety-critical and

fiscally-critical systems both demand automated and exhaustive verification, which

is only possible if the models of these systems, along with the number of scenarios

spawned from these models, are tractably finite. To this end, this dissertation ad-

dresses problems of a model’s tractability and usefulness. It addresses the state space

minimization problem by initially considering tradeoffs between state space size and

level of detail or fidelity. It then considers the problem of human interpretation in

model capture from system artifacts, by seeking to automate model capture. It in-

troduces human control over level of detail and hence state space size during model

v

capture. Rendering that model in a manner that can guide human decision making

is also addressed, as is an automated assessment of system timeliness. Finally, it ad-

dresses state compression and abstraction using logical fault models like fault trees,

which enable exhaustive verification of larger systems by subsequent use of transition

fault models like Petri nets, timed automata, and process algebraic expressions. To

illustrate these ideas, this dissertation considers two very different applications - web

service compositions and submerged ocean machinery.

vi

DEDICATION

To my wife Judy S. Montgomery for her cheerful and gracious encouragement

and support, and to my late parents Mr. and Mrs. John and Marie Sloan.

FINITE SAFETY MODELS FOR HIGH-ASSURANCE

SYSTEMS

LIST OF TABLES . xiii

LIST OF FIGURES . xv

1 INTRODUCTION . 1

1.1 Motivation . 2

1.1.1 The Compositionality Assumption 2
1.1.2 Compositionality and Web Services 3
1.1.3 Compositionality and Ocean Machinery 4
1.1.4 Relaxing the Compositionality Assumption 6
1.1.5 Safety and Liveness . 7

1.2 Issues and Approaches . 7

1.2.1 Test Versus Verification . 8
1.2.2 Use Cases for Verification . 8
1.2.3 Automating Model Capture 9
1.2.4 Automating Model Presentation 9
1.2.5 Assuring Timeliness . 10
1.2.6 State Compression and Abstraction 11
1.2.7 Case Study – Ocean Turbines 11

1.3 Organization . 12

vii

2 TEST VERSUS VERIFICATION . 15

2.1 Chapter Introduction . 16

2.1.1 Motivation . 16
2.1.2 Context . 17
2.1.3 Contributions . 18

2.2 Tradeoffs . 20

2.2.1 Triaxial Charts . 21
2.2.2 External Tradeoffs . 22

2.2.2.1 Engineering . 23
2.2.2.2 Commercial . 25
2.2.2.3 Entertainment . 27

2.2.3 Internal Tradeoffs . 28

2.2.3.1 Tool Placement . 29
2.2.3.2 Interpreting the Landscape 31

2.2.4 Section Critique . 32

2.3 Simulating Web Services with Agents 34

2.3.1 Web Service Orchestrations 35
2.3.2 Anatomy of an Agent . 37
2.3.3 Mapping between Agents and Services 39
2.3.4 Travel Agency Case Study . 43
2.3.5 Section Critique . 48

2.4 Practical Impact . 50

2.4.1 Deployment Time Testing . 50
2.4.2 Changing Baselines . 52
2.4.3 Scripted Testing . 54
2.4.4 Process Improvement . 55

2.5 Chapter Summary . 55

viii

3 USE CASES FOR VERIFICATION . 58

3.1 Chapter Introduction . 59
3.2 Advanced Usage Trends . 60

3.2.1 Syndication Time Modeling 61
3.2.2 Service Evolution . 61
3.2.3 Incremental Coverage Testing 64
3.2.4 Integrating Instrumentation 65
3.2.5 Stateful Web Services . 66
3.2.6 Visualizing State Spaces . 67

3.3 Architectural Features . 68

3.3.1 Decouple Functionalities . 69
3.3.2 Emphasize Soundness and Completeness 70
3.3.3 Streamline Model Capture . 71
3.3.4 Control Level of Abstraction 72

3.4 A Predicted Architecture . 73
3.5 Chapter Summary . 76

4 AUTOMATING MODEL CAPTURE . 77

4.1 Chapter Introduction . 78

4.1.1 Motivation . 78
4.1.2 Contributions . 79
4.1.3 Overview . 81

4.2 Structure . 82

4.2.1 Sub-language . 83
4.2.2 Size Estimation . 86
4.2.3 Exclusions . 87

4.3 Behavior . 89

4.3.1 Instantiation and Properties 89
4.3.2 Reactivity . 90
4.3.3 Interaction . 90
4.3.4 Sequence . 91

ix

4.3.5 Choice . 91
4.3.6 Parallelism . 92
4.3.7 Interprocess Dependencies . 94
4.3.8 Assumptions . 95
4.3.9 Limitations . 97

4.4 Purchase Order Case Study . 98
4.5 BPEL to Promela . 101

4.5.1 Formulating Rules . 103
4.5.2 Generating Declarations . 105
4.5.3 Generating Services . 107
4.5.4 Generating Orchestrations . 111

4.6 Related Work . 114
4.7 Chapter Summary . 117

5 AUTOMATING MODEL PRESENTATION 129

5.1 Chapter Introduction . 130

5.1.1 Context . 131
5.1.2 Contributions . 132
5.1.3 Organization . 132

5.2 Related Work . 133

5.2.1 Verification Tools . 134
5.2.2 Conversion Tools . 137
5.2.3 Graph Drawing . 140
5.2.4 Starting Point . 142

5.2.4.1 Infrastructure . 143
5.2.4.2 Basic Activities . 144
5.2.4.3 Link-related activities 144

5.3 Mining Source Artifacts . 147

5.3.1 Partner Links . 149
5.3.2 Data-related Flows . 150
5.3.3 BPEL Variables . 151
5.3.4 BPEL Links and Defaults . 152

x

5.3.5 CPN Subnet Names . 152
5.3.6 Data Cleansing . 153

5.4 Embedding Subnets . 155

5.4.1 Strategy . 157
5.4.2 Processing . 158
5.4.3 Implementation . 159

5.5 Generating the CPN . 161
5.6 Simulation Results . 163
5.7 Chapter Summary . 164

6 ASSURING TIMELINESS . 170

6.1 Chapter Introduction . 171
6.2 Modeling BOINC . 173
6.3 Modeling BOINC with UPPAAL . 176

6.3.1 Mapping the Petri Net to Timed automata 176
6.3.2 Extending the Timed Automata 177
6.3.3 Model Check Timed Automata 182

6.4 Experiences and Conclusions . 182

7 STATE COMPRESSION AND ABSTRACTION 186

7.1 Chapter Introduction . 187
7.2 Mathematical Structure . 188
7.3 Refinements . 191

7.3.1 Multistate Systems . 191
7.3.2 Node Commonality . 193
7.3.3 State Coherence . 194

7.4 Algorithm Design and Analysis . 196

7.4.1 The Evaluation Problem . 197
7.4.2 Construction Problems . 199

7.5 Chapter Summary . 200

xi

8 CASE STUDY – OCEAN TURBINES . 203

8.1 Chapter Introduction . 204
8.2 Physical Design . 206
8.3 Reliability Concerns . 210
8.4 Related Work . 214

8.4.1 Potential . 214
8.4.2 Environment . 215
8.4.3 Machine Condition Monitoring 221
8.4.4 Wind Turbines . 224

8.5 Anti-fouling Topographies . 225

8.5.1 Self-similar Surfaces . 227
8.5.2 Fabrication Issues . 230

8.6 Chapter Summary . 232

9 CONCLUSION AND FUTURE WORK 237

9.1 Conclusions . 238

9.1.1 Transition fault models . 238
9.1.2 Logical fault models . 241
9.1.3 Case study . 242

9.2 Future Work . 243

9.2.1 Transition Fault Models . 243
9.2.2 Logical Fault Models . 245
9.2.3 Case study . 245

BIBLIOGRAPHY . 249

xii

LIST OF TABLES

4.1 From BPEL variables to Promela channel statements 119

4.2 From BPEL <flow> to parallel Promela processes 119

4.3 From BPEL control links to a Promela pattern 120

4.4 BPEL (abbreviated version) of the Purchase Order Process 121

4.5 Generate Promela code from a BPEL artifact 121

4.6 Generate Promela Declarations . 122

4.7 Promela declarations for the Purchase Order Process 123

4.8 Generate a model of services from a BPEL artifact 123

4.9 Promela environment for the Purchase Order Process 125

4.10 Generate a model of orchestration from a BPEL artifact 126

4.11 Promela orchestration for the Purchase Order Process 127

4.12 Promela orchestration for the Purchase Order Process (contd) 128

5.1 Excerpt of purchase order process (top) and its PNML silhouette
(bottom) . 166

5.2 Activity and infrastructure namings . 167

5.3 Link-related node namings . 168

6.1 Model Checked Properties . 183

7.1 Properties of state snapshots . 202

xiii

7.2 Properties of cut sets . 202

7.3 Properties of fault trees . 202

8.1 Physical features of turbine and moorings 235

8.2 Reliability concerns . 236

8.3 Roughness parameters by surface type 236

xiv

LIST OF FIGURES

2.1 Assuring Quality of Orchestrations . 19

2.2 SOA Testing Tradeoffs . 23

2.3 External Tradeoffs . 26

2.4 Internal Tradeoffs . 30

2.5 A Web Service Orchestration . 36

2.6 An Agent with Two-phase Commit . 38

2.7 A Mapping between Agents and Services 41

2.8 Query phase to an Online Travel Agency 44

3.1 Proposed Development Cycle . 74

5.1 Silhouettes of generated CPN’s . 140

5.2 A typical BPEL basic activity in CPN 145

5.3 A basic activity as an origin of a link 146

5.4 A link construct . 147

5.5 A basic activity as a link’s destination 148

5.6 Closeup of top-level CPN . 151

5.7 Equivalent graphs: (a) original, (b) palm tree and (c) visibility
representation . 156

6.1 A Petri net model of BOINC. 175

xv

6.2 UPPAAL model of service portal. 179

6.3 UPPAAL model of service provider. 180

6.4 UPPAAL simulation environment showing one portal and three
providers. 181

8.1 Moorings for an ocean turbine . 207

8.2 Nacelle and adjoining structures . 208

8.3 Surfaces ranked by rE: (a) shallow and wide, (b) deep and narrow, (c)
lattice drained . 219

8.4 Generation of Koch curve . 228

xvi

CHAPTER 1

INTRODUCTION

This dissertation was an outgrowth of my many years of software development

and design engineering experience. Since earning my M.S. in Computer Science from

University of Central Florida in 1988, I participated in successful software develop-

ment projects, eventually becoming a fixer for a software solutions provider. In that

capacity, I was called in to rescue failing projects. One project was so beyond re-

demption I was required to layoff the entire development staff. Of the projects that

could be fixed, I noted what made these different from either the failed or the suc-

cessful projects. Subsequent years of soul-searching and study, made me realize that

reliability is the most consistently underrated endeavor in not only software develop-

ment shops, but in ocean systems as well. Section 1.1 describes why this is so, with

Section 1.2 outlining issues and approaches concerning reliability. Concluding this

chapter, Section 1.3 briefly lists the theme of each subsequent chapter and how each

came into being.

1

1.1 Motivation

The 90’s saw decision makers staking claim to new frontiers of the Internet.

In the 00’s they sought to secure both frontiers and infrastructure from attack. As

the Deepwater Horizon oil rig disaster continues to unfold, we are finding that many

of the failures over the past decade were simply due to bad or incomplete design

and testing. Internet (web) services and novel (ocean) machinery will continue to be

doomed to the same fate unless we learn something new.

With the line of research outlined in this dissertation, I predict that the 10’s

will be known as the decade of safety – the decade in which we keep bad things

from happening to systems by properly designing them in the first place. Over the

past four years and four journal papers [121, 122, 123, 126], I have been taking

aim at keeping bad things from happening to two very different types of system

artifacts. The first includes orchestrations of web services written in the Business

Process Execution Language (bpel), and the second includes novel types of machinery

like ocean turbines.

1.1.1 The Compositionality Assumption

For different reasons, both web service orchestrations and ocean machinery are

black box systems that defy scrutiny of the internal structure and behavior of their

component parts. The correctness of a web service orchestration assumes that each of

its constituent web services behave as advertised, with vendors keeping internal details

2

of their particular web service a secret. Likewise, correct functioning of some machine

cannot physically be determined since examination of its internals during operation

does not bear scrutiny. In both cases, we must settle for observing their behavior

from the outside. In doing so, one is tempted to make at least one strong assumption

concerning compositionality. For the purposes of this dissertation, the composition-

ality assumption posits that if each part is free of defects then, if properly assembled,

the whole will also be free of defects. Thus, according to this assumption, all that is

needed is to verify proper operation of the assembly without needing to scrutinize the

reliability of individual parts, once each of their reliabilities have been established.

Although formal methods may be used to design compositionality into systems being

developed from scratch, virtually all legacy systems do not bear sufficient scrutiny to

provably determine whether the compositionality assumption holds.

1.1.2 Compositionality and Web Services

For web services, the compositionality assumption is not empirically tenable,

since hidden dependencies can be overlooked. Hence, two seemingly unrelated but

well-tested web services inside a composition may from time to time exhibit anoma-

lous behavior. Unbeknownst to the orchestration, both services may have happened

to have shared the same resource. The compositionality assumption fails because of

logical dependencies – dependencies that can be modeled in terms of discrete math-

ematics. Pinpointing such intermittent failures requires tracking a system’s behavior

3

over a sequence of discrete state snapshots over time to identify sequences of opera-

tions that lead to failure. Hence, this dissertation adapts transition fault models like

Petri nets and timed automata 1 to assuring the safety of web service orchestrations.

1.1.3 Compositionality and Ocean Machinery

For ocean machinery the compositionality assumption is not empirically ten-

able as well, but for different reasons. In general, the useful life of mechanical as-

semblies had long been observed to be shorter than the rated life of even its most

fault prone components. This was due in large part to interactions between disparate

rolling elements like gears, bearings, and shafts.

These physical dependencies have traditionally been modeled in terms of a

mathematics of a continuous variable, usually as differential equations. However,

rolling elements too often break because the parts encounter some singularity in which

its systems of equations cease to be well-conditioned due to the presence of higher-

order derivatives brought on by some sudden physical impact affecting numerous parts

in an assembly.

Anomalous vibrations judged to be noise provides additional evidence of the

absence of compositionality. For example, resonance of a machine’s containment may

as likely be the result of external vibrations, as it would be from internal interactions

1 Markov chains are another example of transition fault models, although this dissertation does
not address them.

4

between rolling elements. In this case, a closed world assumption cannot be made

even though it underlies the compositionality assumption.

A related problem entails vibrations from one component that dominates those

from other components in the assembly. Otherwise normal vibrations from internal

combustion dwarf the more telling yet subtle vibrations from reciprocating elements

like pistons and rolling elements like cams, gears, and drive shafts. Epistemologically,

we do not know if each part is free of defects since high impact waves from internal

combustion is a normal phenomenon, while high impact waves from rolling elements

are not. Such masking prevents us from asserting that each part will be free of defects,

hence the entire premise of the compositionality assumption ceases to hold.

These problems motivated use of techniques from discrete mathematics that

model a machine’s state, with state transitions prompted by an event like a sudden

impact. State transition systems that reify some fault transition model can have

tractability and expressiveness problems. In our preliminary work, the state of an

individual ocean turbine may contain between 64 and 128 Boolean variables. Hence,

construction of transition fault models directly from the system state will result in

an intractably large state space. Furthermore, such naively constructed models are

expressed at too low a level of abstraction. To remedy these issues, this dissertation

applies a logical fault model like fault trees which, given a state snapshot, will ab-

stract that snapshot to zero or more fault types. Such fault types realize semantic

compression and abstraction of individual state snapshots so that finite and tractable

5

transition fault models can be feasibly verified during both design and deployment of

ocean machinery.

1.1.4 Relaxing the Compositionality Assumption

When formally verifying service compositions and machinery, we must relax

the compositionality assumption. Doing so for the former, requires selection of a

glue language that can express dependencies between services, hence motivating our

choice of bpel and of a case study (i.e., the Purchase Order Process) that contains

such dependencies. For the latter, we have been working with the Center for Ocean

Energy Technology (coet) at fau, on the design of an ocean turbine that will gen-

erate electricity from the momentum flux of the Gulf Stream located 30 to 50km

offshore [39]. Assessing the health of such machinery requires use of sensors mounted

on the housings of rolling elements like the shaft, gearbox, and generator. In addition

to vibration data of the closest element being monitored, a sensor will also detect

vibrations in adjacent and non-adjacent elements, as well as vibrations from outside

the machine like those emanating from a motor boat passing overhead. Indeed, when

you are outside looking in, the world is rarely compositional. The whole is rarely a

partition induced on the mereological sum of its individual parts. Compositionality

has too often been used as a convenient fiction to make the mathematics work out

neatly.

6

1.1.5 Safety and Liveness

In the section that follows, I provide a top-level perspective on the safety of

high-assurance systems with respect to finite models. Safety concerns whether or not

an assembly that initially operates correctly will always do so. Only occasionally will

I be alluding to liveness properties like progress, fairness, and efficiency. Liveness

questions concern whether an orchestration eventually services all requests fairly and

efficiently, or whether the turbine farm over a one-year period will eventually attain

some aggregate uptime target. Such questions of liveness ultimately concern Quality

of Service (qos) and are left for future work. Indeed, the notions of always and even-

tually have mathematically precise characterizations in temporal logic, which is used

in software tools known as model checkers. Yet, for a model checker to exhaustively

verify that safety and liveness properties hold, the model of the system being checked

must be finite and, in a practical sense, tractable. The following section outlines some

issues and approaches to assuring system safety.

1.2 Issues and Approaches

Each chapter has a three to five word motif that names a scientific issue or

engineering approach. Hence, each of the following sections previews the content of

the chapters that follow.

7

1.2.1 Test Versus Verification

In [122] we specify a number of decision criteria that guide whether to formally

and exhaustively verify some design or whether to informally and non-exhaustively

test. The context of that paper was implementation of various Service-Oriented Archi-

tectures (soa) subject to external and internal tradeoffs. External (mission) tradeoffs

between assurance, performance, and flexibility were paired up to characterize safety-

critical, fiscally-critical, and entertainment-critical systems. We then matched each

of these classes of systems to internal (technical) tradeoffs that pertain to the feasi-

bility of verification versus testing. Internal tradeoffs between assurance, scale, and

detail became the technical drivers in the decision whether to exhaustively verify or

non-exhaustively test. In the process, we determined that only entertainment-critical

systems are exempt from exhaustive verification considering their requirements for

flexibility and performance at the expense of assurance. For safety- and fiscally-

critical systems, we identified the need to decouple high-assurance portions from those

that attempt either to maximize the performance of the former, or the flexibility of

the latter.

1.2.2 Use Cases for Verification

Given these mission-driven external tradeoffs and technology-driven internal

tradeoffs, [119] surveys use cases for model checkers for high-assurance web service

orchestrations. We noted how use of model checking tools had evolved to address the

8

need to verify code that coordinates activities between a distributed collection of web

services. The need for architectural features like decoupling of functionalities, use of

formal ontologies, automating model capture and presentation, and controlling level

of abstraction will further increase the effectiveness of formal verification.

1.2.3 Automating Model Capture

Of the architectural features surveyed in [119], model capture [127] and pre-

sentation [121] are to be further examined. Automating model capture for a subset of

bpel, had already been done over the past several years by others. Our contribution

is in the generation of understandable and parsimonious models suitable for simu-

lation and model checking that are also extendable with assumptions. Assumptions

that impact state space size and hence feasibility of exhaustive verification entail

atomicity, synchrony, and parallelism. An initial prototype translator from bpel to

promela – the modeling language used by the Spin model checker – performs trans-

lation with respect to these assumptions. In a version of [127] for journal submission

we also describe how pessimistic assumptions, like whether a service is fault-prone,

would be modeled by the prototype.

1.2.4 Automating Model Presentation

Making a model suitable for human interpretation is the topic of [121]. Using

an existing software tool for translating a bpel artifact into a Petri net, along with

our own machine-readable requirements, we created a translator for thence generating

9

a Colored Petri Net (cpn). The resulting cpn includes notions of data type and

hierarchy while improving the layout of the original Petri net. In particular, the

prototype partitions the Petri net into a subnet for each web service in addition to

the subnet representing the orchestration. It lays out each subnet, colors the places

of each subnet with data type, and generates the xml file for the cpn for import into

the cpn Tools software package. Our results include depictions of subnets produced

and initial simulation results for a well-known case study.

1.2.5 Assuring Timeliness

When considering tangible systems like ocean machinery, we must temper

safety requirements of always to ones with respect to some specified period of time.

Hence, a safety requirement for ocean machinery might stipulate maintenance-free

operation over a one-year time period. Another safety requirement might be that

the motion of an ocean turbine’s propeller always occurs subject to some minimum

rotational velocity. Formally representing and thence verifying such real-valued time

constraints requires the use of a timed automaton, as described in [126]. Furthermore,

fleet management of ocean turbines requires an soa infrastructure similar to the e-

science volunteer computing infrastructure of our case study in [126], requiring the

same timed automata to be used for both simulation and verification. That paper

informally outlines a translation of a cpn representing startup/shutdown behavior

of units in a fleet, to an application in uppaal – a software tool for the simulation

10

and verification of timed automata. Automating translations into uppaal is left for

future work.

1.2.6 State Compression and Abstraction

Enhancements to the transition fault models in the previous paragraphs are

irrelevant if the otherwise finite model is neither tractable nor at an appropriate level

of abstraction. Correcting these shortcomings, we present a formalism [125] for a

type of logical fault model known as the fault tree. The potential expressive power of

fault trees lie in their ability to relate multiple anomalous values of possibly disparate

state variables to a smaller more understandable and actionable collection of higher-

level faults or failures. Logical fault models like fault trees provide a mechanism for

simultaneous state compression and abstraction of system faults. Real time evaluation

of a fault tree given system state, results in a marking for a fault transition model

like a Petri net. Composition of logical fault models into transition fault models is

currently under way.

1.2.7 Case Study – Ocean Turbines

We provided a comprehensive reliability assessment [123] in response to recent

interest and funding of an experimental ocean turbine prototype by fau’s Center for

Ocean Energy Technology (coet). This assessment required extensive collaboration

from co-authors, since it spanned disciplines outside the scope of my research, most

notably in Ocean and Mechanical Engineering. As in most real-world systems, the

11

topic of any one researcher’s interest comprises only a minute portion of the entire

problem space. My research is no exception.

For this case study, much of the previously discussed work can be plugged

into four narrowly defined areas in ocean turbine reliability. The first three areas

are topics for future work, since the initial prototype is currently under construction.

The first area involves deriving both coordination and computational baselines as

a means of characterizing what constitutes normal operation. The second involves

enhancements to an annunciator panel at some shore side control center, by depicting

turbine operation in terms of a timed automata as was done in [126]. The third topic

proposes further enhancements to the annunciator panel by depicting the progression

of a turbine’s operating state in terms of cpn models as was done in [121]. The fourth

area concerns fault trees, which although not considered in the reliability assessment

in [123], will provide a fault detection, localization, and explanation capabilities. The

fifth and final topic pertains to finite models in preventing biofilm formation. In [123],

we identified current research into biomimetic surfaces and propose refinements to the

design and fabrication of such self-similar surfaces. Future work in these areas are

described in Section 9.2.

1.3 Organization

Understanding how this dissertation is organized requires considering the prove-

nance of each chapter. Unlike more traditional dissertations, this work grew out of a

12

number of journal articles [121, 122, 123, 126] and conference papers [119, 127]. These

journal articles, in turn, grew out of conference papers [11, 120, 124]. Although re-

lated to logical fault models in [125], ideas from conference papers [41, 42, 142, 143]

for which I was a minor author were not included in this dissertation. Consequently,

each chapter can be read as a self-contained unit with each chapter including its

own literature review and any mathematical preliminaries. In a note of irony, this

dissertation treats the topic of finite safety models as if the topic was compositional!

This dissertation is organized as follows: Chapter 2 examines tradeoffs associ-

ated with testing versus formal verification. Chapter 3 identifies use cases for formal

verification, particularly model checking, for assuring safety of SOA’s. Chapter 4

seeks to automate model capture by defining a translation from BPEL artifacts to

finite state models used by the Spin model checker. Chapter 5 automates the con-

struction of a human readable model in a software tool for colored Petri nets, given a

classical Petri net that had been generated from a BPEL artifact. Chapter 6 considers

real-valued time constraints modeled in timed automata, as opposed to the weaker

ordinal-valued time constraints inherent in fair transition systems like classic Petri

nets. Chapter 7 considers logical fault models like fault trees, in contrast to the tran-

sition fault models treated thus far, by providing a purely set-theoretic formulation.

Chapter 8 provides a real world application into which the techniques in the previous

chapters may be inserted. In particular, this chapter assesses the reliability of novel

ocean systems known as ocean turbines. Finally, Chapter 9 summarizes conclusions

13

and previews future work.

14

CHAPTER 2

TEST VERSUS VERIFICATION

Based on the paper titled Testing and Formal Verification of Service Oriented

Architectures [122], we examine two open engineering problems in the area of testing

and formal verification of internet-enabled service oriented architectures (SOA). The

first problem involves deciding when to formally and exhaustively verify versus when

to informally and non-exhaustively test. The second concerns scalability limitations

associated with formal verification, to which we propose a semi-formal technique

that uses software agents. Finally, we assess how these findings can improve current

software quality assurance practices.

Addressing the first problem, we present and explain two classes of tradeoffs.

External tradeoffs between assurance, performance, and flexibility are determined by

the business needs of each application, whether it be in engineering, commerce, or

entertainment. Internal tradeoffs between assurance, scale, and level of detail involve

the technical challenges of feasibly verifying or testing an SOA. To help decide whether

to exhaustively verify or non-exhaustively test, we present and explain these two

classes of tradeoffs.

15

Identifying a middle ground between testing and verification, we propose using

software agents to simulate services in a composition. Technologically, this approach

has the advantage of assuring the quality of compositions that are too large to exhaus-

tively verify. Operationally, it supports testing these compositions in the laboratory

without access to source code or use of network resources of third-party services. We

identify and exploit the structural similarities between agents and services, examining

how doing so can assure the quality of service compositions.

2.1 Chapter Introduction

In the sections that follow, we describe the motivation, context, and contribu-

tions of this chapter.

2.1.1 Motivation

A Service Oriented Architecture (SOA) is an approach to the development,

deployment, and evolution of distributed black-box software processes known as ser-

vices. Each service asynchronously communicates either with users or with other

services strictly through its standards-compliant interface. Including a service in a

composition of interacting services should not require knowledge of exactly how the

service was implemented. Glue code can be used to assemble these loosely coupled

and reusable services into a composition. A composition may be a centrally controlled

orchestration or a peer-coupled choreography.

16

Although SOA frees developers from concerns over platform, implementation,

and versioning, these freedoms preclude test and quality assurance techniques that

require access to source code. Unexpected behavior emerging from unforeseen usage

scenarios and implicit assumptions may cause race conditions that end in deadlock

or other undesired modes of interaction.

2.1.2 Context

Based on our previous work, we identify the circumstances that require agents

instead of formal verification tools like model checkers to test a composition of ser-

vices [120]. Once we identified a broad class of use cases for this non-exhaustive

mode of testing, we examine how an agent can simulate a service in such a compo-

sition [124]. Finally, we assess how this work can impact current quality assurance

practices.

To gain contextual insight, we first introduce the most common form of SOA,

namely web services, by discussing their standards, their development, and how they

are tested. An artifact written in the Web Services Description Language (WSDL)

defines the interface between public and private sides of a web service [28]. An

artifact written in the Web Services Business Process Execution Language (BPEL)

implements the composition as a centrally controlled orchestration [4]. Similarly, an

artifact written in the Web Services Choreography Description Language (WS-CDL)

implements the composition as a peer-coupled choreography [96].

17

Development and quality assurance of a web service orchestration follows the

pattern shown in Figure 2.1. In Step 1, service providers register their services with a

web service syndicator, providing an interface specification like a WSDL artifact. This

step makes these artifacts available to a possibly distinct group of application builders

known as solution providers. In Step 2, solution providers consult this registry to

compose web services into an orchestration. Testing in Step 3 can either be black-box

testing [24], or a process of formal verification [78] like model checking. Finally in

Step 4, orchestrations free of detected faults are deployed. Otherwise, Steps 2 and 3

are repeated with either a debugged composition or different but equivalent services.

2.1.3 Contributions

We identify both external and internal sets of tradeoffs that involve quality

assurance, in terms of a mirrored pair of triaxial charts. External enterprise-driven

tradeoffs between assurance, performance, and flexibility involve three classes of enter-

prise that include engineering, commerce, and entertainment. These tradeoffs occupy

the left-hand portion of Figure 2.2. A typical web service composition in engineering

or commerce has only a portion of its services that are either safety or fiscally criti-

cal. From an enterprise standpoint, we must assure that non-critical services do not

interfere with the operation of critical ones.

Although critical portions of a composition must be exhaustively verified, do-

ing so for the entire composition may not be practical. To understand what is feasible,

18

Figure 2.1: Assuring Quality of Orchestrations

we identify internal technology-driven tradeoffs between degree of assurance, scale,

and level of detail. These tradeoffs appear on the right-hand side of Figure 2.2.

Model checking is a high-assurance technique that exhaustively verifies compositions.

It automatically lists every combination of interactions, checking each combination

for violations of specified properties. Such a listing can get intractably large. From

a technology standpoint, state space size drives the choice between exhaustive verifi-

cation and non-exhaustive forms of testing.

We identified a technique that occupies a middle ground between exhaustive

19

verification and non-exhaustive forms of testing. For intractably large compositions

comprised of individually machine-verified services, we propose simulating each ser-

vice as a software agent. The behavior of each agent is driven by the model previously

used to formally verify it. In all cases, each agent must use some form of assume-

guarantee reasoning. Since we wish to implement reliable composition, we chose a

two-phase commit interaction discipline. We describe how this may be done using

existing web services standards, illustrating these ideas with a simple case study that

involves composing a set of web service compositions.

The rest of this chapter is organized as follows: Section 2.2 discusses the

tradeoffs that govern choice of quality assurance strategy. Section 2.3 presents a

semi-formal technique for testing web service orchestrations using software agents.

Section 2.4 examines technological impact of the proposed decision strategy and test-

ing method, concluding with Section 2.5.

2.2 Tradeoffs

This section first explores the use of triaxial charts to represent tradeoffs be-

tween mutually conflicting goals or choices. We then describe a mirrored pair of

triaxial charts in Figure 2.2. The left-hand side shows external business-driven goals

commonly associated with validation. The right-hand side denotes internal tech-

nological choices associated with verification. Quality assurance is the one goal in

common between the two sides. External tradeoffs between assurance, performance,

20

and flexibility are determined by the business needs of each application, whether it

be in engineering, commerce, or entertainment. Internal tradeoffs between assurance,

scale, and level of detail involve the technical challenges of feasibly verifying or testing

an SOA. To help decide whether to exhaustively verify or non-exhaustively test, this

section presents and explains these two classes of tradeoffs.

2.2.1 Triaxial Charts

Triaxial charts like those in Figure 2.2 can depict phenomena involving pro-

portions of three items. They are used in fields as diverse as soil geology [32]

and medicine [62]. Each point inside the chart, is associated with some unique

stochastic vector. For example, a point equidistant from three vertices will be vector

<1/3, 1/3, 1/3>, while a point on one of its three vertices will have its coordinate equal

to 1 and the remaining two coordinates equal to zero. Likewise, the locus of points

along the face opposite any vertex will each have its coordinate for that vertex equal

to zero.

The pair of triaxial charts in Figure 2.2 depict two sets of tradeoffs. The

left-hand portion shows external tradeoffs such as the need for performance versus

assurance versus flexibility. These are dictated by external market and societal forces.

The right-hand portion shows internal (technological) tradeoffs such as scale versus

assurance versus level of detail. These are determined by the properties inherent in

the composition of services.

21

The choice between test and exhaustive verification on the right hand side

of Figure 2.2 will depend on the purpose of the orchestration on the left hand side.

An orchestration that is meant to entertain shown on the left hand side may only

need testing, while orchestrations that involve money or public safety may require

exhaustive verification.

This choice may not always be clear-cut. For example, not all portions of e-

commerce or e-science applications require exhaustive verification. A web service for

credit card processing may need formal verification, but a web service that recom-

mends the purchase of related products may not. Nonetheless, an orchestration that

includes both credit card processing and product recommendation, each of which is

shown in Figure 2.3, needs to formally verify that the recommender service does not

interfere with operation of the credit card processing service. The next section will

lend insight into what externally drives the required degree of quality assurance.

2.2.2 External Tradeoffs

These are driven by the enterprise needs of each application domain, be it in

engineering, commerce, or entertainment as shown in Figure 2.3. Tradeoffs inherent

to each domain can be described by some colloquial catch phrase that can be couched

in the negative. The subsections that follow describe the tradeoffs inherent to each

application domain.

22

Figure 2.2: SOA Testing Tradeoffs

2.2.2.1 Engineering

Engineering applications must assure safe and timely operation with the catch

phrase ”.. no surprises”. By ”no surprises”, engineering managers eschew the need

for having to postpone until run time the choice of what specific services belong

in a composition. Implied here is the need to assess both error-free operation and

performance of a composition prior to its deployment. The paragraphs that follow,

describe examples of engineering applications that appear in Figure 2.3.

Grid applications, by nature, are distributed and subject to the vagaries of

23

their network infrastructure. Deploying such applications in an SOA involves striking

a balance between error-free operation and performance. An error-prone grid-enabled

service need not produce an incorrect answer as much as to be unavailable. By signal-

ing to its orchestration, the fact that its computation is taking longer than expected,

the service provides its orchestration with the opportunity to modify its behavior

at run time. This may involve either partitioning the problem and delegating it to

multiple service instances, or to assign the problem to a faster but otherwise identical

service. Since this process requires some degree of run time flexibility, Figure 2.3

places grid applications toward the center of the figure.

Volunteer supercomputing infrastructures like the Berkeley Open Infrastruc-

ture for Network Computing (BOINC) offer a different perspective on the tradeoff

between performance and assurance. As the deployment platform for a large number

of e-Science portals such as Climateprediction.net, Einstein@home, and the ever-popular

SETI@home, BOINC sets out to solve the type of problem that can be partitioned into

myriads of subproblems, each of which can be solved on an Internet-enabled personal

computer (PC) [6].

Its service providers are myriads of otherwise idle home PC’s, each located a

mile beyond the isolated fringes of an unreliable Internet2. A typical provider at any

one time can be temporarily put out of service for a variety of reasons. Such events are

often of little consequence to the BOINC server since each provides but one service –

2 Known as the Last Mile Problem, this refers to the performance and reliability degradation
associated with delivering broadband services over its final leg to the home.

24

raw computing power. So when providers register with an e-Science portal, the only

questions asked are its operating system platform and scheduling preferences.

As an SOA, each service provider is equipped with a service artifact known as

a BOINC client. The BOINC client focuses on high performance by dedicating the

resources of its PC once the PC goes into screen saver mode. Many problems can

arise over the last mile of the Internet, so the BOINC client occupies its place near

the performance vertex but far from the assurance vertex in Figure 2.3.

The BOINC server, on the other hand focuses more on error-free operation

than on performance. Indeed, BOINC work units are batched, with no expectation by

the research community of real time response. Much of the logic in the BOINC server

is dedicated to spanning the gap between performance and assurance. In one strategy,

the server sends the same work unit to three clients, with the first two returning

the same answer being credited with providing the correct answer. Consequently,

these two clients will be favored to receive subsequent work units. Thus, we place

the BOINC server closer to the assurance vertex than to the performance vertex in

Figure 2.3.

2.2.2.2 Commercial

Commercial web service applications must assure sound fiscal management in

a changing marketplace. Corporate managers are not expressing false humility when

they use phrases like ”.. this is not rocket science”. Instead, they are eschewing

25

Figure 2.3: External Tradeoffs

the need for high performance services, if doing so means a higher failure rate or an

inability to adapt to changing markets. In business, failure rate equates to losing

customers or money, where an inability to adapt, equates to having to spend money

to replace rather than upgrade.

Corporate managers know better than anyone else, that the race is not to the

swift, that being second to market gives them the advantage of hindsight, and that

being averse to risk is to favor quality assurance. Time-to-market and just-in-time

operational constraints are not as much about run time performance, as they are

26

about reliably meeting customer expectations. Meeting these expectations entails a

good measure of quality assurance and flexibility, even if it involves sacrificing some

degree of performance.

In addition to the credit card processing that depends on error-free operation,

and product recommenders that depend on flexibility, online auctions in Figure 2.3

occupy a place in between. Auctions involve participants in financial transactions,

thus requiring a higher level of assurance than for recommenders. An auction service

by itself does not perform the actual exchange of funds and goods between buyer and

seller. Instead, an auction service might bundle in a credit card processing service

along with a shipping service as part of its web service composition. Thus, the point

for online auctions in Figure 2.3 can be considered the centroid in a constellation of

points, each of which is an interacting web service.

2.2.2.3 Entertainment

Entertainment applications assert that the show must go on with the catch

phrase ”.. despite the glitches”. Directors and producers would rather compromise

error-free operation than to diminish an audience’s expectation of surprise and im-

mediacy. Varying degrees of flexibility and performance are needed to fulfill these

expectations. Figure 2.3 shows some examples, which we describe in the paragraphs

that follow 3.

3 Trade names including Napster, YouTube, Macromedia Flash, World of Warcraft, Netflix, and
iPod are all registered trademarks of their respective holders.

27

Peer-to-peer (P2P) file sharing, pioneered by Napster, aimed for flexibility at

the expense of performance and error-free operation. Its major use involved exchange

of sound files for music sharing between Internet-enabled PC’s. Most often the PC’s

for both peers occupied the low-performance and low-reliability fringe of the Internet.

Once downloaded, the file in MP3 format, may be replayed many times, or exchanged

with yet other peers. Despite its asynchrony and ad hoc nature, Napster and its

successors satisfies the public’s desire for discovering, collecting, and enjoying artifacts

of entertainment value. Rather than tap into some global halo of on-demand music

and entertainment this practice of collecting such artifacts has persisted to this day

with the iPod and other albeit network-hosted devices.

Unlike P2P networks, YouTube uses a centralized or network-hosted form of

video file sharing, supporting a greater degree of performance, enabling a user to play

the video using Macromedia Flash animation on demand. Judging by its heavy use

by the public, the surprise and sense of immediacy in these videos outweigh their low

resolution, low sound quality, and high lag.

2.2.3 Internal Tradeoffs

Internal tradeoffs pertain to the feasibility of testing an SOA to a level of as-

surance appropriate to each of these three classes of enterprise. This section describes

how testing and model checking observes internal tradeoffs between assurance, scale,

and level of detail shown in Figure 2.4.

28

Due to the state space explosion problem, model checking can only be used

for compositions that are either sufficiently small (low scale) or sufficiently abstract

(low detail). Most web service compositions occupy some point between scale and

detail. In any event, these compositions must be model checked if technically and

operationally feasible.

2.2.3.1 Tool Placement

Each model checking tool is adapted to some degree of scale versus level of

detail. Three model checkers with freely available binaries that also appear in the

web services literature are shown in Figure 2.4. If we were budgeted with a certain

number of machine cycles for model checking, each tool will feasibly model check to

ranges of all three variables shown in Figure 2.4 as shaded-in areas.

The Labeled Transition System Analyser (LTSA) [48] abstracts away the no-

tion of communication channels by enabling user-specification of message sequence

charts (MSC) to model orchestrations. The MSC formalism is easily extended to

model checking choreographies [49], a more macro-scale mode of composition. At

its core, however, LTSA supports a lower-level process algebraic formalism known as

Finite State Process (FSP) notation.

The Spin model checker [66] by far appears most frequently in the SOA veri-

fication literature. Both it and LTSA-FSP express interaction in terms of channels.

Both however, abstract away the ability to specify real-valued time constraints. The

29

UPPAAL verification environment [13] supports the most detailed level of modeling,

enabling the user to specify real-valued timing constraints on each place and channel

in their timed automata models.

Finally, we denote the realm of both traditional and agent-based testing tech-

niques, which for the budgeted number of cycles, has profound limitations on degree

of assurance. The wide variety of these techniques however enable test generation

from either abstractly stated use cases [43, 136], or other means [23].

Figure 2.4: Internal Tradeoffs

30

2.2.3.2 Interpreting the Landscape

Exploring the space inside Figure 2.4, we see how assurance is compromised at

the expense of increasing scale or level of detail. Toy problems, used in the teaching

of model checking techniques, reside close to the assurance vertex. Such problems are

useful when affecting comparisons between model checking tools [103]. As problems

become increasingly complex, as when moving from orchestrations to choreographies,

so does the need for an abstraction that sacrifices some level of detail. This is not

without some risk of false negative errors. Suppose we make the apparently reason-

able assumption that the middleware underlying an orchestration operates flawlessly.

Abstracting away the threading configuration of servelet containers residing in the

middleware, as was done in [47], resulted in an observable deadlock, even though

model checking on the abstracted model did not detect such a violation of safety

properties.

In our discussion of engineering applications, specifically grid computing, we

briefly alluded to the use of timers. BOINC and many, if not most, practical SOA

applications in all three application domains also make use of timers. On an un-

reliable network, timers can be indispensable to assure the progress of an activity.

Both Spin and LTSA use untimed models that abstract away timers, consequently

enabling them to model check larger scale compositions than timed model checkers

like UPPAAL [79]. This abstraction may result in a false positive error in which Spin

or LTSA would detect a deadlock that otherwise could have been resolved in real life

31

(or in UPPAAL) by expiration of timers. Thus, we see that increasing scale while

decreasing detail may lead to both false negative and false positive errors.

2.2.4 Section Critique

We depicted the tradeoffs that govern our choice of quality assurance strategy

using triaxial charts. Assurance is the only vertex in common between the charts in

Figure 2.2, so we establish a correspondence between application domain and quality

assurance technique on the basis of assurance only. We do not imply any correspon-

dence between Performance and Scalability, or between Flexibility and Detail.

The choice between test and exhaustive verification on the right hand side of

Figure 2.2 will depend on the purpose of the service composition on the left hand side.

Not surprisingly, compositions that are meant to entertain shown in Figure 2.3 occupy

the side opposite the Assurance vertex of external tradeoffs. For these systems, an

appropriate level of quality assurance corresponds to the side opposite the Assurance

vertex of internal tradeoffs shown in Figure 2.4. Thus, an entertainment application

may only require non-exhaustive testing.

Compositions that are either fiscally-critical or safety-critical occupy the por-

tions of Figure 2.2 nearer the Assurance vertex, and will require some means of

formal verification like model checking. Real-life service compositions have portions

that require high assurance, and other portions that don’t. When formally verifying

the overall composition, care must be taken to avoid having the non-critical portions

32

interfere with the operation of any of the critical portions. This suggests an asymmet-

ric approach to model checking that may facilitate exhaustive verification of larger

scaled or more detailed compositions than the (present) symmetric approach. Further

exploration of this approach is reserved for future work.

The notion of quality assurance may itself differ between enterprise and tech-

nological perspectives. From the standpoint of an enterprise, assurance may be mea-

sured externally using probabilistic indicators like mean time to failure. For complex

engineering systems involving machinery, or commercial systems involving financial

or distribution networks, such probabilistic measures may be appropriate. From the

technological perspective, assurance can be measured discretely in terms of finite state

models. If such a model can be constructed and checked exhaustively then one may

be tempted to assert that the composition is error free. This would depend on some

strong assumptions, one being that individual services in a composition are them-

selves error free. As models get larger and we have to sacrifice detail for a higher level

of abstraction, this assumption becomes less tenable. For arbitrarily complex compo-

sitions, even an exhaustively verified yet highly abstracted model becomes less useful

for finding faults than would certain non-exhaustive forms of testing. The next section

describes a semi-formal approach to non-exhaustive testing using algebraically-guided

software agents.

33

2.3 Simulating Web Services with Agents

Motivated by the rise of the Internet and e-business, development of web ser-

vices focuses on cost-effective programming-in-the-large of globally interconnected

and precisely orchestrated applications. Such development requires widespread at-

tention to standards compliance, reuse, and dependability. Extensive use of third-

party services, however, poses unique quality assurance challenges, many of which

have been described by Canfora and Di Penta [23]. Opacity of third-party services

necessitates black box testing. Residing in a foreign infrastructure, performance and

even correctness of web services can be subject to load from other users, network

congestion, and choice of middleware. By leveraging best practices like modularity

and abstraction, web service standards like BPEL and WSDL enhance the flexibility,

reuse, and interoperability of web service orchestrations.

Another technology, one important to robotics and ubiquitous computing, is

software agents and agent oriented software engineering. As an outgrowth of artificial

intelligence research [145], Agent Oriented System (AOS) technology can also be

used to test orchestrations of web services. With notable exceptions [117], little work

relates AOS with web service orchestrations, particularly in how to test orchestrations

in which each service is an agent.

This section outlines how each service may be simulated by an agent, with

the orchestration under test supporting interactions between these agents. Imbuing

each service with externally observable behavior that appears uniform, like two-phase

34

commit, orchestrations can be made more reliable, but at the expense of performance

and flexibility.

2.3.1 Web Service Orchestrations

As a software development and distribution paradigm, service oriented archi-

tectures (SOA) support registration, discovery, composition, and subsequent requests

for services over a network. As its most prominent implementation, web services

additionally involve development of standards-compliant artifacts deployed over the

web. Figure 2.5 summarizes salient architectural features of a web service orchestra-

tion. The center of this figure shows the BPEL artifact that can orchestrate up to

four types of web service. These include legacy systems, third party web services,

in-house developed web services, and possibly other orchestrations. Each of the four

types of web service can be implemented by an agent. Each agent can then simulate a

web service so that we may test how well glue language artifacts written in BPEL can

coordinate their interactions. If BPEL and WSDL supported more robust forms of

compositionality, then the entire composition in Figure 2.5 could have its own WSDL

interface. Making this composition part of some larger composition still presents a

number of challenges [112, 129].

More generally, web service languages have a number of shortcomings as sim-

ulation languages. A Web service orchestration is built from WSDL artifacts, each of

35

Figure 2.5: A Web Service Orchestration

which provides an interface to its individual web service. The machine-readable por-

tions of WSDL artifacts include type and number of input/output messages, but not

their usage context. BPEL artifacts describe the activities, control flows, and states

of the composition, while Simple Object Access Protocol (SOAP) messages form the

units of information exchange between each service and its BPEL artifact. None of

these three types of artifacts describe the contexts under which certain types and

numbers of SOAP messages are to be expected or produced. To simulate a web ser-

vice with an agent a formal specification, one that may require some ontology, will be

36

needed to unambiguously specify these contexts. Ontologies themselves can get un-

wieldy without some set of behavioral norms supporting a form of assume-guarantee

reasoning. Since many web service compositions set out to implement reliable transac-

tions, the two-phase commit provides a suitable basis for assume-guarantee reasoning.

2.3.2 Anatomy of an Agent

Agents are defined by Wooldridge [146], and later echoed by Weiß [145] as:
”.. a[n encapsulated] computer system that is situated in some environ-
ment, that is capable of [flexible,] autonomous action in this environment
in order to meet its design objectives.”

Like web services, agents do not necessarily originate from the same developer nor

follow the same internal development methodology.

Based on formal definitions of agents appearing in [58] and [89], Figure 2.6

shows a typical agent that can process a transaction using a two-phase commit. The

agent processes inputs and outputs according to some formal specifications included

in either a Web Ontology Language for Semantic Web Services (OWL-S) process

model [132], or in a Web services Description Language for Semantics (WSDL-S)

interface specification [2]. A walkthrough will illustrate why the agent concept is

architecturally suited to simulating a web service.

First, the agent filters input based on some invocation condition ι which defines

the input portion of an interface describing how the agent may be influenced by

system-wide social state. Our example requires that the agent be receptive to either

a Start, Commit, or Rollback type signal and nothing else. The agent ignores any

37

Figure 2.6: An Agent with Two-phase Commit

other type of signal, presuming that the signal was not intended for it. If a signal

satisfies the invocation condition, it becomes subject to context condition κ that

influences what some authors refer to as the mental state of the agent.

Context condition κ indicates whether the agent is ready to process a particular

type of signal at a particular time (hence, context) and can be governed by a formal

specification involving modal operators always and eventually from temporal logic.

Informally, κ for a two-phase commit might state:
The agent always receives exactly one start signal S, followed eventually
by emitting either a tick

√
or a cross × signal, unless pre-empted by

38

receiving a commit C or rollback R signal which it will eventually receive
prior to receiving the next start signal.

The
√

or × emanates from nodes within the computation graph (plan body) Γ

that was activated by κ indicating success or failure respectively. These two nodes

determine the manner in which the agent may influence system-wide social state.

Maintenance condition µ specifies execution-time invariants. If during runtime, any

node in Γ produces a result that violates µ, a × will be emitted from a node and

thence from the agent. In a two-phase commit, it is conceivable that an individual

agent may fail, yet later receive a commit signal, since some orchestrations may only

require that some of its services succeed. Conversely, an individual agent may succeed,

yet later receive a rollback signal due to the failure of some other agent, the success

of which was necessary for the process instance (and hence transaction) to succeed.

In a hierarchical composition of web services, each node in Γ could have been an

agent that simulates a web service, making plan body Γ an agent-oriented abstraction

representing a web service orchestration. In this case, each agent in Γ can be glued

together by BPEL code, where the BPEL code performs coordination, while each

individual agent can be regarded as performing black-box computation.

2.3.3 Mapping between Agents and Services

Agents are architecturally suited to simulating services, since both use mod-

ularity and abstraction to facilitate design, improve agility, and foster cooperation.

Both exhibit structural similarities. Here we describe how agents can be used for this

39

simulation.

Testing an orchestration involves encoding the behavior of each constituent

service into its own intelligent and autonomous agent. As the successor to the DARPA

Agent Markup Language for Semantics (DAML-S), OWL-S specifications provide a

common nexus between web services on the one hand [135] and agents on the other [91,

132, 135]. OWL-S supports three distinct tasks: (i) discovery, (ii) invocation, and

(iii) composition and interoperation [91]. By focusing on (iii), we will describe in

Section 2.3.4 how an orchestration of services in an online travel agency behaves.

Figure 2.7 maps each portion of an agent to corresponding portions of a web

service. Invocation condition ι in an agent maps to a WSDL specification of a web

service. The presence of a sufficient number of messages of the required types at the

interface of a service will be required for invocation. A one-to-one relation between

an OWL-S grounding and a WSDL artifact can be defined [132]. The extension of

the WSDL Standard known as WSDL-S [2], may provide an alternative to OWL-S.

Finally, an agent’s context condition κ can map to the web service’s state variables

and the logic for setting them.

Strengthening the context condition in the agent will suggest how to do the

same in the web service artifact, whether in the wrapper code that bulletproofs indi-

vidual web service or in the code that implements the orchestration. The net effect

will be to reduce the latitude of what messages and permissible message interleaving

the agent or its service will be expected to respond to. Including such conditions in

40

the BPEL artifact, can reduce the size of its state space, making model checking of

successively larger compositions more feasible. Section 2.2 explored this and other

quality assurance tradeoffs in greater detail.

Figure 2.7: A Mapping between Agents and Services

Formulation of κ, Γ, and µ by far pose the most formidable challenges to

simulating third-party web services when the source artifacts are not available. For κ,

this task is mitigated by improved tool support for specification and formal verification

using the model checker BLAST [70], Spin and NuSMV [152], and various testing

tools and techniques [71, 135]. Research into advanced process mining techniques

41

from event logs [34] may make specifying and verifying plan body Γ easier. Finally,

messages to and from an agent can be encoded as SOAP messages using an OWL-

S grounding that can imbue WSDL artifacts with a machine-processable semantics.

The discipline of always emanating either success or failure messages from agents as

suggested by [89], should be made into a best practice when bulletproofing a web

service.

Smaller or highly abstracted compositions of web service artifacts can be model

checked prior to deployment. Formal verification of larger or more detailed compo-

sitions, however, will eventually encounter the state space explosion problem. These

compositions, especially ones that change during run time, as in Weakly closed sys-

tems [20], may require testing by an agent simulating a web service. Each agent can

be coded to behave according to its formal specification but must be isolated so that

no two agents internally share either state or computing resources. If event logs for

previous or similar orchestrations are available, usage scenarios may be ranked by fre-

quency of occurrence, and can be simulated by the various agents that simulate web

services. Although no computational method, formal or otherwise, can exhaustively

verify arbitrarily large orchestrations, this situated agent approach improves the like-

lihood that fault detection will remain a step ahead of runtime failures involving race

conditions, deadlock, or unspecified receptions.

42

2.3.4 Travel Agency Case Study

Using the correspondence described previously, we present a case study that

examines how this approach can both assure quality of service compositions, and sug-

gest reliability improvements to individual web services. The case study in Figure 2.8

illustrates an on-line travel agency that orchestrates activities between users, airlines,

and hotels. A user initiates a transaction by submitting a query to the travel agent

via its
√

channel (1). An agent simulating a user generates SOAP messages that

could have been mined from event logs of similar sites that exercise this or similar

orchestrations. The travel agent reformulates and relays the query to the flight and

hotel services through its
√

channels (2). The glue code connecting the three ser-

vices is modeled and coded as a BPEL artifact. The flight service emanates its results

through its
√

channel (3) if at least one available flight had been found. Otherwise

it emanates an error through its × channel (4) rolling back the pending transaction

from services awaiting either a
√

or ×. The hotel service emanates its results through

its
√

channel (3). If the flight and optionally the hotel services emanated their re-

sults through their
√

channels (3), then all services will receive a signal through their

commit channels (6). The user is presented with flight information and any avail-

able hotel information through its commit port. If, for whatever reason, the user is

not satisfied with the results returned, the user rolls back the pending transaction

through × channels (7) and (8). Agents simulating flight or hotel services may access

a database with the same schema as the production version, if known. This database

43

could contain just enough instances to exercise usage scenarios encountered during

production processing.

Figure 2.8: Query phase to an Online Travel Agency

Notice that an unspecified reception occurs when a hotel was found but a

flight was not, in which case the hotel
√

channel (3) is enabled but not the flight’s

√
channel (3). Worse yet, the system is in an inconsistent state since not all services

have been rolled back. In particular, the hotel service received neither a commit nor

rollback signal. One can modify the orchestration by connecting a × channel (4) to

the R port of the hotel service.

44

In our example, the hotel service (or agent) emanates a × which simply means

there are no matching records in the database. This example assumes that any

service emanating a × will roll itself back to its state prior to receiving the start

signal for this query. Additionally, a snapshot of this error state can be preserved

as is currently supported by BPEL. Care must be taken to prevent a rollback from

erroneously making this service available for more transactions, unless the service

is in some usable state. This case study provides a motivating example of where

formal machine-processable specifications are needed to constrain interaction among

a society of software agents responsible for completing a transaction [151].

In systems with sufficient redundancy, a faulty service should remain in its

error state indefinitely pending either an explicit rollback signal or a more thoroughly

debugged replacement. Such redundancy can be modeled as timed automata and

implemented using timeouts [126]. Alternatively, this dynamic replacement can be

modeled by an agent that functions as an interpreter for expressions in the Pi Cal-

culus. LTSA-FSP does support a limited form of dynamic replacement that requires

a listing of each possible configuration. In such a setup, each agent is a tabula rasa

that receives its behavioral specifications from the orchestration engine in the form of

a process algebraic specification. From thence forward, the agent behaves according

to its specification until it receives another expression that will modify its behavior.

This runtime service substitution can be done by a portion of the simulation environ-

ment. Expressions in this substitution should be weak bisimulation equivalent rather

45

than identical, to model the substitution of approximately equal and presumably

interchangeable services.

Use of agents to discover sufficiently equivalent services was described in [69]

where OWL-S specifications supplement the service’s entries in the Universal Descrip-

tion Discovery and Integration (UDDI) registry. The technique of bisimulation equiv-

alence to detect sufficiently equivalent web services has also been proposed in [78]. To

illustrate this notion of close enough, suppose the hotel service in our case study is it-

self an orchestration of competing or nation-specific implementations of web services.

Each such implementation may involve slight differences in message construction and

behavior but all must provide the information appropriate to the transaction using

the same interaction pattern.

The case study assumes the need to roll back the transaction for all services. In

long-running transactions, as in case management, localized commits or rollbacks may

be necessary to minimize cascaded rollback. The case study hints at this need when

considering only the querying phase of making a reservation. The rollback through

channels (7) and (8) may have either been user-initiated or through a deferred choice

workflow construct [113], initiated at the expiration of a 24 hour timer. In other

words, any query results not followed up on, will be flushed from the system after 24

hours, which corresponds to standard industry practice. In the meantime, the user

can embark on the second phase of reservations that may involve comparing prices and

convenience of similar itineraries, which will reset the system timer. The second phase

46

will provide its own scope of commit and rollback, as would phase three involving

confirmation and payment. One may proceed through the first two phases, and

initiate but cancel the third phase by choosing another payment method. Cancelling

the third step simply to change payment method should not roll back results of the

previous two steps. Sequentially composing compositions of web services into distinct

phases, with each constituent composition made up of web services that observe the

two-phase commit discipline, enables localizing commits or rollbacks to each phase.

From an operational standpoint, case studies like this can be implemented in

the laboratory since database size, user load, middleware intricacy, and network un-

reliability have been abstracted away. By simulating each service with an agent, and

executing these transactions at a rate substantially faster than that in live operation

will likely detect many coordination faults before they materialize into failures. By

separating computation from coordination, one may use agents to test coordination

requiring fewer computational resources and less knowledge of the inner workings of

any services being simulated [64].

Some legacy systems do not follow this two-phase commit discipline. Encap-

sulating such a system inside a service, (like that shown in Figure 2.5), that enforces

this two-phase commit discipline can be prototyped as an agent. The specific way in

which this can be done depends on which of the five message types are not supported

by the legacy system. For example, a legacy system emitting only positive responses,

will require the service to implement a deferred choice workflow construct to emit

47

a × upon expiration of a timer. More often, legacy systems do not support some

form of compensation handling involving commit or rollback, even though the BPEL

standard readily supports this. Adding exception and compensation handling into

the orchestration without propagating the change to the offending service may leave

that service in a state inconsistent with the rest of the composition.

2.3.5 Section Critique

This section defined both web service orchestrations and Belief Desire Intention

(BDI) type software agents. We mapped each part of an agent to the corresponding

part of the web service being simulated. Using a case study, we described a means of

testing an orchestration by simulating each service using an agent.

Testing an orchestration using an agent at each service not only improves the

BPEL artifact under test, but also points to reliability improvements in each service

being simulated by an agent. Such testing requires use of a suitable type of agent (i.e.,

BDI), implemented in a suitable ontology (i.e., OWL-S), using a suitable interaction

discipline (i.e., 2-phase commit). The following paragraphs temper this sanguine view

of suitability.

The precise role of ontology standards in web services is still unclear. Since a

preponderance of web service literature emphasizes web service standards, we consid-

ered the use extensions to existing standards like the WSDL-S extension to WSDL. It

may still be too early to determine whether replacement of web service standards by

48

OWL-S or extension of existing standards with ontologies will become the prevailing

practice.

Our advocacy of the two-phase commit as a best practice for all web services

may also be disputed. To encapsulate a legacy system as a web service that realizes

a two-phase commit can first be modeled and tested by our proposed simulation

technique. Although fault tolerance of the resulting composition may be improved,

getting the service to support all five message types associated with a two-phase

commit discipline may involve timeouts, some notion of pre-emption, and message

idempotency 4. Modeling these notions in detail may make even our agent-oriented

approach impractical. Abstracting them away may cause us to overlook significant

performance issues.

The need to support standards-based behavioral specifications and a uniform

interaction discipline may be necessary to hierarchically compose web services. Each

service in an orchestration can itself be an orchestration. As an example, the flight

service and hotel service each may involve an elaborate orchestration involving multi-

ple airlines or hotel chains, respectively. Furthermore, each orchestration can be part

of some larger orchestration. The orchestration developed in our case study can itself

be treated as an individual web service representing the query phase of trip planning.

This phase could then be part of a larger three-step sequential composition involving

query, confirmation, and payment for an orchestration that eventually produces a

4 Message idempotency refers to a property of a system wherein system state is not altered with
the receipt of duplicate copies of the same message.

49

trip itinerary and debits the user’s account. Behavioral specifications are required by

our proposed framework so that we can represent and guide each agent’s behavior

according to some finite state model. Hierarchical composition requires a notion of

compositionality involving assume-guarantee reasoning implemented as some uniform

interaction discipline [1]. Development of provably correct methods for constructing

such a hierarchical composition of web service orchestrations, is left as future work.

2.4 Practical Impact

This section treats four areas of practical impact, namely: (i) deployment time

testing, (ii) changing baselines, (iii) scripted testing, and (iv) process improvement.

We describe how our proposed approach using in situ agents can be adapted for

deployment time testing of compositions with fixed number and type of services but

with modifications to the composition under test (i.e., Weakly Closed systems). We

discuss the persistent problem with compositions that change baselines, namely those

with variable number of services, or of services with roles that vary (i.e., Opened

systems). We contrast our approach to the current practices involving scripted testing.

Finally, we describe how our work fosters process improvements.

2.4.1 Deployment Time Testing

Tradeoffs described in Section 2.2 yoke the notions of validation with respect

to external requirements to verification with respect to internal requirements, by

depicting validation and verification as a mirrored pair of triaxial charts. Validation

50

sets forth tradeoffs between assurance and the remaining factors of flexibility and

performance. Deployment time testing using agents is indicated if performance or

flexibility is required, however, quality assurance will suffer. We warn that safety or

fiscally critical systems must depend on exhaustive forms of verification and not on

any non-exhaustive deployment form of testing.

In Section 2.3, we proposed an approach to testing using agents operating in

situ within a web service composition under test. Deployment-time testing of this

operational glue code (i.e., BPEL) artifact, can be implemented by redundant triples

of partner links for each service in the composition. The first link is to an agent that

simulates the web service. The second link is to a presently implemented production-

level service having a known set of capabilities. The third link is to a proposed

implementation having, say, enhanced capabilities. Typically the first and second

links should exhibit equivalent behaviors, with the third link exhibiting the behavior

of a beta version of the service. The beta version needs to exhibit the same behavior

with respect to the set of interleavings successfully handled by the agent and the

production versions. Once this is accomplished, the agent version can be enhanced

to simulate the coordination behavior of the beta version. If the simulating agent

consequently exhibits undesired behavior, then either the agent or the beta versions

need to be modified. This undesired behavior typically surfaces when the less-tested

version of the service (i.e., the beta version) induces a malfunction in the composition

under test.

51

In addition to avoiding undesired behavior, a successful agent simulation of the

beta version can support capabilities not present in the production version. Nonethe-

less, all message types present in the production version of the web service need to be

simulated by both agent and beta versions prior to upgrading the system to the beta

version. Thus, one last regression test needs to be performed, since any undesired

interaction will compromise the operation of other services and service compositions,

like the one we are testing.

Keep in mind that any service can itself be a composition of web services, and

that the system under test is just the visible top-level glue code artifact which we

built. It is conceivable, however, that the beta version of a third-party service differs

from the production version by differences in its own glue code – code that is not

available for us to maintain. Further discussion of this situation falls under the topic

of changing baselines.

2.4.2 Changing Baselines

In a web services context, a change in the glue code artifact constitutes a

change in the baseline, since such changes may involve one or more of the following: (i)

include additional services that need coordination with existing services, (ii) exclude

services that may be critical to desired interaction, (iii) restructure the composition

which may induce undesired interaction between services, or (iv) modify the way

exceptions are handled, violating some assume-guarantee condition. Further analysis

52

of changing baselines involve two scenarios, the first being non-visible changes and

the second being visible ones. The following paragraph discusses the former scenario

while the paragraph after that discusses the latter one.

Glue code changes become problematic if hidden behind some third-party web

service. Under this circumstance, compositional or modular program reasoning is not

possible, since correctness of the top-level visible web service composition depends on

correctness of the lower-level non-visible web service implementations [1]. Section 2.3

approaches the problem of changing baselines by guiding the behavior of each agent

by a process algebraic expression, the model for which can be checked to some set

of temporal logic properties. Whereas the behavior of each individual agent may be

tractable to model checking, compositions having services, each modeled by an agent,

may become intractable. Use of such agents, however may detect non-compliant

glue code modifications to third-party web services before they contaminate existing

versions.

Changes to visible top-level glue code artifacts only become problematic if

they were themselves wrapped in a web service interface to become third-party ser-

vices for other orchestrations. Since changing baselines have traditionally been driven

by external forces, the former scenario remains the most prevalent, persistent, and

problematic. It is worth noting that Section 2.2 suggests that high-assurance sys-

tems be comprised of third-party components that evolve slowly enough so that their

compositions can be model checked.

53

2.4.3 Scripted Testing

Traditionally, testing involves the manual construction of test scripts, often

aided by software tools. These scripts typically reside outside of the system under

test, and pose as the environment for that system. Such a script will need to test

the top-level glue code artifact and the services it uses, and represents a top-down

approach to testing. For compositions involving a tractable number of permitted

interleavings, Section 2.2 recommends the use of model checking rather than testing,

particularly for safety or fiscally critical systems. Otherwise, agents may be used

with the hope that each test agent remain a step or two ahead of humans when

detecting faults. Section 2.3 proposes a bottom-up approach in which each agent acts

in situ, interacting with the web service composition under test as if the agent was

an individual web service. This approach is formal since the behavior of each agent

is guided by process a algebraic expression that satisfies properties expressed in some

temporal logic. It is informal since it depends on a simulation that non-exhaustively

tests combinations of interactions.

An alternative method not explored here involves test agents in which each

agent operates according to a script. Unfortunately, this approach relies on humans

to derive use cases and test scenarios, whereas our approach involves formal specifi-

cation of these use cases resulting in automatic listing of test scenarios. These formal

specifications can then be interpreted by otherwise identical agents, each of which

functions as a real-time process algebraic interpreter.

54

2.4.4 Process Improvement

Section 2.2 describes the realm of validation in terms of industry type be it

Engineering, Finance, or Entertainment, and what is required by each industry type.

It describes the realm of verification by describing what forms of formal verification

are feasible and under what circumstances will either manual or agent-based testing

would be acceptable. Distinguishing between these two realms and the tradeoffs

inherent in each will assist future selection of verification or test strategies.

Section 2.3 focuses on one form of semiformal verification that includes ele-

ments of formal verification, but used in a framework for non-exhaustive testing. This

approach helps fill the gap between testing and formal verification for moderate sized

orchestrations that require a moderate degree of quality assurance.

2.5 Chapter Summary

We depict the tradeoffs that govern our choice of quality assurance strategy

using triaxial charts, in which one chart represents the realm of validation and the

other verification. Assurance is the only vertex in common between these two charts,

so we establish a correspondence between application domain and quality assurance

technique on the basis of assurance only.

The choice between test and exhaustive verification on the verification side

will depend on the purpose of the service composition on the validation side. On the

validation side, the side representing external tradeoffs, compositions that are meant

55

to entertain occupy the side opposite to the Assurance vertex. For these systems, an

appropriate level of quality assurance corresponds to the side opposite the Assurance

vertex of the verification side representing internal tradeoffs. Thus, an entertainment

application may only require non-exhaustive testing.

Compositions that are either fiscally-critical or safety-critical occupy the por-

tions of verification side nearer the Assurance vertex, and will require some means of

formal verification like model checking. Real-life service compositions have portions

that require high assurance, and other portions that don’t. When formally verifying

the overall composition, care must be taken to avoid having the non-critical portions

interfere with the operation of any of the critical portions. This suggests an asymmet-

ric approach to model checking that may facilitate exhaustive verification of larger

scaled or more detailed compositions than the (present) symmetric approach. Tech-

nological tradeoffs in the realm of validation involving the sacrifice of scale for level of

detail, will for successively larger models, become less useful for finding coordination

faults. This indicates a need for a semi-formal strategy involving software agents.

Testing an orchestration using an agent at each service not only suggests im-

provements to the BPEL artifact under test, but also points to reliability improve-

ments in each service being simulated. We established a correspondence between

agents and the web services they simulate, critically examining the suitability of BDI

type agents operating in some ontological framework using some uniform interaction

56

discipline. Finally, we assess impact on current practice that includes deployment-

time testing, changing baselines, scripted testing, and process improvements.

In summary, modeling and testing a far-flung Internet application either ex-

haustively or as a society of agents, reduces the human effort from testing and the

human suffering from not testing. When exhaustive verification is not practical, mod-

eling each service in an orchestration as an agent assures the quality of web service

orchestrations that have been developed in-house.

57

CHAPTER 3

USE CASES FOR VERIFICATION

Due to their high level of abstraction, web services blur the traditional dis-

tinction between model and code. Consequently, executable artifacts can now be

written to a level of abstraction that more closely approximates that of models used

for model checking. Unlike traditional localized white-box software artifacts, the dis-

tributed black-box nature of web services demand exhaustive verification. Recent

usage trends for model checkers coupled with the rise of web services, suggest a dif-

ferent approach to this computationally intensive form of verification. This chapter

outlines these trends and describes a web-enabled approach to verification of web

services. We outline how activities associated with model checking may be migrated

into a web services framework, enabling practitioners to more easily incorporate model

checking into their solutions. Based on the paper titled Toward Model Checking Web

Services over the Web [119], this chapter explores these usage trends and proposes a

web-enabled verification architecture.

58

3.1 Chapter Introduction

As a composition of loosely coupled autonomous services, each having a known

interface, advertised functionality, and specified behavior, Service Oriented Architec-

tures (SOA) are most commonly implemented as web services. Among other benefits,

SOA’s free developers from concerns over platform, implementation, and version-

ing. These freedoms, however, render most traditional testing techniques ineffective.

Without access to source code of services that may not behave as advertised, un-

foreseen usage scenarios and implicit assumptions can cause race conditions that end

in deadlock or other undesired interaction. In this setting, management would be

reluctant to deploy safety or fiscally-critical applications as web services.

To remedy this, Nakajima [98] applied model checking to compositions of web

services. Given glue code artifacts written to a predecessor of Web Services Business

Process Execution Language (WS-BPEL) and Web Services Description Language

(WSDL), Nakajima first proposed converting these artifacts to a finite state model

suitable for model checking. Model checking is a technique for exhaustively verifying

compositions by automatically listing every usage scenario, checking each for viola-

tions of specified properties. More precisely, given a finite state model of a system,

model checking is a means of verifying if certain properties hold for reachable states

within the state space generated from that model. A survey of formal methods,

including model checking, appears in [30].

59

We describe how model checkers have recently been used, from which we de-

lineate features of a proposed SOA for model checking web services, and suggest one

such architecture. This work will facilitate development of best-of-breed verification

environments by embedding model checking techniques into web-enabled applications.

The remainder of this chapter is organized as follows: Section 3.2 describes how

model checkers have been recently used. Based on these usage trends we describe im-

proved means of generating checkable models from process definitions in Section 3.3,

followed by a top-level architecture in Section 3.4 concluding with Section 3.5.

3.2 Advanced Usage Trends

The web services test literature abounds with uses of model checking that

were not fully anticipated by the original tool developers. This section reviews recent

usage patterns of model checkers to delineate problems and trends that may influence

future architectures. Figure 2.1 depicts how model checking is presently used in web

services development. Note that model checking occurs last, after composing web

services in step 3 and performing service discovery in step 2. Modeling earlier during

syndication, checking later during deployment, paying increased attention to long-

running transactions, and incorporating incremental model checking into a software

evolution paradigm, are but a few trends that will change this picture within the next

few years. We discuss each trend in what follows.

60

3.2.1 Syndication Time Modeling

The need for more targeted automatic discovery and composition of web ser-

vices suggests additions to web service descriptions. The authors of [71] predict that

Universal Description Discovery and Integration (UDDI) descriptions will be supple-

mented with automata-based specifications that include the model used for model

checking and the Web Ontology Language for Semantics (OWL-S) based specifica-

tions containing temporal constraints.

During web services syndication and discovery, one would like to identify ser-

vices that perform an ”equivalent task” as a means of finding alternative web services.

This implies the need to detect various forms of bisimulation equivalence – a func-

tionality found in some verification environments that also happen to support model

checking [17, 78].

3.2.2 Service Evolution

Assuring the quality of a web service composition as it continues to evolve

after its initial deployment, requires postponing the checking phase of model checking

until after Step 4 in Figure 2.1. The CHARMY project [20] model checks software

components that evolve, but must retain correctness by construction. This software

architecture based approach addresses already implemented software components.

Incremental model checking, first described in [128] and later used in CHARMY, may

lead to techniques for augmenting and visualizing the state space as one component

61

dynamically replaces another.

The feasibility of model checking as a system evolves depends on the type

of system, which includes Closed systems, Weakly-closed systems, Weakly-opened

systems, and Opened systems. The authors focused on the former two, considering

the latter two as less feasible.

Closed systems have a fixed set of components and a fixed connector or glue

code artifact. Their web service artifacts can be ”set in stone”, making them the

most feasible to model check. Evolution is limited to upgrading any component or its

connector with those having identical interface and message exchange behavior. Web

service artifacts remain unchanged while the implementation that operates behind

the WSDL artifact (i.e. choice of middleware platform, or updated executables)

changes. Its composition may be best implemented as an orchestration in WS-BPEL

and model checked with existing tools at design time. Closed systems do not impact

Figure 2.1. Although least malleable, the ability for each constituent web service to

be independently upgradable showcases the strengths of SOA.

Weakly-closed systems can undergo types of reconfiguration that will require

run time model checking. Such a system has a fixed set of component types or roles,

yet its glue code still can dynamically bind to different yet purportedly equivalent

services. Over time, evolution involves swapping a service instance of a given type

with another instance of the same type. In web services, the peers in a long-running

transaction often change but their fundamental roles, relationships, and behaviors

62

do not, and may be best modeled as a choreography. For example, long-running

transactions in hospital case management will always require an attending physician

for any hospitalized patient. If that physician is unavailable, a different physician must

temporarily assume the role of attending physician. The new attending physician,

however, may perform rounds at a different time of day, potentially impacting related

workflows. Thus in weakly-closed systems one is concerned with evolving systems

using sufficiently equivalent services, while checking that each substitution does not

adversely impact existing workflows.

Since such systems operate asynchronously, their state spaces can become in-

tractably large, necessitating the use of incremental model checking. Although [20]

proposes one of a number of strategies for dynamic composition, reconfiguration, and

verification of weakly-closed systems, two facts stand out. Firstly, this dynamic in-

cremental verification will require use of a highly optimized C Language-based model

checking tool, which motivates their choice of the Spin model checker. Secondly, they

observe that any dynamic reconfiguration strategy will not be appropriate for real-

time systems or for systems subject to hard time constraints. This is because the

order of complexity of model checking often exceeds that of the application it models.

Thus, users must choose model checking approaches based on a three-way

tradeoff between flexibility, assurance, and performance. The best one can hope for

is to find an approach that optimizes on these three variables, given the real world

requirements for some specific web service application. In this case, service evolution

63

can only maintain assurance at the expense of performance.

3.2.3 Incremental Coverage Testing

Since a model is an abstraction, it cannot be directly used as a testable artifact.

However, model checkers have been used to generate test cases [46] that cover either

all or at least the most common situations. Incremental coverage testing involves

generating only new or deprecated test cases, to be examined on an exception basis, to

determine whether the new or deprecated cases were what stakeholders had intended.

The authors of [67] and [108] additionally wished to generate both positive examples

and negative (counterexamples) for each temporal logic formula for each path in the

state space [67], or each decision in the source code reflected in the state space [108].

Positive examples can be generated by model checking to the negation of these

temporal logic properties. Not all positive examples for all coverage criteria can

be generated using the Linear Temporal Logic (LTL) like that supported by Spin.

Since Computational Tree Logic (CTL) more directly handles this negation, [67] used

the SMV model checker, although both the UPPAAL and CPN-Tools verification

environments also support CTL [13, 73]. Furthermore, a user needs to know if a

change will require generating an intractably large number of new and/or deprecated

cases, suggesting the need for a more incremental revision in the composition. If a

sufficiently small increment cannot be specified, then a subset of test cases can be

generated based on use cases observed in event logs, but at the expense of assurance.

64

Thus, use of model checkers as test case generators necessarily requires a num-

ber of workarounds. Decoupling functionalities described in Section 3.3 will streamline

this mode of use.

3.2.4 Integrating Instrumentation

Instrumentation provides feedback that describes how web service composi-

tions actually behave. Gravel, et. al. [55] consider using Spin to model check web

service orchestrations, in conjunction with use of their proposed Execution Analysis

tool for WS-BPEL (EA4B). This addresses three issues: (i) lack of tool support for un-

derstanding the manner in which WS-BPEL actually executes, (ii) enable exploration

of service execution to identify the source of an erroneous service, and (iii) assist the

user in making informed decisions on correctness of observed behavior. They propose

instrumenting WS-BPEL artifacts so that post execution debugging and verification

can be performed, or used for near real-time monitoring, or integrated with Spin.

In the latter use case, their Web Services Analysis Tool (WSAT) [71] can translate

WS-BPEL artifacts to Promela source code for input to Spin. Spin can then gener-

ate both positive and negative test cases, which can be executed by the web service

composition for tracing and visualization using EA4B.

Process mining uses event logs to discover various perspectives on a process,

including data flows, social interactions, and control flows. An interesting approach

for generic workflow applications involves use of noise-tolerant genetic algorithms

65

described by de Medeiros [34]. For web services, this discovery can be made easier

since the block structured nature of WS-BPEL supports implementation of only a

subset of workflow patterns [113]. Faithful reconstruction of a WS-BPEL artifact

using process mining tests both the extent and quality of instrumentation. It provides

confidence that the corpus of coverage test cases appearing in the event log used for

reconstruction is complete.

3.2.5 Stateful Web Services

Web services must retain state as parties to a long-running transaction enter

and exit, or when a web service composition must consistently maintain the state of

its variables.

A different use case for model checking, involves conformance checking to some

set of norms encoded in a standard like WS-BusinessActivity. Ramsokul et. al. [105]

propose a test bed for transaction-oriented (i.e. stateful) web service compositions

supplemented by artifacts from the WS-BusinessActivity standard. Over time, such

compositions may encounter varying subsets of parties to a long-running transaction,

as in case management workflows implemented as web service choreographies. Using

event logs, discrepancies between it and the process model are analyzed with respect

to some set of assumptions that must not change throughout the lifespan of the case.

Implied in this approach is the ability to formally model and state properties in

WS-BusinessActivity artifacts.

66

Zheng et. al. [152, 153] propose a means of automated generation of test cases

from WS-BPEL artifacts that manage data dependencies. They use model checkers

to automatically generate data flows for each variable by formulating test criteria

as trap properties – the negations of the original properties being verified, which is

a similar approach taken by [67] and [108]. When generating tests for stateful web

services, [153] considers WS-BPEL variables and links, describing in detail their use of

web service automata as an intermediate representation that could then be converted

into either Promela or SMV.

3.2.6 Visualizing State Spaces

Visualization can provide insights into the structure and behavior of concur-

rent systems. With the availability of exchange formats described in Section 3.3,

visualization may become more routinely used. Motivated by this need, [56] proposes

the use of the freely available mCRL2 verification toolkit that provides visualization

support for massive state spaces. It can be downloaded at: http: / / www.mcrl2.org

/ wiki / index.php / Home.

The specification formalism for mCRL2 is the Pi-Calculus, known for its ability

to describe concurrent processes having configurations that may change during run

time.

67

The mCRL2 toolkit is intended for general purpose test and verification rang-

ing from microscale embedded systems to macroscale web services. It provides intrigu-

ing 3D visualization support for state spaces based on three topological properties: (i)

proximity of each state to the initial state, (ii) the size of visual elements as propor-

tional to size of node clusters, and (iii) retention of the symmetry of the resulting state

space. On the surface, these visualizations resemble those governing the formation

and organization of biological organisms, particularly dendritic phenomenon 5.

The toolkit includes model checking capabilities, providing state space com-

pression for otherwise large but regularly structured concurrent systems [17]. Dead-

lock or other property violations are color coded, enabling developers to visualize the

context of modeling or compositional errors, while test traces can display the traversal

path over the state space from initial state to some designated state. Considering the

trend toward decoupling, there will be a need for generating state spaces in other tools

to some standard interchange format for import into the visualization component of

mCRL2.

3.3 Architectural Features

By observing usage trends for model checking web services, we identify four

features that must be incorporated into any SOA used for verifying web services. The

5 Dendritic phenomenon are typically modeled using diffusion-limited aggregation processes. Such
processes may be discretely modeled using Tarjan’s algorithm [133] for linear-time construction
of strongly connected components of a graph. Then again, these visualizations may merely be
artifacts of the underlying algorithms used for their rendering.

68

first involves decoupling functionalities offered by model checkers so that users can

orchestrate their own service verification environment. The second feature emphasizes

soundness and completeness of web service compositions by representing web service

artifacts so that machine verifiable models and properties can be inferred. The third

requires streamlining pre-processing, which occupies the vast majority of time and

effort. Finally, a model checking environment should control its level of abstraction,

so that the models and properties are defined at an appropriate level of detail, subject

to the size of the state space.

3.3.1 Decouple Functionalities

As an end-to-end process, model checking web services involves (i) converting

a web service artifact to a model for model checking, (ii) converting the model to a

state space, (iii) mining the state space for conformance to temporal logic properties,

(iv) producing counterexamples, and (v) feeding these back through the executable

web service artifact. Presently, model checkers lump together steps (ii) through (iv).

Syndication time modeling and deployment time checking requires decoupling

step (iii) from (ii). For visualization to operate as its own service, it must not depend

on how the state space was generated in (ii) or evaluated in (iii). Likewise, a variety

of state space generation and mining techniques that optimize on size, performance,

or level of abstraction have already been implemented in a number of model checkers,

69

and should each be available as its own service. Decoupling model checking function-

alities is required by the additional architectural features described in the remaining

subsections.

Decoupling entails the derivation of interchange formats. Step (i) will require

a SOAP message type that can represent any finite state model suitable for model

checking. At minimum, this message type must be capable of expressing models used

by model checkers recently appearing in the literature. These include the untimed

models of Spin and SMV, the Message Sequence Charts (MSC) of the Labelled Transi-

tion System Analyser (LTSA) verification tool, and the timed automata of UPPAAL.

Step (ii) will require an encoded representation of a state space that supports efficient

mining of that space. The need for distribution to or access by multiple hosts for step

(iii) must be considered. Step (iv) will require generating an event log containing

SOAP messages suitable for the web service composition under test.

3.3.2 Emphasize Soundness and Completeness

Sound and complete interface definitions and behavioral specifications for each

service will be needed in a decoupled model checking framework. A model is sound

if a property that is preserved in all executions of its program is also preserved in

all traces of a model. That is, given a model and program, a model checker must

not produce false positives. A false positive is where a faulty trace detected by the

model can either not be reproduced by the program, or it can be reproduced but is

70

correctly handled by the program. The converse of soundness is completeness. A

model is complete if a property that is preserved in all traces of a model, is also

preserved in all executions of its program. That is, given a model and program, a

model checker must not produce false negatives. A false negative is where a faulty

program execution cannot be detected by the model and model checker.

Verifying soundness and completeness must require only WSDL and WS-BPEL

artifacts. WSDL is used for defining the interface of a web service between its public

and private sides, while WS-BPEL is used for composing these web services into an

orchestration. Due to the semi-formal semantics of WS-BPEL, a number of proposals

also favored supplementing these artifacts with a formal ontology encoded in OWL-S

typified by [70, 71, 144]. A similar effect may be achieved by defining a discipline

for coding WS-BPEL artifacts that are correct by construction. The richness of

the resulting artifacts, and hence the need for OWL-S specifications, needs further

investigation.

3.3.3 Streamline Model Capture

Extensive tool support will be needed for converting WS-BPEL artifacts to

models suitable for checking. Currently the most prominent such tool is WSAT for

converting to Spin and SMV [71]. LTSA uses an Eclipse plug-in to do this conversion

into their internal representation which can thence be compared to that generated

from user-specified message sequence charts [49]. Tool support for conversion for

71

other model checkers is otherwise sparse. As yet, no systematic study compares how

well each conversion tool preserves the semantics originally encoded in the WS-BPEL

artifact.

Model capture can avoid work later in the model checking cycle. For example,

by modeling asynchronous processes as if they were synchronous can be done in

identifiable cases, obviating the need to produce such large state spaces [21].

3.3.4 Control Level of Abstraction

What constitutes an appropriate level of abstraction has been open to debate.

It becomes relevant when (i) model checking incremental changes in code and (ii)

determining a suitable degree of instrumentation for process mining. If an incremental

change in code caused a failure, but neither the model nor its specification changed,

then either the model or the specification needs further refinement so that the code

change bringing about the failure triggers counterexamples from the model checker.

In process mining, a test case generated by a model checker not otherwise appearing

in an event log will suggest the need for more detailed instrumentation. Likewise a

test case appearing in an event log not otherwise appearing in the test cases generated

by a model checker suggests the need for a more detailed model. State space size,

however, constrains any such refinement.

72

3.4 A Predicted Architecture

Model-driven development of SOA’s typified by the work of Heckel [61] and

Lohmann [86] can be applied to developing an SOA for model checking web services

over the web. A model-driven approach makes modeling complex systems accessible

to practitioners. In this environment, the by-product of creating a WS-BPEL artifact

may be a model suitable for model checking. Model checking, in turn, can generate

suites for testing the WS-BPEL artifact.

Here we sketch a model-driven approach to assuring quality of web service

compositions. A web service composition has three views: (i) artifact view showing

user-defined artifacts or graphical renderings thereof, (ii) model view showing its au-

tomata and property specifications, and (iii) instrumentation view showing an event

log that, when mined, faithfully reconstructs the web service artifact. Manipulating

one view will propagate changes to the remaining views. Likewise, any deleted views

can be reconstructed from any remaining view.

Figure 3.1 shows two areas of change. The first involves step 2 in which feed-

back is solicited by the syndicator from the user and is further described in [131]. The

second area involves the model checking process in step 4. Presently, composition is

a one-off process shown in Figure 2.1. Figure 3.1 makes web service compositions

reusable by requiring in step 5 the formulation of a WSDL specification for the com-

position, prior to interning both back into the UDDI registry. A WS-BPEL artifact

must also be coded to contain sufficient information for extraction of the remaining

73

Figure 3.1: Proposed Development Cycle

74

views. Hence step 3 of Figure 3.1 may require artifacts written to some instrumented

extension of WS-BPEL. Note how the application builder assumes sole responsibil-

ity for verification, placing responsibility closer to the source of decision-making and

aligning each role to market structures.

The result is the ability to intern valid web service compositions in addition to

the descriptions of individual services that have traditionally made up the UDDI reg-

istry. Consequently, one can realize a form of hierarchical composition in which each

WS-BPEL artifact can operate behind its own WSDL artifact without the knowledge

of builders who may subsequently use that composition.

Someone wishing to build a web service composition works as usual with WSDL

artifacts, without concern for whether any service is itself a composition. Applying

this design to the Travel Agency Problem, subsidiary services of airfare and hotel

can each be implemented as a non-trivial orchestration involving multiple service

providers [124]. This design can compartmentalize an audition [14] or a parallel test

phase to each subsidiary service composition.

The instrumentation view requires an event log that can faithfully reconstruct

a WS-BPEL artifact. Serving as an alternative representation, this view must contain

all coverage test cases. Whereas test suites can be generated from finite state models

using model checkers, in process mining, models may be generated from test suites.

75

3.5 Chapter Summary

This chapter outlines usage trends and architectural features, suggesting a

model-driven approach to verification of web services using web services. Among

other things, this approach realizes a form of hierarchical composition requiring only

glue code and interface artifacts. This form of composition can compartmentalize

how subsidiary service compositions are deployed.

Deploying currently known state space generation and optimization techniques

as individual services will enhance collaboration, by making mining and visualization

of ever larger state spaces feasible. Using web service standards and ontologies to

characterize the way in which state spaces are produced, encoded, represented, and

mined will enable derivation of sound and workable interchange formats. This will

pave the way for seamlessly integrating model checking functionalities into a web-

enabled SOA.

76

CHAPTER 4

AUTOMATING MODEL CAPTURE

Based on an expanded version of [127], this chapter seeks to automate Model

Capture for a Subset of Web Service Orchestrations. Generating a machine-verifiable

model from a Business Process Execution Language (bpel) artifact had drawn recent

interest, partly because bpel’s level of abstraction approximates that of feasibly veri-

fiable models. To date, no tool has been proposed that enables an analyst to generate

a model that is not only understandable, parsimonious, and suitable for simulation,

but also extendable with the assumptions needed for feasible machine verification.

First, we characterize the subset of bpel amenable to the proposed translation into

promela, the modeling language for the model checker spin. Next, we identify be-

havioral patterns that such a translation must enact along with assumptions that

trade state space size for model fidelity. Finally, we present translation algorithms

and production rules for each of the three parts of a promela model. We apply these

algorithms and rules to a well-known case study, while sharing our experiences with

the development of an initial prototype.

77

4.1 Chapter Introduction

Model checking can exhaustively verify if a bpel program correctly orches-

trates activities amongst a collection of web services. We describe how to automate

construction of a machine verifiable model given a bpel program and a set of mod-

eling assumptions.

4.1.1 Motivation

Orchestrating web services involves combining loosely coupled autonomous

services, each of which has its own interface, advertised functionality, and specified

behavior. As a popular and well-supported language, bpel enables the developer to

specify orchestration behavior at a suitably high level of abstraction. Such orchestra-

tion of black-box services frees developers from low-level concerns involving platform,

implementation, and versioning. These freedoms render white-box testing techniques

ineffective and, for safety- or fiscally-critical systems, suggest the use of exhaustive

verification techniques like model checking. Based on its popularity, maturity, and

highly optimized code, we chose to use the spin model checker as the destination

for our translation from bpel. Additionally, tool support is available to translate

spin’s promela modeling language artifacts into other modeling and verification

formalisms [57].

To make exhaustive verification feasible, we must address three areas that af-

fect state space size. First, a tractable subset of bpel containing only non-iterative

78

structured activities will be considered for translation. Iterative activities like <while>,

<repeatUntil>, and <forEach> can result in either unbounded or intractably large

state spaces. Second, although model capture must be done at a low enough level of

abstraction to be useful, it must be done at a high enough level to be tractable [120,

122]. Third, implicit assumptions need to be made explicit and need to be confined

to specific portions of a composition [127].

Recently, a number of efforts have been made to automate the generation of

machine verifiable models from web service artifacts [49, 50, 76, 87, 100, 114, 121, 141].

Such automation seeks to minimize both human effort and judgment in model capture.

These efforts, while laudable, have resulted in modeling artifacts that are difficult to

understand, simulate or troubleshoot. None of these approaches enable the analyst

to extend these models with assumptions that affect their tractability. Furthermore,

existing techniques do not elaborate on how specific behaviors represented in bpel

carry over into the corresponding promela model.

4.1.2 Contributions

This chapter outlines an extendible approach to automating the translation

of bpel source code to a machine-verifiable target model, including these specific

contributions and features. We list these by order of exposition, rather than by

perceived importance:

• Using a recurrence, we provide a compact characterization of the subset of

79

bpel we intend to translate. This demonstrates the utility of recurrences as second-

order theories when defining regular languages that are large and difficult to concep-

tualize. The recurrence also suggests traversal strategies for translating source code

to a machine-verifiable model.

• Using a typed CSP-like process algebra, we describe several behavioral pat-

terns inherent in bpel that a finite state model must be able to represent. We then

relate the algebraic representation to portions of both bpel and promela artifacts.

This contribution lays the groundwork for a more extensive examination of work-

flow patterns listed in [113], by lending language-independent insights into how to

orchestrate web service interactions.

• We identify three types of assumptions that affect state space size, and

provide a means of confining these to specific portions of the target model. Hence,

those portions of the composition that have been deemed reliable can be abstracted

to models having smaller state spaces, while newer, less reliable portions can be

modeled in greater detail. We expect this feature to blend with engineering practices

that encourage incremental changes to artifacts under test.

• We present translation algorithms structured according to regular language

Ln that represents the dialect of bpel defined by applications to n levels of the

recurrence formulae. Furthermore, we define production rules and associate each

to some leaf routine inside our algorithms, lending a degree of extendibility to the

translator. Using this design, the tool development cost of adapting larger subsets of

80

bpel is expected to increase only incrementally.

4.1.3 Overview

We automate model capture by first defining a recurrence relation that formally

identifies a sublanguage Ln of bpel amenable to conversion. We then refine the

recurrence relation’s level of abstraction from the activity level down to the attribute

level. We then encode assumptions about the behavior implied by the bpel execution

model, by adding attributes to the bpel artifact.

Finally, we present top-level algorithms and detail-level production rules for

converting bpel artifacts to models in promela. In the case study, we added model-

ing assumptions concerning atomicity, synchrony, and parallelism, running our proto-

type for all combinations on these assumptions [140]. Additionally, we describe how

to extend this prototype to model certain pessimistic assumptions about whether a

service is fault-prone or whether to suppress or propagate join failure.

Using a case study, we provide the needed intuition into the translation pro-

cess. This case study is a simplified version of the Purchase Order Process which

initially appeared in the ws-bpel Specification [4]. We developed a prototype util-

ity for translating bpel artifacts into promela. The case study discussed in this

chapter exercised both parallel and sequential (i.e., <flow> and <sequence>) con-

structs, while another case study developed in [140] exercised choice constructs (i.e.,

<pick> and <if>). These case studies lent both empirical validity and insight into

81

the implementation of this utility.

The rest of this chapter is organized as follows: Section 4.2 describes the syn-

tax and structure of the subset of bpel artifacts to be translated into promela.

Section 4.3 identifies a set of behavioral patterns in bpel that must be carried over

to the model. Section 4.4 presents a case study to lend insight into the translation

process. Section 4.5 formulates production rules and presents the translation algo-

rithms used as their scaffolding. Section 4.6 examines work related to automated

translation of bpel to verifiable models. Finally, Section 4.7 provides a summary and

brief description of future work.

4.2 Structure

Translating a bpel artifact to a promela model entails translating a struc-

tural artifact into a behavioral one. A purely syntactic first step converts bpel’s

prefix notation to the infix notation used by promela. That is, bpel uses prefix

notation to announce the types of structured or basic activities or types of xml el-

ements being declared. The sub-language Ln of bpel defined by Formula 4.1 lists

these activities or types as infix operators.

Ln is only defined at the activity level of abstraction – one level down from

the process level. To model interactions between an orchestration and its partner ser-

vices – to list all its interleavings – requires further refinement down to the attribute

level. bpel attributes that reference variables are converted to channel statements

82

in promela. Refinement below the attribute level must consider data values, their

propagation, and influence on control flows. The desirability and feasibility of gener-

ating models at that lowest level of abstraction may be considered for future work.

A final syntactic translation involves lifting a bpel artifact’s collection of lex-

ically nested xml elements to a collection of lexically flat first-class and peer-coupled

process declarations in promela. An early problem that employed this technique

involved the conversion of programs from Pascal to the C programming language.

Among other things, the algorithms in the later sections of this chapter incorporate

this technique.

4.2.1 Sub-language

The sub-language of bpel of interest can be described at the activity level of

abstraction by a recurrence that conservatively extends the context-free grammar of

matching parentheses. As in the case of that grammar, if the maximum of depth i is

fixed at n, such a recurrence can generate an, albeit long, regular expression.

Li
◦ =





〈[[
[p,]∗ [ν,]∗

]
+

[
[ν,]∗ [p,]∗

]]
Li+1

; + Li+1
‖ +

〈
β[; β]∗

〉〉
if [i ≡ 0]

〈[
Li+1

; + Li+1
‖ +

〈
β[; β]∗

〉][
; [Li+1

; + Li+1
‖ +

〈
β[; β]∗

〉
]
]∗〉

if
[
0 < i < n

] ∧ [◦ ≡ ;
]

〈
[l,]∗ [Li+1

; + Li+1
‖ +

〈
β[; β]∗

〉
]
[‖ [Li+1

; + Li+1
‖ +

〈
β[; β]∗

〉
]
]∗〉

if
[
0 < i < n

] ∧ [◦ ≡‖]

〈
β[; β]∗

〉
if

[
i ≥ n

]

(4.1)

The recurrence in Formula 4.1 generates a regular expression for Ln. In regular

expressions, metasymbol ’+’ lists syntactically valid choices, one of which must be

83

satisfied for any string representation of a bpel artifact w to belong in Ln. Mem-

bership also involves evaluating ”zero or more occurrences” of those subexpressions,

denoted by the Kleene Star ’∗’. Subexpressions are scoped by bracket metasymbols

’[’ and ’]’. The alphabet of Ln pertains to constructs that are specific to bpel, and

includes the set {〈, ‖, ◦, 〉, p, l, ν, β}. The first four symbols pertain to structured ac-

tivities with ’〈’ representing the activity’s opening portion, ’‖’ parallel composition

(i.e., <flow>), ’◦’ any one of a number of non-parallel types of composition (e.g.,

<sequence> or <pick>), and closing portion ’〉’. The remaining symbols denote part-

ner link declarations ’p’, control link declarations ’l’, application-related variables ’ν’,

and basic activities ’β’.

Generating the regular expression for this recurrence is subtly different from

interpreting the resulting regular expression. The recurrence ascribes absolutely no

meaning to any of these symbols as it strings them out on a clothesline for further

examination and interpretation. It does so by expanding values of recursion variables

gi
j at nesting level i for formula j using the string to its right and subject to the

guard condition to its left. In generating this regular expression, the guard portions

of this recurrence use logical symbols ∧ ∨ and ≡ for logical and or and isequal,

respectively. Its guards use i ≡ 0, and i ≡ n to refer to root and leaf portions of the

tree structured regular expression under construction.

The first line of Formula 4.1 generates the outermost portion of the regular

84

expression and represents the top level of the tree structured bpel artifact. It gener-

ates partner links p followed by application-related variables ν or vice versa, followed

by an expression that, for 0 < i ≤ n gets expanded at the next lower level on all three

recurrence variables gi
1, gi

2, and gi
3. The reader is reminded that the choice operator

’+’ in the regular expression being generated is passive. It does not guide expansion of

the recurrence in any way. Rather, expansion is solely guided by recurrence variable

gi
j as nesting level i proceeds from 0 downward to n.

The second line of Formula 4.1 generates the portion of the subexpression

for one or more non-parallel constructs in bpel. These bpel constructs include

<sequence> denoted by ’;’, and choice (i.e., <pick> or <if>) denoted by ’|’. Choice

constructs ’|’ in the space of bpel artifacts, are distinct from the choice operator

’+’ in the space of regular expressions. The third line of Formula 4.1 generates

the bpel subexpression for parallel compositions, namely the <flow> element, and

involves any number of control links l, followed by one or more child activities. Each

child activity, in turn, may either be structured or basic. Finally, the fourth line of

Formula 4.1 generates some non-parallel composition involving purely basic activities

at the bottom level of nesting.

In addition to these syntactic considerations, a promela artifact must cap-

ture the behavior of a bpel composition. These behaviors will differ depending on

whether the bpel activities are structured or basic, and if structured, whether the

activities must proceed in parallel. The high level of abstraction of Formula 4.1 also

85

hides a number of key elements needed for modeling orchestration behavior. Status

variables are a case in point. Since a bpel code artifact does not explicitly declare

the status variables used by its execution engine, these are not shown in the formulae.

Nonetheless, a promela model needs to include these status variables to properly

enact simulation and machine verification. For example, δ is used to evaluate the

join condition at the destination activity of any control link, while σ specifies how

the result of the join condition should be propagated. A fuller discussion of these

variables appears in Section 4.4. Before discussing behavior – the topic of Section 4.3

– we close with remarks on size estimation of these regular expressions and list what

features of bpel we do not set out to translate.

4.2.2 Size Estimation

Conceptualizing language Ln as a regular expression is not practical. Even

at the high (activity) level of abstraction and at a depth n barely sufficient for even

modestly sized bpel artifacts, regular expressions are difficult to comprehend. This

can be seen by Formulas 4.2 and 4.3, which show the application of the recurrence

for n ≡ 0 and n ≡ 1, respectively. For n ≡ 0, Formula 4.2 contains 57 symbols which

can be minimized to 39.

L0 =
〈[[

[p,]∗ [ν,]∗
]
+

[
[ν,]∗ [p,]∗

]] [〈
β[◦ β]∗

〉
+

〈
β[◦ β]∗

〉
+

〈
β[◦ β]∗

〉]〉
(4.2)

86

For n ≡ 1, however, Formula 4.3 contains 190 symbols but can be minimized

to 100. Even a modest size example, like the Purchase Order Process used in this

chapter, can only be recognized by a regular expression involving two additional levels

of nesting. At each successive level, the number of symbols more than doubles. So

for n ≡ 3, the regular expression that can recognize our case study w ∈ L3 will have

532 symbols. Since middle two lines of Formula 4.1 are the only two formulas in the

recurrence that expand the expression to arbitrary levels, the parse tree generated

will contain O(2n) symbols. Hence, a recurrence of fixed size can represent arbitrarily

long regular expressions to some arbitrarily deep nesting level n.

L1 =

〈 [[
[p,]∗ [ν,]∗

]
+

[
[ν,]∗ [p,]∗

]]

〈 [〈β[◦ β]∗〉+ 〈β[◦ β]∗〉+ 〈β[◦ β]∗〉]

[◦ [〈β[◦ β]∗〉+ 〈β[◦ β]∗〉+ 〈β[◦ β]∗〉]]∗
〉

+
〈

[l,]∗
[〈β[◦ β]∗〉+ 〈β[◦ β]∗〉+ 〈β[◦ β]∗〉]

[‖ [〈β[◦ β]∗
〉

+ 〈β[◦ β]∗
〉

+ 〈β[◦ β]∗
〉
]
]∗〉

+

〈
〈β[◦ β]∗

〉
+ 〈β[◦ β]∗

〉
+ 〈β[◦ β]∗

〉〉
〉

(4.3)

4.2.3 Exclusions

Language Ln has a number of exclusions and limitations. Some basic activity

types, like <assign>, have no interactions through partner links, so the prototype

87

simply indicates its presence as documentation inside the promela code. Further-

more, activities like <assign> are sufficiently short-lived that they may be allowed

to complete rather than be interrupted during any forced termination. Hence, we

model only activities involving inbound or outbound messaging between web services

and their orchestration, by using promela channel statements. Language Ln does

allow degenerate forms in which a structured activity like a <flow> or <sequence>

may have only one child. The bpel Validator included in the bpel2owfn tool also

considers these as valid, but specific bpel engines may not allow these degenerate

forms.

Other activity types have not been implemented such as the <scope> activity.

Currently, the translator recognizes only process scope and no user-defined scopes.

User-defined scopes enable the analyst to confine declarations, error propagation, and

compensation handling to specific portions of bpel code. The recurrence can be ex-

tended to generate regular expressions for user-defined scoping by encapsulating the

last three lines of Formula 4.1 into some larger and similarly structured recurrence.

Such an extension is left for future work. Finally, activities involving iteration, like

<while> <RepeatUntil> or <ForEach>, cannot generate a tractable model without

severe restrictions on the number of iterations. Hence, implementation of these con-

structs are also excluded.

88

4.3 Behavior

Thus far we only considered the structure, rather than the behavior of bpel

processes. Given a language and a level of abstraction this section defines behav-

ioral patterns or idioms that a translator must implement. These idioms simulate

some behavior of a bpel process using promela and include reactivity, instanti-

ation and global properties, interaction, sequence, choice, parallelism, interprocess

dependencies, and implicit assumptions. This list is by no means exhaustive, so this

section briefly lists limitations that can be overcome with either additional or more

generalized idioms.

Enactment of these idioms results in a model of a reactive always-live web ser-

vice for each partner link that interacts with an orchestration under test. The focus of

modeling and verification is how structured activities behave within an orchestration,

particularly for the <flow> construct.

4.3.1 Instantiation and Properties

The top-level process is initiated by a createInstance attribute, typically in-

cluded inside a <receive> activity. This activity receives and processes data from a

partner link which conceptually represents a customer or client. Inside the promela

process definition for that partner link, the translator places a ’progress:’ label so

that spin can verify progress by detecting if that label can be visited infinitely often.

After receiving and processing data from its partner link, the orchestration contains

89

a corresponding <reply> activity that outputs the result over that same partner link.

The orchestration then destroys the instance, simulated in promela by an ’end:’

label. spin uses this label to verify deadlock freedom by detecting if there exists a

trace that does not reach this label, due typically to termination with no statements

enabled. The top-level orchestration loops back to its <receive> activity, which blocks

until the next inbound transaction arrives.

4.3.2 Reactivity

promela represents each bpel process or subprocess P as an infinite do loop

enacting a recursively defined process of the form: P = . . . ; P. A bpel <process>

element, child activity of a <flow>, or service associated with a <partnerLink> which

takes on the following form < P > . . . < /P > results in the following promela

code segment: active proctype P() {do ::{ .. } od}. Nowhere in the body of

the promela ’do’ loop is there an exit condition, so on a correct verification, spin

should always indicate the end state for process P as unreachable. In later sections

we will describe the generation of process definitions for web services that constitute

the environment (or test harness) of the orchestration along with any of its concurrent

sub-processes.

4.3.3 Interaction

Channel statements that listen ’?’ or send ’!’ typed messages over asynchronous

channels in promela, model interactions between the orchestration and its partner

90

web services. These interactions can make an orchestration deadlock. Modeling

these requires an attribute-level abstraction – one that is finer grained than the one

for activities. The more detailed translation of an individual basic activity β in

bpel results in zero or more of these attribute-level statements. The translator

uses attributes that represent input and output variables in the <invoke> activity

or variables in the <receive> or <reply> activities. Table 4.1 shows a form for an

<invoke> activity. Activities like <receive> and <reply> have otherwise identical

code except that variable type attributes are used to generate channel statements.

4.3.4 Sequence

The <sequence> construct in bpel which we symbolize by ’;’ is identical in

behavior to that in promela. Each activity in a sequence is executed in lexical order,

each terminating before the next begins. promela uses ’;’ as an infix operator unlike

languages like C or Java that use the semicolon as a delimiter.

4.3.5 Choice

bpel implements choice type activities like <if> with internal (nondetermin-

istic) choice ’u’ and <pick> with external (deferred) choice ’|’. Although the <pick>

selects a child activity for execution based on some external event like the expiration

of a timer, we nonetheless model both it and <if> nondeterministically. This allows

us to exhaustively test all interleavings using a somewhat simpler and more read-

able model. Further refinements may involve modeling external events at the data

91

value level of abstraction. The larger state space resulting from a finer grained model

may be partially mitigated by the removal of non-determinism in certain places. The

feasibility of such finer grained modeling is left for future work.

Suppose a and b are either basic or structured activities guarded by the

same always-true predicate. Choice activity a u b would be expressed in bpel as

<if>< a . . . >< b . . . ></if>. It is modeled in promela as if ::(1)->a .. ;

::(1)->b ..; fi;. Since we wish to exhaustively check all execution traces, we model

both <pick> and <if> non-deterministically as an internal and seemingly arbitrary

choice. Hence, we chose to ignore external factors that influence a given selection.

4.3.6 Parallelism

To express parallelism, bpel uses the <flow> activity which enacts the AND-

Split and AND-Join workflow patterns described in [113]. Since promela has

no direct means of modeling parallelism, we model this idiom in promela using

channels. These channels are not declared anywhere inside the bpel composition,

and are hence hidden. This entails launch, parallel execution, and completion of

process instances, each represented by immediate children of the <flow> activity.

Formula 4.4 provides a process-level representation for the <flow> activity. At this

high level of abstraction, process Q0
i launches children Q1

j and Q1
k to run in parallel,

each finishing at their own pace.

92

Q0
i =

〈
i
. . . Q1

j ‖ Q1
k . . .

〉
i

(4.4)

At lower levels of abstraction, this representation appears as Formulas 4.5

and 4.6. In Formula 4.5, each process is launched by its own sending operation, while

the ordering of process completion is chosen non-deterministically.

Q0
i = . . . tj! τi ; tk! τi ;

{{tj? τi′ ; tk? τi′} u {tk? τi′ ; tj? τi′}
}

. . . (4.5)

Formula 4.5 launches each sub-process by signaling that process through its

respective t channel using the same message type τ . Signaling operations using t

and τ are hidden from how bpel syntactically represents its <flow> construct. Since

this signaling is non-blocking, both sub-processes can be modeled in promela as

running in parallel. On simulation, the message sequence chart generated by spin

would show interleavings of messaging events between more than one sub-process,

indicating parallel execution.

Q1
j = tj? τi ; .. ; tj! τi′ ; Q1

j (4.6)

Q1
j in Formula 4.6 receives launch message τi through its channel tj, executes its

activities inside the ellipsis ’. . .’, and finally sends completion message τi′ back through

tj. Q1
k is not shown, but is identical to Q1

j except that activation and completion uses

channel tk and activities inside its ellipsis may be different.

93

Thus, we can simulate behavior of the bpel <flow> in promela as an or-

dered launch of two or more processes, parallel execution of those processes, and

eventually by some unordered completion. All messaging is done via a synchronous

channel assigned to each process launched. Table 4.2 shows Formula 4.5 in both its

original BPEL (top half) and its PROMELA implementation (bottom half) Main-

taining a counting semaphore can provide an alternative approach to model launch

and completion sequences. In that case the semaphore gets incremented with each

child launched and decremented with each child completing.

4.3.7 Interprocess Dependencies

bpel control links enact dependencies between pairs of basic activities such

that each activity is associated with a distinct partner link and distinct child element

inside some <flow>. Orchestration process Q mediates interaction between source

web service Ps and its target Pt as described in Formulas 4.7 - 4.9. In Formula 4.7 Ps

simulates a control link fault through a non-deterministic selection of link status in

which 0 indicates a fault. Formula 4.8 has Q listen over channel a for link status γ.

It then relays a join condition that is a Boolean function B of γ and possibly other

variables over channel d to Pt.

In target service Pt, statement d?e(δ) listens for join condition δ over channel

d. Immediately after this statement, we could have modeled exception/compensation

handling if δ indicated a fault. Doing so is reserved for future work. Eventually,

94

some successor activity in Pt will be sending its result and status back to Q. The

value returned will depend on a guarded choice ’|’ involving the suppress join failure

attribute σ in the target activity. If join failure is being suppressed, signified by σ,

then return status from all successor activities will be a ’1’ indicating a suppression

of a fault. If we wish to propagate any join failure, signified by the guard ¬σ, then δ

will be propagated to all successor activities inside Pt. Finally, Q receives the results

from successor activities.

The modeling of interprocess dependencies added considerable complexity and

brittleness to the prototype. Ongoing work focuses on more cleanly implemented

generators of machine verifiable models.

Ps = . . .
{
a!b(0) u a!b(1)

}
. . . ; Ps. (4.7)

Q = . . . a?b(γ) ; d!e(B(γ, . . .)) ; . . . d?f(δ) ; . . . ; Q. (4.8)

Pt = . . . d?e(δ) ; . . .
{{

σ → d!f(1)
}|{¬σ → d!f(δ)

}}
. . . ; Pt. (4.9)

Table 4.3 shows an excerpt of bpel code for the links construct followed by its

promela model. The message type b and link status c do not appear in the bpel

artifact. Instead, they are generated from control link a.

4.3.8 Assumptions

Two classes of assumptions are considered here; those that impact state space

size and those that reflect fault-proneness. The prototype addresses the former class

95

of assumptions with the latter reserved for future work. Syntactically, assumptions

are encoded as attributes (i.e., name-value pairs). Since these are not defined in the

bpel specification, its schema may need to be extended to include these names, or

less elegantly, these may be included as markup inside the <documentation> element.

Model assumptions that impact state space size concern atomicity, synchrony,

and parallelism. The bpel execution model recommends that each basic activity

execute atomically, prohibiting any interleaving of basic activities. Hence by default,

the prototype encapsulates channel statements of a basic activity inside a promela

atomic clause. Not all bpel execution engines observe this assumption. Relaxing

this assumption by omitting this clause will allow interleaving that can result in a

less tractable model.

The bpel execution model also presumes that orchestration of web services is

done asynchronously, via buffers. Strengthening this assumption to synchronous or

non-buffered interaction may result in a smaller state space. Determining under what

circumstances this is allowed was described in [21, 51].

Assumptions that determine how promela should simulate parallelism con-

cern launch and completion sequences for child activities of a <flow>. Ordered launch,

parallel execution, and ordered completion results in the smallest state space, but

this is the least realistic amongst the four combinations. For example, assuming an

ordered completion of parallel activities imposes a lock-step synchronization that as-

sumes that all child activities must complete and do so in the specified sequence.

96

More realistically, unordered completion models child processes completing at their

own pace, but at the expense of a larger state space. Section 4.5 describes how a

bpel markup with assumption type attributes gets translated into promela.

4.3.9 Limitations

Although we currently do not model fault-prone services or basic activities,

they nonetheless can be modeled in a manner similar to how bpel control links

model and propagate join conditions. Recall the situation in which join failure was

not suppressed. In that case, activities within the target service following the loca-

tion of failure propagated the result of the join condition. This modeled cancellation

of successor activities in bpel and can be adapted to modeling fault-prone services.

Positing a fault-prone service can be accomplished by inserting the attribute fault-

Prone=”yes” into the <partnerLink> declaration. Similarly a fault-prone basic activity

can propagate its error condition to all basic activities dependent on its results.

Modeling cancellation interruption or premature termination by an external

error signal is currently not done. These may require a two-place buffer (or two

single-place buffers) for each activity inside some scope. This mounting of a virtual

stop button onto an orchestration requires implementation of some form of priority

queue [76]. Cancellation may require modeling missing reply type faults caused by

orphaned inbound messaging activities like <receive> to preserve the progress prop-

erty. Extending the prototype to consider fault proneness and cancellation is left for

97

future work.

We do not implement channel mobility like that described by service inter-

action Pattern 11 Request with referral in [9]. This pattern can be specified in the

Pi-Calculus; however, the feasibility of sending the name of a channel over a chan-

nel to emulate runtime selection of a certain candidate web service is left for future

work. Our prototype currently inserts promela labels that support verification-time

detection of deadlock and progress. However, the coding of any orchestration-specific

assertions and temporal logic properties is presently done manually. When modeling

parallelism, generation of all k! permutations of completion sequences for k children

of the <flow> element is currently not done by the prototype. Doing so would result

in an intractably large model as the number of children increase. Addressing this or

alternate implementations (i.e., counting semaphores) is left for future work.

4.4 Purchase Order Case Study

As a running example, we used an abbreviated version 6 of the bpel artifact

for the Purchase Order Process which appears in the ws-bpel Specification [4]. It

is reproduced here as Table 4.4, showing only those elements and attributes used by

the prototype translator. For example, attributes representing the preamble inside

the <process> element including lines 02-11 were omitted since they do not influence

the construction of the model. Among the basic activities, attributes in the <assign>

6 Download from: http: / / www.osoa.org / display / Main / Relationship + between + SCA +
and + BPEL

98

activity were omitted, since they would not have resulted in any channel-related

statements in the model.

We defined one service per partner link, abstracting away operation and port-

Type attributes. A finer grained model would have defined a promela proctype for

each combination of partner link, port type and operation. This fine granularity would

have abstracted away any dependencies we wish to capture between operations inside

any given web service. By defining one service per partner link as we do here, we

can later replace that service’s automatically generated sequential composition with

its own orchestration. In this way, machine verification of hierarchical compositions

become possible.

The expression in Formula 4.10 denotes this case study as word w ∈ L3. Note

that the regular expression for L3 was defined in Formula 4.1 at the activity level,

effectively hiding interactions with some hypothetical web services.

w =

〈

01

p13 , p15 , p17 , ν24 , ν25 , ν26 , ν27 ,

〈
30

β31 ;
〈

36
l41 , 〈43β44 ; β50〉43||〈59β60 ; β67 ; β72〉59

〉
36

; β76

〉
30

〉

01

(4.10)

All basic activities except the <assign> on line 44 of Table 4.4 involve orches-

trating the sending and/or receiving of messages through partner links. All basic

activities in Formulas 4.11 - 4.16 bind some channel operation to a variable name, or

more specifically, the message type of the variable name.

99

β31 = p13 ! ν24 (4.11)

β50 = p17? ν24 ; p17 ! ν27 ; {l41 ! ν41(1) u l41 ! ν41(0)} (4.12)

β60 = p15? ν24(γ60) (4.13)

β67 = p17 ! ν26 (4.14)

β72 = {σ60 → p15 ! ν25(1)}|{¬σ60 → p15 ! ν25(γ60)} (4.15)

β76 = p13? ν25 (4.16)

Formula 4.11 describes <receive> activity β31 that uses the ’!’ operator to send

a purchase order ν24 over channel p13 representing the partner link for the OrderPro-

cessing Service. The <variable> name attribute in a <receive> activity causes the

prototype to generate a sending operation from web service to orchestration. Using

the ’?’ operator, the corresponding expression on the orchestration side will be other-

wise identical except the channel expression will be listening for the contents of ν24 .

Similarly, the <reply> activity β76 models the Order Processing service as listening

for invoice ν25 .

Control links enable the specification of interprocess dependencies. Basic ac-

tivities β50 , β60 , and β72 involve control link channel l41 , with the β50 addressing the

control link explicitly. Recall from the bpel listing in Table 4.4 that the source of

l41 is the <invoke> activity β50 . After receiving purchase order ν24 and responding

with availability ν27 , activity β50 non-deterministically decides if ship-to-invoice ν41 is

100

correct indicated by the qualifier (1) or incorrect by (0).

The invoke activity β60 located at the destination of l27 , implicitly refers to

that control link as join condition γ60 . Although our case study involves only one

control link, in general, the join condition is the result of some Boolean expression

over multiple control links in the target activity. Join condition δ60 indicates success

or failure of the control link, while the suppressJoinFailure attribute σ60 , controls

propagation of any failure to subsequent channel statements. By default the failure is

not suppressed and will be propagated to the remaining channel statements inside the

web service. In this case, the failure propagates to the <receive> activity β72 . Recall-

ing the earlier discussion of interprocess dependencies in Section 4.3, an actual model

distributes tasks specified in activities β50 , β60 , and β72 between the orchestration and

its web services.

4.5 BPEL to Promela

As an implementation of a typed CSP-like process algebra, a promela arti-

fact is an list of message types, channels, and process declarations. The idea is to

map the structural specification offered by the bpel artifact along with assumptions

and hidden variables to a behavioral specification in promela as we have done for

individual behavioral patterns in Section 4.3.

We generate a three-part promela model of how bpel orchestrates its in-

teraction with its environment, with each part requiring its own algorithm. As the

101

scaffolding from which rules hang, these algorithms provide a context in which these

rules will fire. Hence, when discussing each algorithm, we will be presenting selected

production rules.

The first algorithm generates declarations of message types, channels, and vari-

ables, each drawn from bpel partner link and control link declarations. Generating

promela declarations only requires access to the bpel declarations. The second

algorithm generates a model of each service that interacts with the orchestration. A

service is represented as a sequential composition of all basic activities that reference

a given partner link, based on an in-order traversal of the bpel artifact. Generating

a service process definition requires access to both basic activities and bpel decla-

rations. The third algorithm generates a model of the orchestration being verified.

Its construction will depend on the type of structured activity (i.e., <flow> or not).

Generating orchestration process definitions is the most complex of the algorithms,

requiring access to basic activities, their enclosing structured activities, and bpel

declarations. At the top level, Algorithm bpel2promela in Table 4.5 is a three-step

process, with each step described in the sub-sections that follow. Since all three al-

gorithms use production rules inside their leaf-level subroutines, we formulate these

rules in the next sub-section.

102

4.5.1 Formulating Rules

This sub-section introduces the principles underlying the production rules used

for generating promela code. Evaluating the left-hand side (i.e., guard condition)

of each rule entails examining the contents of specific bpel elements. The right-hand

side of each rule generates a snippet of promela code, given the portions of bpel

code referenced on the left-hand side. These rules are encapsulated in the various

children of the Print subroutines located throughout the three algorithms.

We can conceptualize any BPEL artifact, including attributes representing

modeling assumptions, as a collection of four-tuples in some relation R ⊆ C × T ×

A×V . For our prototype, we chose to pre-process the artifact by converting it into a

four column table. Other implementations (e.g., using XPath expressions) would be

equally satisfactory. Now suppose tuple r = (c, t, a, v) ∈ R. The first entry, context

c ∈ C, denotes that tuple’s ancestry of element identifiers. For example, if each

element is identified by its line number, then by inspection of Table 4.4, the collection

of tuples comprising <invoke> activity β50 share ancestry 01:30:36:43:50. The

ancestry for the <flow> activity is simply 01:30:36. Thus the context entry c enables

us to refer to an entire bpel element F ⊆ R, be it for all attributes inside some basic

activity, or for all basic activities inside some structured activity. The second entry,

tuple type t ∈ T , denotes the role of tuple r ∈ F , that can be either ’partnerLink’,

’variable’, ’structOpen’, ’structClose’, ’link’, ’basic’, and ’assume’. Finally, the third

and fourth entries a ∈ A and v ∈ V denote attribute name and value copied directly

103

from the bpel source code for one of its elements F .

Given the definitions in the previous paragraph, we describe rules that fire

within the context of each of the three algorithms listed inside Algorithm bpel2promela.

Each rule is comprised of an antecedent and a consequent. The antecedent is a

Boolean expression over a set of terms, where each term is an assertion involving

one or more attributes. We treat each attribute reference as an atom in a first-order

logic, expressing that atom as pair (ti, ai), or for assumptions as triple (ti, ai, vi).

We define a primitive assertion as one that tests for the existence of some tuple

rk = (ck, tk, ak, vk) ∈ Fk which evaluates to true only if (ti ≡ tk) ∧ (ai ≡ ak). Ad-

ditionally, we define a non-primitive assertion as one that involves some comparison

between the values of two 4-tuples. In addition to asserting the existence of each

tuple in the comparison, non-primitive assertion ”(ti, ai) ≡ (tj, aj)” further implies

the equivalence of their respective values vi ≡ vj. If the Boolean expression over

these assertions evaluates to ’true’, then the antecedent is said to be satisfied, and all

attributes in all matching elements will become visible to the consequent.

The consequent is comprised of a sequence of tuple references and unquoted

string constants that specify the promela expression to be generated. For tuple

references inside the consequent, our prototype outputs the value vk corresponding

to some tuple reference (tk, ak). Beneath each rule, we provide an example of its

application from our case study. These rules are not applied in isolation. Rather,

they are evaluated inside children of the Print subroutines which occupy the leaf

104

level of the algorithms that follow.

4.5.2 Generating Declarations

promela declarations collectively refer to message types, channels, and vari-

ables. Algorithm generateDeclarations in Table 4.6 produces each type of dec-

laration using an in-order traversal of bpel <variable>, <partnerLink> and <link>

type elements. The traversal uses an xml primitive of the form:

d′ = LocateNextElement(F , t, d)

This primitive searches inside bpel element F for the next occurrence of a

child element of type t starting at displacement d. It returns displacement d′ of the

next occurrence, or 0 if no additional occurrences were found. The child occurrence

pointed to by d′ is then used in the appropriate child routine of Print to generate

declarations in promela.

Generation of variable and channel declarations from <flow> type activities

starting at line 16 is less trivial. For each bpel <flow> construct, subroutine gen-

FlowMtypes on line 19 generates two message types, one for activating each parallel

process and the other indicating that each process had completed. Each child process

spawned by the <flow> activity has its own channel through which activation and

completion messages pass, which are generated by genFlowDecl.

Rules that generate declarations are by far the simplest, usually having an-

tecedents comprised of a single primitive assertion. Subroutine genChanDcl gener-

ates channel declarations and contains Rule 1, which produces a relatively interesting

105

consequent. A closer look at channel declarations provides insight into assumptions

concerning synchrony. Implied in the execution model for the bpel Language is that

each orchestrated web service operates asynchronously. We can encode this assump-

tion as the attribute at line 017 of the bpel listing in Table 4.4 as buffsize=0,

which overrides the bpel default for buffsize of 1. This causes Rule 1 to generate

a rendezvous or synchonous or zero-place channel. Related work [21, 51] identifies

the conditions under which one may model web services as if they operated syn-

chronously. If one or more services in a composition is synchronizable, and if that

portion was observed to be reliable, then we can realistically model that portion as a

composition of synchronous rendezvous channels. During verification, a model with

such zero-place channels will tend to have a smaller and more tractable state space.

Table 4.7 lists the promela declarations for the Purchase Order Process. Ser-

vices located at the target end of each link will have their channels declared with an

additional variable for the join condition being propagated. This can be seen for chan-

nel pltPay on line 15 for the Payment service. Although control link message type

xSti is declared in the bpel source, subroutine genLinkDcl generates declarations

for both channel ltxStI and variable vxStI to enact the interprocess dependencies

described in Section 4.3. Since there can be more than one set of control links, with

each set associated with its target activity, the prototype suffixes each variable name

with that activity’s location actId. Similarly, there can be more than one <flow>

activity each with multiple children, hence it also suffixes these declarations to assure

106

uniqueness of names.

4.5.3 Generating Services

A promela artifact must model how the bpel orchestration under test inter-

acts with the web services that make up its environment. This subsection describes

how promela code is generated for each web service.

In the version of the Purchase Order Process used in our case study, the en-

vironment includes three services: an order processing service operating via partner

link pOP , warehouse service via pWhs, and payment service via pPay. Each of

these three services are modeled as a separate process (i.e., promela proctype). A

promela process definition modeling a web service includes a process declaration,

followed by a body that includes a sequence of sending ’!’ or receiving ’?’ channel

statements, finally followed by a closing portion of code. Modeling each service as a

sequential composition of channel statements reflects the assumption that each ser-

vice maintains its state as an ordered succession of transitions. This is in keeping with

the requirement that all web service compositions, including interacting web services,

must have unique starting and terminating message events. However, interactions

in between do not necessarily need to implement a sequential composition. Services

having more complex modes of interaction can be substituted for these automatically

generated process definitions and then model checked.

Lacking any further information, we define a service as an endpoint of a partner

107

link that exchanges messages sequentially with an orchestration. Hence, the prototype

generates channel statements as a sequential composition in the same order as a

partner link’s variables are referenced. For the case study, these services are defined

in Formulas 4.17 - 4.19. Each formula is in two parts. The upper part is at the activity

level while the lower part is at the attribute level. We derive the latter expressions

by substitution of Formulas 4.11 - 4.16 into the former.

P13 = β31 ; β76 ; progress ; P13.

P13 = p13 ! ν24 ; p13? ν25 ; progress ; P13. (4.17)

Order Processing service P13 sends purchase order ν24 over channel p13 to the

orchestration and awaits receipt of invoice ν25 . Intuitively, this service represents

a customer’s process interacting with both endpoints in the orchestration. A rule

that fires in the presence of the createInstance attribute of the <receive> activity

will generate a progress label in promela. This label represents the customer’s

perception of a live or active orchestration.

P15 = β60 ; β72 ; P15.

P15 = p15? ν24(γ60) ;
{
σ60 → p15 ! ν25(1) | ¬σ60 → p15 ! ν25(γ60)

}
; P15. (4.18)

Both Payment service P15 and Warehouse service P17 interact with the or-

chestration in a manner that is hidden from customer view. The Payment service

108

propagates join condition γ60 based on suppressJoinFailure attribute σ60 by the inter-

process dependency pattern described earlier. The Warehouse service operates at the

source end of the control link, hence the non-deterministic selection of outcome to be

sent over control link l41 .

P17 = β50 ; β67 ; P17.

P17 = p17? ν24 ; p17 ! ν27 ;
{
l41 ! ν41(0) u l41 ! ν41(1)

}
; p17 ! ν26 ; P17. (4.19)

Algorithm generateServices in Table 4.8 generates code for these services.

After compiling a list of services to generate in line 2, the algorithm represents each

service as a separate promela process. The following paragraphs provide a rule for

each of the subroutines genProcessHeader, genBasicSvcStmts, and genPro-

cessTrailer.

As part of subroutine genProcessHeader, Rule 2 generates the process

declaration at the first element for which its antecedent is satisfied. Its closing form,

Rule 2’ has an otherwise identical antecedent, except the antecedent is negated and

included in subroutine genProcessTrailer. Rule 2’ fires when no more basic

activities involving the partner link can be found. The rules in between generate

channel-related statements, with some constructs generated based on assumptions

encoded in the bpel artifact.

Subroutine genBasicSvcStmts generates the body of a web service defini-

tion, which include channel statements and may also include an atomic clause or

109

progress label. Basic activities like the ones in this case study must execute atomi-

cally [100, 139], so by default the prototype generates an atomic clause unless oth-

erwise specified by attribute atomic=no. Rule 3 and its closing form produce the

promela code for modeling atomic behavior. The scoping of these and other as-

sumptions can be confined to specific basic activities, or alternatively, all basic activ-

ities in a composition, depending on the placement of the assumption type attribute

inside the (hierarchical) bpel artifact.

As pointed out by [47, 76], one cannot always assume that each basic activ-

ity must execute atomically. Some implementations of middleware layers can permit

interleafed execution of more than one basic activity via the same partner link. Re-

laxing the atomicity assumption produces a more realistic model, at the expense of

a larger state space. If only one service has been observed to violate the atomicity

assumption, it would be useful to model only its channel events as not being atomic.

Channel statements are generated by rules similar to Rule 4. This particular

rule generates an expression that listens over a channel (e.g., pltWhs) for a message

(e.g., mtPO) inside service pWhs. The sending end of this channel resides in the orches-

tration. It is generated by a complementing form Rule 4c that is otherwise identical

to the listening end, except that the channel operator in the consequent is reversed.

Notice that input and output variables as in β50 are so named from the standpoint of

the service rather than orchestration. Thus, it is the service that listens using the ’?’

operator for the bpel input variable inVar.

110

The remaining two channel expressions within the atomic scope of service pWhs,

which supports the example <invoke> activity on line 50 of the bpel artifact, were

each generated by its own rule. The rule for the first expression generates a send of an

availability message of type mtAvl over channel pltWhs back to the orchestration. The

rule for the second channel expression generates code for the sending or source end

of a control link (i.e., ltxStI). Control links always operate synchronously, causing

the target activity (i.e., β60) to block until the source activity (i.e., β50) completes.

The rule that generates the expression for its source (sending) end, located inside the

service, is always placed last in any sequence of messages for that basic activity. The

rule that generates the expression for its target (listening) end, located inside the

orchestration, is placed before any channel statements that interact with any other

services. Doing so blocks the start of the activity at the destination or target end until

the activity at the source end completes. Since all three message events in the service

occurs inside the same basic activity β50 , and since we assume atomic execution, they

are all placed inside the scope of the same atomic construct, as can be seen in the

pWhs service in Table 4.9.

4.5.4 Generating Orchestrations

An orchestration can be modeled in promela as a collection of processes, one

for the <process> scope and one for each child of <flow> activities. Each orches-

tration process (i.e., promela proctype) in turn mediates interaction between web

111

services.

Q30 = β31 ; t43 ! τ36 ; t59 ! τ36 ;{ {t43? τ36′ ; t59? τ36′} u {t59? τ36′ ; t43? τ36′}
}

;

β76 ; end ; Q30.

Q30 = p13? ν24 ; t43 ! τ36 ; t59 ! τ36 ;{ {t43? τ36′ ; t59? τ36′} u {t59? τ36′ ; t43? τ36′}
}

;

p13 ! ν25 ; end ; Q30. (4.20)

Formulas 4.20 - 4.22 showcase the modeling of parallelism via channels. After

completion of β31 in which a purchase order is received, process Q30 implements the

<flow> in two stages. Q43 and Q59 are sequentially launched via channels t43 and

t59 , respectively. After executing in parallel the two processes terminate by a non-

deterministically chosen sequence of channel statements. Finally, Q30 performs β76 by

returning an invoice over channel p13 to the order processing service which initiated

this transaction.

Q43 = t43? τ36 ; β
50l

; t43 ! τ36′ ; Q43.

Q43 = t43? τ36 ; p17 ! ν24 ; p17? ν27 ; t43 ! τ36′ ; Q43. (4.21)

Child processes Q43 and Q59 are otherwise straightforward sequential compo-

sitions, each launched and completed via their own synchronous channels.

112

Q59 = t59? τ36 ; β60 ; β67 ; β72 ; t59 ! τ36′ ; Q59.

Q59 = t59? τ36 ;

l41? ν41(γ41) ; p15 ! ν24(γ41) ; p17? ν26 ; p15? ν25(γ60) ;

t59 ! τ36′ ; Q59. (4.22)

Algorithm genOrchestration in Table 4.10 generates orchestration process

definitions from the bpel artifact. It is by far the most intricate, due to <flow>

constructs which, true to the recurrences of Formula 4.1, require special treatment.

The overall approach is to perform a breadth first traversal starting at the <process>

scope and proceeding through the children of each <flow> construct. As each imme-

diate child is encountered the algorithm generates code for non-flow activities, along

with any launch and completion sequences, then places that child onto a queue named

agenda. Once the activities and launch and completion sequences of all children are

complete, the closing portion of the process definition is generated. The algorithm

then proceeds to the next child on the agenda, treating the child’s element as the

current scope, generating a process definition, and placing any of the current child’s

children onto the queue. The algorithm terminates when the queue becomes empty.

The next paragraph describes this algorithm in further detail.

Lines 1-7 generate the top-level process header, naming the process after the

first structured activity type encountered. The while loop on lines 8-41 does one or

more of the following three tasks: (i) generate a portion of the process body on lines

113

10-31, (ii) produce the process trailer on lines 32-36, or (iii) produce the header for the

next child process on lines 37-41. Which portions of the process body get generated

will depend on whether the activity is a <flow>, a choice, an opening or closing

portion of a structured activity, or a basic activity. Each of these cases correspond to

the behavioral patterns described earlier in Section 4.3.

Table 4.11 shows the promela code for the top-level orchestration process,

while Table 4.12 shows the child orchestration processes. Top-level process sequence30

is so-named for the <sequence> activity on line 30 of Table 4.4 which encloses all

other activities in the composition. Its first and last channel statement communi-

cates with the outside world. In between are statements generated by the <flow>

construct beginning on line 36. As the result of the breadth-first traversal over chil-

dren, processes sequence43 and sequence59 follow. If these processes were to have

encapsulated a <flow>, there would have been more process definitions after these.

The printf statements were manually inserted to provide instrumentation for the

control link construct.

4.6 Related Work

The authors assessed tool support for the formal verification of safety- or

fiscally-critical service oriented architectures (SOA) [120], e-science SOA [126], and

use cases that demand automating the process of conversion [119]. Model capture was

addressed by the authors in an earlier work involving colored Petri nets [121]. That

114

work augmented one of the existing utilities reported in [100] for converting bpel

to Petri nets, to further reflect hierarchy and data type (color in CPN terminology),

while improving model layout.

To date, the most mature conversion tool support is offered by the WSAT

utility [50] for converting bpel to modeling languages for the spin and SMV model

checkers. WSAT uses XPath guards to define a guarded finite state automata (GFSA)

that serves as an intermediate representation. From there, WSAT performs a synchro-

nizability analysis to determine if a bpel composition can be treated as if that entire

composition were a collection of synchronously communicating web services [51]. A

synchronizable composition results in a model having a smaller state space. Next,

WSAT performs a realizability analysis to synthesize a set of GFSA that function as

peers that communicate with a single GFSA that orchestrates interaction. Finally,

WSAT translates these XPath expressions into promela.

We observed that the promela code so generated does not make clear the

assumptions used, nor does the code seem intended for human interpretation. An

error trace from spin becomes difficult for a human to interpret when faced with

a rather large artifact. For example, WSAT translated the bpel artifact for the

Loan Approval Process which appears in the ws-bpel Specification into a promela

artifact containing almost 200 guards.

A prototype tool for translating bpel into promela was mentioned in [76]. It

115

supports parameterization by degree of asynchrony based on a hierarchy of commu-

nication models. It generalizes on earlier work in synchronizability [51]. Of interest

in [76] is their description of tool support for identifying the simplest model (i.e., in

terms of queuing assumptions) that nonetheless retains some specified property (e.g.,

boundedness). This work did not address the atomicity assumption, nor was there

a clear description of how their code might be extended to address it. Furthermore,

there was no detailed description of how they went about simulating parallelism.

A means of translating bpel to promela via an open workflow net was de-

scribed in [87]. As part of the Tools4BPEL initiative 7, the bpel2owfn workbench

employs a form of flexible model generation into its intermediate form, providing a

tailored approach to generate a compact model. The specifications were coarser-

grained than our approach. Furthermore, a current incarnation of the tool used for

translating an open workflow net to promela resulted in a single promela proctype,

making it difficult to simulate in Spin.

The LTSA modeling and verification toolset is available for download 8 and

runs inside the Eclipse environment. It is accompanied by an introductory text [90],

and provides tool support for conversion from bpel to a CSP-like process algebraic

notation known as Finite State Process (FSP). LTSA uses an Eclipse plug-in known

as WS-Engineer to do this conversion, the results of which can be compared to those

generated from user-specified message sequence charts [49]. It can model assumptions

7 http://www2.informatik.hu-berlin.de/top/tools4bpel/
8 http://www.doc.ic.ac.uk/ltsa/

116

concerning the presence or absence of synchrony, atomicity, and parallelism, but it

is not clear whether this tool supports scoping these assumptions to specific basic or

structured activities.

Conversion of bpel to workflow type Petri nets is implemented in the tool

bpel2pnml [100, 114]. It can model a robust set of concerns that involve all three

classes of assumptions described earlier. This approach does not seek to exploit the

explicit channel semantics of promela, nor was it obvious if different parts of a

composition can be subject to different assumptions.

Once a model is expressed in promela, there are a number of tools for gener-

ating test suites [153] or for converting promela to models suitable for other verifi-

cation environments. One such tool offered by the VeriTech Project provides a wide

range of tool choices to manage, reframe, or effectively sidestep issues like the state

space explosion problem [57]. In addition to the widespread use of spin [66], the

VeriTech tool helped motivate our choice of promela, since promela can provide

a gateway to other verification formalisms.

4.7 Chapter Summary

We described an extendible mapping of bpel artifacts to machine-verifiable

models written in promela – the modeling language used by the spin model checker.

Extendibility allows the analyst to confine assumptions to portions of a bpel artifact

to influence the state space size of its model. Such a mapping first required us to

117

characterize the sublanguage of bpel amenable to mapping to a finite state model. We

characterized this sublanguage using recurrences that, in turn, generated the regular

expression for that sublanguage. In addition to identifying the scope of applicability

for this translation, that characterization later guided development of the top-level

control structures used by the translation algorithms.

Since we wished to model orchestration behavior, given the structure of the

bpel artifact, we did these five things:

• Define the characterization from the activity level down to the attribute level

of abstraction.

• Generate a model for web services that operate at the other end of each

partner link.

• List several behavioral patterns we wish to model.

• Present an algorithm for generating each of the three parts of a promela

model that include declarations, services, and orchestration processes.

• Define production rules scoped within leaf-level routines appearing in each

algorithm that enable us to fine tune models without major source code modifications.

Doing these five things enabled us to model how a bpel artifact orchestrates

interaction with its web services. We illustrated these ideas with a version of a well-

known case study.

118

<partnerLink name=a partnerLinkType=b />
. . .
<variable name=c messageType=d />
<variable name=e messageType=f />

. . .
<invoke partnerLink=a inputVariable=c outputVariable=e . . . >

..

active proctype a() { .. b?d ; b!f ; .. }

Table 4.1: From BPEL variables to Promela channel statements

<process name=Q0
i . . . >

{ . . .
<flow>< Q1

j > . . . < Q1
k >< /flow>}

. . .
}
..
active proctype Qj() { .. a?b ; .. a!d ; ..}
..
active proctype Qk() { .. c?b ; .. c!d ; ..}
..
active proctype Qi()
{ ..

a!b ; c!b ;
/* Qj and Qk are now running in parallel */
if ::(1) -> a?d ; c?d ;

::(1) -> c?d ; a?d ;
fi;
..

} ..

Table 4.2: From BPEL <flow> to parallel Promela processes

119

. . .
<flow>

<links> <link name=a /> </links>
<structured>

. . .
<basic . . . >

<sources> <source linkName=b /> </sources>
</basic>
. . .

</structured>
. . .
<structured>

. . .
<basic partnerLink=d . . . >

<targets>
<joinCondition> c and 1</joinCondition>
<target linkName=b />

</targets>
</basic>
. . .

</structured>
. . .

</flow>
. . .

/* source service */
..
if
:: (1) -> a!b(0); /* source */
:: (1) -> a!b(1); /* source */
fi;
..
/* orchestration */
..
a?b(c); /* target */
d!e(c && 1); /* target */
..
d?f(g); /* successor */
..
/* target service */
..
d?e(g); /* target */
..
if
:: (h==1) -> d!f(1); /* successor */
:: (h!=1) -> d!f(g); /* successor */
fi;
..

Table 4.3: From BPEL control links to a Promela pattern

120

01 <process name=”purchaseOrderProcess”
.. .. >

12 <partnerLinks>
13 <partnerLink name=”pOP” partnerLinkType=”pltOP” .. />
15 <partnerLink name=”pPay” partnerLinkType=”pltPay” .. />
17 <partnerLink name=”pWhs” partnerLinkType=”pltWhs” .. buffsize=”0” />
21 </partnerLinks>
23 <variables>
24 <variable name=”vPO” messageType=”mtPO” />
25 <variable name=”vNvc” messageType=”mtNvc” />
26 <variable name=”vShI” messageType=”mtShI” />
27 <variable name=”vAvl” messageType=”mtAvl” />
28 </variables>
30 <sequence>
31 <receive partnerLink=”pOP” operation=”placeOrder” variable=”vPO”
32 createInstance=”yes” .. > .. </receive>
36 <flow>
41 <links> <link name=”xStI” /> </links>
43 <sequence>
44 <assign> .. </assign>
50 <invoke partnerLink=”pWhs” inputVariable=”vPO” outputVariable=”vAvl”..
51 atomic=”no”>
55 <sources> <source linkName=”xStI” /> </sources>
57 </invoke>
58 </sequence>
59 <sequence>
60 <invoke partnerLink=”pPay” inputVariable=”vPO” .. >
64 <targets> <target linkName=”xStI” /> </targets>
66 </invoke>
67 <invoke partnerLink=”pWhs” inputVariable=”vPO” outputVariable=”vShI”
68 .. > .. </invoke>
72 <receive partnerLink=”pPay” variable=”vNvc” .. />
74 </sequence>
75 </flow>
76 <reply partnerLink=”pOP” operation=”placeOrder” variable=”vNvc” .. > ..
77 </reply>
80 </sequence>
81 </process>

Table 4.4: BPEL (abbreviated version) of the Purchase Order Process

bpel2promela (BPEL)
01 generateDeclarations (BPEL)
02 generateServices (BPEL)
03 generateOrchestration (BPEL)

Table 4.5: Generate Promela code from a BPEL artifact

121

generateDeclarations (BPEL)

01 . Generate declarations from BPEL variables:
02 actId = locateNextElement(BPEL, ’variable’, 0)
03 while actId
04 print(genVarDecl(BPEL, actId))
05 actId = locateNextElement(BPEL, ’variable’, actId)

06 . Generate declarations from partnerLinks:
07 actId = locateNextElement(BPEL, ’partnerLink’, 0)
08 while actId
09 print(genChanDcl(BPEL, actId))
10 actId = locateNextElement(BPEL, ’partnerLink’, actId)

11 . Generate declarations from links:
12 actId = locateNextElement(BPEL, ’link’, 0)
13 while actId
14 print(genLinkDcl(BPEL, actId))
15 actId = locateNextElement(BPEL, ’link’, actId)

16 . Generate declarations from flows:
17 actId = locateNextElement(BPEL, ’flow’, 0)
18 while actId
19 print(genFlowMtypes(BPEL, actId))
20 children = childrenOf(BPEL, actId)
21 while children
22 childId = firstOf(children)
23 print(genFlowDecl(BPEL, childId))
24 children = restOf(children)
25 actId = locateNextElement(BPEL, ’flow’, actId)

Table 4.6: Generate Promela Declarations

Rule 1: ∃ (partnerLink, plType) ⇒
chan (partnerLink, plType) = [(assume, buffSize)] of {mtype}; /* actId */

chan pltWhs = [0] of {mtype}; /* 17 */

122

001 /* Process Name: PurchaseOrderProcess */
002
003 /* based on BPEL partnerLinks: */
004 chan pltOP = [1] of {mtype}; /* 13 */
005 chan pltPay = [1] of {mtype, byte};
006 chan pltWhs = [0] of {mtype}; /* 17 */
007
008 /* based on BPEL variables: */
009 mtype = {mtPO}; /* 24 */
010 mtype = {mtNvc}; /* 25 */
011 mtype = {mtShI}; /* 26 */
012 mtype = {mtAvl}; /* 27 */
013
014 /* based on BPEL links: */
015 chan ltxStI = [0] of {mtype, byte};
016 mtype = {xStI}; /* 41 */
017 byte vxStI; /* 41 */
018
019 /* based on targets of links: */
020 byte sjf60 = 0; /* 60 */
021 byte jc60; /* 60 */
022
023 /* based on BPEL flow activity: */
024 mtype = {awake36}; /* 36 */
025 mtype = {done36}; /* 36 */
026 chan c43 = [1] of {mtype}; /* 43 */
027 chan c59 = [1] of {mtype}; /* 59 */
028

Table 4.7: Promela declarations for the Purchase Order Process

generateServices (BPEL)
01 actId = locateNextElement(BPEL, ’partnerLinks’, 0)
02 agenda = childrenOf(BPEL, actId)
03 serviceId = firstOf(agenda)

04 while agenda
05 . Model each web service as a separate promela process:
06 print(genProcessHeader(BPEL, serviceId))
07 actId = locateNextBasic(BPEL, actId)

08 while actId
09 . Generate body of service
10 print(genBasicSvcStmts(BPEL, actId))
11 actId = locateNextBasic(BPEL, actId)

12 print(genProcessTrailer(BPEL, serviceId))
13 agenda = restOf(agenda)
14 serviceId = firstOf(agenda)

Table 4.8: Generate a model of services from a BPEL artifact

123

Rule 2: ((partnerLink, plName) ≡ (basic, pLink)) ⇒
active proctype (partnerLink plName)() { do :: {

active proctype pWhs() { do ::{

Rule 2’: (partnerLink, plName) 6≡ (basic, pLink) ⇒ } od }
} od }

Rule 3: ∃ ((assume, basic, atomic) ∧
(partnerLink, plName) ≡ (basic, pLink) ∧
((link, lDecl) ≡ (basic, target) ∨

(variable, vName) ≡ (basic, inVar) ∨
(variable, vName) ≡ (basic, outVar) ∨
(link, lDecl) ≡ (basic, source)

)) ⇒
atomic {

atomic {

Rule 4: ((partnerLink, plName) ≡ (basic, pLink) ∧
(variable, vName) ≡ (basic, inVar)) ⇒
(partnerLink, plType)?(variable, msgType); /* actId */

pltWhs?mtPO; /* 50 */

124

029 /* --------------------------------- */
030 /* -------- S E R V I C E S -------- */
031
032 active proctype pOP() /* 13 */
033 {
034 do
035 :: {
036 pltOP ! mtPO; /* 31 */
037 pltOP ? mtNvc; /* 76 */
038 progress: skip;
039 }
040 od
041 }
042
043 active proctype pPay() /* 15 */
044 {
045 do
046 :: {
047 /* receive result of join cond. -- */
048 pltPay ? mtPO(jc60); /* 60 */
049 printf("60 jc60=%d\n", jc60);
050 /* propagate jc60 if sjf60 != 1 -- */
051 if
052 :: (sjf60 == 1) ->
053 pltPay ! mtNvc(1); /* 72 */
054 :: (sjf60 != 1) ->
055 pltPay ! mtNvc(jc60); /* 72 */
056 fi;
057 }
058 od
059 }
060
061 active proctype pWhs() /* 17 */
062 {
063 do
064 :: {
065 atomic
066 {
067 pltWhs ? mtPO; /* 50 */
068 pltWhs ! mtAvl; /* 50 */
069 /* 50 origin of link */
070 if
071 :: (1) -> ltxStI ! xStI(0);
072 /* .. 50 link failure */
073 :: (1) -> ltxStI ! xStI(1);
074 /* .. 50 link success */
075 fi;
076 }
077 pltWhs ! mtShI; /* 67 */
078 }
079 od
080 }
081

Table 4.9: Promela environment for the Purchase Order Process

125

generateOrchestration (BPEL)
01 . Generate opening portion of first orchestration process:
02 scopeId = locateNextElement(BPEL, ’process’, 0)
03 actId = locateChild(BPEL, scopeId)
04 while actClass(BPEL, actId) 6≡ ’structOpen’
05 actId = locateNextSibling(BPEL, actId)
06 scopeContents = elementContents(BPEL, actID)
07 print(genProcessHeader(scopeContents, scopeId))
08 agenda = actId
09 while agenda
10 . Generate body of orchestration process in promela
11 if actType(scopeContents, actId) ≡ ’flow’
12 children = childrenOf(scopeContents, actId)
13 print(genCallerCode(scopeContents, children))
14 agenda += children
15 actId = locateNextSibling(scopeContents, actId)
16 else if actType(scopeContents, actId) ≡ ’pick’
17 choices = childrenOf(scopeContents, actId)
18 while choices
19 choiceId = firstOf(choices)
20 print(genChoiceCode(scopeContents, children))
21 choices = restOf(choices)
22 actId = locateNextSibling(scopeContents, actId)
23 else if actClass(scopeContents, actId) ≡ ’structOpen’
24 print(genOpenStruct(scopeContents, actId))
25 actId = locateChild(scopeContents, actId)
26 else if actClass(scopeContents, actId) ≡ ’basic’
27 print(genBasicOrchStmts(scopeContents, actId))
28 actId = locateNextSibling(scopeContents, actId)
29 else if actClass(scopeContents, actId) ≡ ’structClose’
30 print(genClosedStruct(scopeContents, actId))
31 actId = locateNextSibling(scopeContents, actId)
32 if null(actId)
33 . Generate closing portion of orchestration process:
34 print(genProcessTrailer(scopeContents, scopeId))
35 agenda = restOf(agenda)
36 scopeId = firstOf(agenda)
37 if scopeId
38 . Generate opening portion of next orchestration process:
39 scopeContents = elementContents(BPEL, scopeId)
40 print(genProcessHeader(scopeContents, scopeId))
41 actId = scopeId

Table 4.10: Generate a model of orchestration from a BPEL artifact

126

080 /* --------------------------------- */
081 /* --------- ORCHESTRATION --------- */
082
083 active proctype sequence30()
084 {
085 do
086 :: {
087 pltOP ? mtPO; /* 31 */
088
089 /* flow36 start */
090 c43 ! awake36;
091 c59 ! awake36;
092 /* -- exec. flow36 in parallel -- */
093 c43 ? done36;
094 c59 ? done36;
095 /* flow36 end */
096
097 pltOP ! mtNvc; /* 76 */
098
099 /* provide snapshot -- */
100 printf("vxStI:%d\n", vxStI);
101 printf("sjf60:%d\n", sjf60);
102 printf("jc60:%d\n", jc60);
103
104 /* destroy Instance -- */
105 end: skip;
106 }
107 od
108 }
109

Table 4.11: Promela orchestration for the Purchase Order Process

127

110 active proctype sequence43()
111 {
112 do
113 :: {
114 c43 ? awake36;
115 /* - assign at line 44 goes here - */
116 atomic
117 {
118 pltWhs ! mtPO; /* 50 */
119 pltWhs ? mtAvl; /* 50 */
120 }
121 c43 ! done36;
122 }
123 od
124 }
125
126 active proctype sequence59()
127 {
128 do
129 :: {
130 c59 ? awake36;
131 ltxStI ? xStI(vxStI); /* 60 */
132 printf("50 vxStI=%d\n", vxStI);
133 /* send result of join condition: */
134 pltPay ! mtPO(vxStI && 1); /* 60 */
135 pltWhs ? mtShI; /* 67 */
136 pltPay ? mtNvc(jc60); /* 72 */
137 c59 ! done36;
138 }
139 od
140 }

Table 4.12: Promela orchestration for the Purchase Order Process (contd)

128

CHAPTER 5

AUTOMATING MODEL PRESENTATION

This chapter is based on the paper titled: From Web Service Artifact to a

Readable and Verifiable Model [121]. Here we enhance Petri nets that have already

been generated from a bpel artifact according to a set of requirements. The result

is a colored Petri net (CPN) having desired properties.

Models of web service compositions that are both readable and verifiable will

benefit organizations that integrate purportedly reusable web services. CPN’s are at

once verifiable and visually expressive, capable of presenting subtle flaws in service

composition. Constructing CPN models from Business Process Execution Language

(BPEL) artifacts had been a manual process requiring human judgment. Building

on results from the Workflow Community, we automate the mapping of artifacts

written in BPEL to models used by CPN Tools – a formal verification environment for

development, simulation, and model checking of colored Petri nets. We extend related

work that already converts BPEL to Petri nets, to reflect hierarchy and data type

(color in CPN terminology), while improving model layout. We present a prototype

implementation that mines both a BPEL artifact, and the Petri net generated from

129

it by an existing tool. The prototype partitions the Petri net into subnets, lays them

out, colors them, and generates their XML file for import into CPN Tools. Our results

include depictions of subnets produced and initial simulation results for a well-known

case study.

5.1 Chapter Introduction

Service oriented architectures (SOA) are commonly implemented as composi-

tions of loosely coupled autonomous web services. Among other benefits, SOA’s free

developers from issues involving platform, implementation, and versioning.

These freedoms, however, render traditional testing techniques ineffective.

Without access to source code of individual services that may not behave as adver-

tised, unforeseen usage scenarios and implicit assumptions can cause race conditions

or other undesirable forms of interaction. Machine verification helps guard against

inclusion of badly designed, underspecified or incorrectly specified services, particu-

larly services having incomplete or ambiguous descriptions. Nonetheless, otherwise

properly designed and well-described services can unexpectedly fail when composed

with other services.

For machine verification to be practical, architectural mismatches between

source artifacts and models, and dependence on human proficiency in model capture

must be minimized. These mismatches manifest themselves as (i) agglomerating

the entire model onto one dense diagram, (ii) ignoring notions of type specified in

130

BPEL as partner links and variables, (iii) presenting models that violate a number of

desirable properties of graph drawings. High assurance systems need models that are

not only machine-verifiable, but also human-readable, since readable ones are easier

to troubleshoot.

5.1.1 Context

This chapter builds on research reported in [100, 114] that resulted in tool

BPEL2PNML that converts BPEL artifacts to place/transition type Petri nets. These

nets were encoded in the Petri Net Markup Language (PNML) [15, 92] according to a

formal semantics of control flows appearing in [100]. Starting with the results gener-

ated by this tool, we further developed a prototype that converts the PNML artifact

to an XML file suitable for import into CPN Tools. The prototype preserves BPEL

partner links and variables, notions lost by the BPEL2PNML tool. We then hierarchi-

cally partitioned and laid out these models for readability. The layout applies results

from graph drawing research including the closely related topics of planar embeddings

involving palm trees [68], visibility representations [10], and book embeddings [29].

We first describe the modeling formalism we chose as the destination for our

conversion facility. CPN Tools is a formal verification environment based on the

colored Petri net formalism that supports the modeling, analysis, and simulation of

distributed systems, with an introduction [73] and tutorial [107] available. CPN Tools

enhances conventional Petri net tool support through hierarchical construction, an

131

extended notion of data type or color, simulation monitoring, analysis techniques,

and model checking.

5.1.2 Contributions

We automate model construction so that practitioners can concentrate on val-

idating and verifying BPEL compositions rather than expending effort on model cap-

ture. Even modeling control flows among and between basic activities, structured

activities, and crosscutting concerns like execution and remediation, can result in

large and intricate models. To manage this scale and intricacy, we automate the

process by which a Petri net is partitioned into subnets. Some subnets, like those

for structured activities and crosscutting concerns, may remain large but must be

laid out to facilitate human comprehension. Even smaller nets, like those for basic

activities and simple applications of control links, would benefit from a simple and

consistent layout. Much of the information specific to a BPEL process like notions

of partner links and variables, need to be carried over to the model. We automate

the encoding of partner links and variables into CPN Tools as colors and color sets,

respectively.

5.1.3 Organization

The rest of this chapter is organized as follows: Section 5.2 reviews related

work that emphasizes tool support for conversion from BPEL artifacts to Petri nets,

introduces CPN Tools, and summarizes pertinent results from graph drawing research.

132

Section 5.3 bridges the gap between PNML artifact and the input used to compute

the embedding. Section 5.4 describes the layout algorithm that produces the embed-

ding. Section 5.5 describes the generation of the CPN Tools XML artifact from the

embedding. Section 5.6 summarizes simulation results. Finally, Section 5.7 provides

a summary and description of future work.

5.2 Related Work

This section focuses on related work that resulted in tool support for conver-

sion from BPEL artifacts to machine verifiable models. Of particular interest is an

assessment of tool support for conversion to Petri nets. Such an overview requires a

brief look at verification tools and pertinent research into graph drawing.

To motivate this discussion, we introduce CPN Tools and describe why it

provides a suitable destination for conversion from a BPEL artifact. Obstacles that

prevent wider-spread adoption of CPN Tools to formal verification of web service

orchestrations appear not to center on limitations of the tool. Rather, the obstacle

is simply its lack of conversion tool support. This stands in contrast to other more

limited verification environments that feature more mature conversion support.

This chapter builds on research reported in [100, 114] that describe and provide

tool support for conversion of BPEL artifacts to ordinary place/transition type Petri

nets. Others propose but provide no tool support for conversion to CPN, where

[150] proposes an optimistic activity-level conversion without concern for the more

133

intricate control flows needed for a robust behavioral model. Finally, [148] uses an

algebraic representation of activity-level constraints as a means of deriving a CPN,

but detailed discussion of conversion tool support is lacking. A final obstacle concerns

the geometry of the visible model. Graph drawing research into planar embeddings

using the palm tree construction [68], and visibility representations [10], and book

embeddings [29] will assist in overcoming this particular obstacle.

5.2.1 Verification Tools

In addition to being the leading research tool for colored Petri nets, we chose

CPN Tools for its freely available Windows binaries, Java implementation, visual

design formalism, and XML format for its modeling artifacts. At least two other ver-

ification environments provide attractive alternatives, including the Labelled Transi-

tion System Analyser (LTSA) [90] and Uppaal [13] (named after the collaboration

between Uppsala University in Sweden and Aalborg University in Denmark). The

leading model checker, Spin, was not appropriate since, among other things, it did

not offer a visual modeling formalism, nor was its freeform artifacts self-describing.

The SMV model checker presents similar limitations, but seems to be intended more

for embedding into other applications.

LTSA already offers an Eclipse plug-in that converts BPEL code to the process

algebraic formalism that underlies its verification capabilities. Unlike a process alge-

braic formalism, colored Petri nets provide a more visual presentation that involve

134

nesting and lexical ordering of activities in BPEL, along with constructs like partner

links and variables.

Uppaal, a tool based on timed automata, has as yet no conversion tool sup-

port, however it poses mapping problems in addition to those posed by CPN Tools.

Its models demand greater parsimony and abstraction due to its use of real-valued

time constraints and invariants that increase state space size. The timed automata

modeling formalism of Uppaal complements modeling activities using CPN Tools as

the authors had recently shown [126]. Solutions to mapping problems for CPN Tools

can eventually be adapted to mappings from BPEL to Uppaal, perhaps via CPN.

Before reviewing conversion tools we describe the modeling environment we

chose as the destination for the conversion facility. CPN Tools is a formal verification

environment based on the Colored Petri net formalism that supports the modeling,

analysis, and simulation of distributed systems, with an introduction [73] and tuto-

rial [107] available. It was developed by the CPN group at the University of Aarhus

in Denmark.

Like LTSA and Uppaal, CPN Tools supports model-driven development in-

cluding syntax checking and code generation from the model under construction. It

supports both timed and untimed Petri nets, and can generate and analyze either

full or partial state spaces. It enhances conventional Petri net tool support through

an extended notion of data type or color, hierarchical construction, and simulation

monitoring. Unlike model checkers like Spin and LTSA it simulates directly with

135

its model rather than indirectly via a message sequence chart. Enforcement of color

compatibility is done at edit time. Connecting arcs of different colors to the same

transition causes the editor to highlight the transition and display an error. During

simulation, instant feedback takes the form of the highlighting of successive markings.

This lends insight into the actual behavior of the web service artifact. Figures 5.2

through 5.6 are screen shots from CPN Tools, resulting from running the prototype.

CPN Tools has a variety of toolbox controls and binders for editing, viewing, simula-

tion, monitoring (breakpoints), and state space analysis. The remaining tools support

editing the CPN.

CPN Tools provides model checking capabilities for ordinary place/transition

nets having uniquely labeled places and transitions through their state space genera-

tion/analysis tool. This tool enables one to verify properties expressed in computation

tree logic. The state space explosion problem associated with exhaustive verifica-

tion techniques like model checking have been extensively studied by [51] and [65],

with their results incorporated into CPN Tools. Simulation and partial state space

construction each provide confidence about this boundedness property, prior to con-

struction of the full state space. Nonetheless, applications with intractably large

state spaces need to use Petri net analysis techniques like transition invariants. One

such workflow analysis tool is WofBPEL, which does not require generating a state

space [100]. Since WofBPEL uses the identical PNML artifact as our prototype,

future work may involve closer integration with this tool.

136

Finally, the programming language interface, CPN ML, enables reading or

writing to a file, calculating some value, or sending/receiving information to/from

external processes. This programmatic interface to the outside world may enable

a CPN Tools model to become a central artifact in the instrumentation of ongoing

processes.

The gap between the BPEL artifact and the XML format for CPN Tools is

addressed by conversion tools, the state-of-the-art of which we discuss in the next

paragraphs.

5.2.2 Conversion Tools

Bridging application and model, conversion tools must preserve enough behav-

ior of web service artifacts to identify undesirable interactions. LTSA uses an Eclipse

plug-in to do this conversion into their internal representation that can thence be

compared to that generated from user-specified message sequence charts [49]. To

date, the most mature conversion tool support is offered by the WSAT utility [50] for

conversion to modeling languages for the Spin and SMV model checkers. Nonetheless,

for reasons stated earlier, we chose instead to convert to CPN.

Tool support for conversion from BPEL to CPN is otherwise lacking. BPEL

to CPN conversion described in [74, 150] provides neither tool support nor algorithm.

Rather, they provide a set of rules for translating textual representations of each

BPEL activity into a corresponding visual representation in CPN Tools. Although

137

helpful in conceptualizing BPEL activity-level constructs in CPN Tools, it does not

algorithmically describe this conversion.

Conversion of BPEL structured activity types to Petri nets must account for

execution concerns like cancellation, correlation set match-up, message-triggered in-

stantiation, and boundedness [114]. Problems with converting BPEL to PNML, con-

cern differing ways of modeling control flows. Seeing this as part of a larger problem

known as schema integration, behavior inherent in BPEL artifacts must be carried

over to other formalisms like Petri nets for them to be proven correct with respect

to some specified set of properties. This translation requires a formal semantics of

BPEL control links as specified in [100]. That paper also lists additional concerns

involving dead path elimination, join conditions, suppressing join failures, and skip-

ping behaviors. In addition to a formal semantics for BPEL control flows, it specifies

local replacement rules for all activity types and control links. The BPEL2PNML

tool translates a BPEL artifact into the place/transition nets encoded in PNML. It

implements these concerns, which is why a seemingly simple BPEL artifact tends to

result an unexpectedly large Petri net.

Using this tool, 9 we first translated the BPEL artifact of the case study into

PNML, providing the starting point for the subsequent conversion to CPN Tools. On

the top side of Table 5.1 is BPEL code for an abbreviated version of the Purchase

Order Process. Below it is a silhouette of its Petri net generated by BPEL2PNML

9 http://www.bpm.fit.qut.edu.au/projects/babel/tools/BPEL2PNML.jar

138

and rendered through the visualization tool PIPE. Even this modest sized web service

composition resulted in a PNML artifact containing 94 places, 89 transitions, and 246

arcs. During the model reduction step, we were able to minimize it by about thirty

percent. This example motivates the need for factoring into subnets, arranging each

subnet to facilitate human understanding, and coloring each with partner links and

variables.

It is worth noting that a prototype version of the translation from PNML to

CPN is available as a web service 10. The service appears to be intended for general-

purpose translation from PNML, and not intended to exploit modeling opportunities

posed by web service artifacts. Thus, using this service we noticed that the resulting

CPN supports neither hierarchy nor color, nor does it attempt to improve layout. We

use hierarchy for improved understanding and encapsulation of otherwise repetitive

subnets, improving the layout of each. We use color to express more of the content

of the BPEL artifact, namely partner links that highlight data-related control flows

and variables that strongly type places using color sets.

Figure 5.1, which we will be discussing in greater detail later, provides silhou-

ettes of the results of running the prototype conversion to CPN Tools. They contrast

to the PNML silhouette in Table 5.1, with the most obvious one being layout which

we discuss in the following paragraphs.

10 http://wwwis.win.tue.nl/̃jmw/pnml

139

Figure 5.1: Silhouettes of generated CPN’s

5.2.3 Graph Drawing

A major obstacle to an understandable model centers on the geometry and

partitioning of the visible model. Graph drawing research into planar embeddings

using the palm tree construction [68], visibility representations described in [10], and

book embeddings [29] will assist in overcoming this obstacle.

To date this problem has been ignored, with layout decisions depending instead

on human judgment, used for example by [150] in the following three intertwined

areas: (i) where to embed places and transitions (nodes), (ii) how to render each arc

140

connecting place and transition, and (iii) what portions of a colored Petri net should

be placed into a hierarchy of subnets. We wish to automate this otherwise subjective

process.

Area (i) involving how to embed nodes, requires rendering them in an order

corresponding to how they appear in the source artifact. The y coordinate in each

node in the PNML artifact preserves this ordering for activity-related nodes, but not

for nodes associated with crosscutting concerns. Refining this embedding for these

concerns is reserved for future work.

Area (ii) involving the rendering of each arc connecting each place and tran-

sition, requires use of a visibility representation, which is a means of eliminating arc

bends [10]. Strictly speaking, visibility representations are defined for only planar

graphs, since by definition, visibility representations are free of any edge crossings.

We relax this definition to allow for some edge crossings, while entirely eliminating

arc bends.

Addressing area (iii) as to what portions should be placed in a hierarchy, re-

quires partitioning the Petri net by activity type (i.e., structured or basic). Each

occurrence of basic activities and control links in Figures 5.2 through 5.5 are ade-

quately represented by a two-page book embedding described in [29] for the special

case in which the order of vertices is fixed. The subnet for structured activities, the

silhouette for which appears in Figure 5.1(a), often requires more than a two-page

book embedding. Alternatively, we may tolerate a larger number of edge crossings.

141

For the class of hierarchical Petri nets used by CPN Tools, this involves extending

existing graph drawing algorithms to bipartite graphs subject to the constraint that

entire transition nodes must appear on exactly one page pair or subnet. Places, how-

ever, may be distributed across multiple subnets as fusion places. This extension is

left for future work.

5.2.4 Starting Point

We used the BPEL2PNML tool to convert the BPEL artifact for the abbrevi-

ated version of the Purchase Order Process to PNML. As such, we leveraged all the

syntax and semantics embedded in the output of BPEL2PNML for our conversion

utility. In this section we describe the case study in terms of the figures we generated.

The left of Table 5.1 shows an excerpt of a BPEL artifact. To its right is the

PNML file which we rendered using the PIPE visualization tool, highlighting each arc

and node. In this rendering, we did not distinguish between places and transitions,

since we intend only to convey its intricacy. We also highlighted in purple the seven

basic activities and one control link, each appearing in the same order as in the BPEL

code to its left.

Each of these basic activities, including their places, transitions, and arcs adopt

the naming conventions from [100] and are shown in Table 5.2. Terminal symbols in

the Name column are in normal typeface. The S column indicates node type, be

it (P)lace, (T)ransition, or (B)oth. The Role column describes how the so-named

142

node functions within its subnet. Control links crosscut the nested syntax of BPEL

artifacts. As such, they required special treatment by the BPEL2PNML utility. Thus,

Table 5.3 outlines the naming conventions for nodes involved in control links.

In later steps, the prototype exploits these naming conventions when parti-

tioning the large PNML artifact into a set of smaller subnets. These conventions will

also be used to assign colors to transitions and color sets to places as the prototype

mines the BPEL document for values of attributes not captured by the BPEL2PNML

utility. Given the naming conventions and the bipartite graph comprising the Petri

net, we partitioned, colored, and laid it out as shown in Figure 5.1. By way of set-

ting a context, the next paragraphs describe the control logic, reflected in each figure

generated by the prototype.

5.2.4.1 Infrastructure

Figure 5.1(a) shows the silhouette that includes both the infrastructure and

the structured activities in a BPEL process. A BPEL process can be imagined as

having a green light in the place marked to_Continue and another place with a red

button marked to_Stop. The control logic defined in [100] and preserved by the

prototype, can model the cancellation of an entire BPEL process by placing a token

into to_Stop. The control flows were designed to fulfill the requirement in [114] of not

leaving unwanted tokens throughout the net after process cancellation by returning

the net to some known marking. This involves activation of a number of skipping

143

activities that increase the size of the net. The availability of a snapshot of the state

of the BPEL process is also indicated by the place named snapshot. The role of these

and other process-level places and transitions appear in the lower half of Table 5.2.

5.2.4.2 Basic Activities

Figure 5.1(b) provides a silhouette of Figure 5.2 showing a typical basic activ-

ity. Of the seven basic activities in this case study, five of them follow this identical

pattern. For activity occurrence n, place r_n receives a message enabling either

the bypass_n or activity_n transitions, depending on whether a token appears in

to_Stop or to_Continue. If the activity_n transition fires, it will place a token into

the f_n place indicating the activity finished. There is also a skip_n transition to

support the skipping behavior when either (i) a branch in a BPEL <pick> activity is

not taken, or (ii) a token appears in the to_Stop place prior to reaching this subnet,

or (iii) a join failure occurred on a control link prior to reaching this subnet.

5.2.4.3 Link-related activities

Figure 5.1(c) provides a silhouette of Figure 5.3 showing how a basic activity

would behave if it were the source of a control link. Table 5.3 describes the behavior

of transitions T_post_m, and places tc_out_m and lsf_in_m. These added places

provide an interface down into the control link.

Figure 5.1(d) provides a silhouette of Figure 5.4 showing the structure and

behavior of a BPEL control link. If link status evaluates to true, a token will appear

144

Figure 5.2: A typical BPEL basic activity in CPN

in place lst_in_n, which only happens if the activity at the source of the link were to

complete successfully, namely a token appears in places tc_out_m and to_Continue.

If the Boolean net, shown here as transition BNT_n_0, evaluates to true a token will

appear in jct_n indicating join condition evaluates to true. In general, nets involving

more than one control link will have a fan into BNT_n_0 in excess of one. Absent

a token in to_Continue, the transition condition fails and the right hand branch is

taken. Notice the error in Figure 5.4 where the marking will make no further progress,

since a token is also required in place toSkip_n. This was the result of the original

145

Figure 5.3: A basic activity as an origin of a link

BPEL artifact failing to specify whether or not to suppressJoinFailure. Although

the value of this attribute defaults to no [4], a verification tool that deprecates such

defaults is enforcing a best practice in coding BPEL artifacts.

Finally, Figure 5.1(e) provides a silhouette of Figure 5.5 showing how a basic

activity behaves if it were the destination of a control link. Table 5.3 describes the

behavior of transition pre_n that functions as a precondition for initiating the basic

activity only if the join condition evaluates to true evidenced by a token in place

jct_n. The activity can be skipped only if the join condition variable is present

146

Figure 5.4: A link construct

(either true or false) by a token in place jcv_n.

The next section describes how we mined both the BPEL and PNML artifacts

for information particular to the CPN.

5.3 Mining Source Artifacts

We used an abbreviated version of the BPEL artifact for the Purchase Order

Process 11 to illustrate the conversion to CPN, via the PNML artifact generated by

11 The code for this version is available at: http://www.osoa.org/
display/Main/Relationship+between+SCA+and+BPEL

147

Figure 5.5: A basic activity as a link’s destination

the BPEL2PNML utility. The Petri net from the PNML artifact in Table 5.1 appears

tangled, not broken out into subnets, and provides no insight into data type or color.

Rather than using the (non-visual) Petri net analysis tool WofBPEL as was done

in [100], we chose instead to produce a machine-verifiable model that is also human-

readable. This conversion requires a number of preprocessing steps, which we describe

in the following paragraphs.

Using structured document mining techniques, we mined the PNML file for

<arc> elements to produce a list of arcs and nodes, the latter of which include either

148

places or transitions. Mining for <place> and <transition> elements, it classified

each node and recorded their x and y coordinates which we later use for embedding

the Petri net. Based on the naming conventions in [100], we automatically identified

the type of subnet into which we wish to place each node, be they basic, structured,

or in the case of places, a third category of fusion. Fusion places serve as the interface

between top-level nets comprised of structured type nodes and subnets each comprised

of basic type nodes. The top-level nets that we will construct control overall execution

of the BPEL process, which at minimum include structured activities. Top-level nets

may also control remediation, including exception and compensation handling, and

interaction with its environment. When partitioned into subnets, each lower-level

Petri net realizes either a basic activity, a BPEL link construct, or a basic activity

that serves as either an origin or destination of a link. The silhouettes of the top-level

net and its four types of subnet appear in Figure 5.1.

Given the naming conventions for places and transitions in [100] and summa-

rized in Tables 5.2 and 5.3, the tool assigned a color to each transition and a color

set to each place according to the rules appearing in the following paragraphs:

5.3.1 Partner Links

All arcs originating from the fusion place designated to receive the message to

the core transition for that basic activity are assigned a partner link name as a color

from color set PARTNER. Likewise, all arcs originating from the core transition to

149

the fusion place designated to send the message are also assigned this color. the tool

generated results shown in Figure 5.2 that highlight these data flows in green. The

arc originates from the fusion place r_n to the core transition which we manually

highlighted as activity_n to make this diagram generic enough to express any basic

activity.

Likewise, the arcs from activity_n to fusion place f_n are also labeled with

the color for this partner link, as is the fusion place to_Continue. In this example,

these arcs are annotated with the color pOP denoting the partner link for Order

Processing.

5.3.2 Data-related Flows

Portions of the top level net that connect the fusion places for successive basic

activities are also automatically highlighted in green but are assigned the color DTA.

This color assignment indicates that these are not data flows per se, rather they

activate data flow events inside each basic activity.

For example, Figure 5.6 connects the output of the <receive> activity through

fusion place f_22, to the input to assign activity r_45, via the forking portion of

the BPEL <flow> construct represented by transition T_sFlowflow. This assign

activity happens to be the first activity in the first <sequence> construct. The

other outbound arc from transition T_sFlowflow ultimately connects to fusion place

r_48 representing the input to the first basic activity in the second occurrence of

150

Figure 5.6: Closeup of top-level CPN

the <sequence> construct, located within the same BPEL <flow> construct. Hence,

Petri net transition T_sFlowflow naturally models a parallel split workflow.

5.3.3 BPEL Variables

The tool defines a color set for each BPEL variable. For each input variable,

the tool assigns the variable’s color set to the basic activity’s input fusion place. The

result in Figure 5.2 shows variable vNvc as the color set associated with place r_n,

which happens to stand for the invoice variable in the final <receive> activity in the

151

case study. Likewise, each output variable is associated with the output fusion place

of a basic activity.

5.3.4 BPEL Links and Defaults

The tool defines a color set for each BPEL link, assigning it to all places inside

the link type subnet as the result shown in Figure 5.4 reveals. In this example, the

color set contains only one element, namely xStI, which stands for ”ship-to-invoice”.

All arcs and nodes shown in black manage control-related flows. The layout

algorithm tends to cluster data-related activities in the top-level net of Figure 5.1(a)

toward the center of the drawing, with control-related flows arrayed toward the pe-

riphery. Control flows located farthest from the center tend to involve interaction with

the environment, or address crosscutting concerns like event, fault, and compensation

handling.

5.3.5 CPN Subnet Names

Since the PNML file follows the naming conventions in [100] and summarized

in Table 5.2, we mined the PNML document for subnet names, each of which will

occupy a page in a CPN binder. (A CPN page or subnet is, in graph drawing terms,

a two page book embedding – think of the pages of a book open to you). Recall from

Table 5.2 how the core transition of each basic activity is named after the first three

letters of the BPEL basic activity type followed by two or more digits. Each of these

serve as a subnet name in CPN Tools, where a ”binder” in CPN Tools can contain

152

one or more such named subnets. In this experiment, we allowed the layout algorithm

to construct one large top-level subnet at the expense of edge crossings.

5.3.6 Data Cleansing

The end result of the previous steps are three sorted tables or lexically ordered

relations which we name after their attributes: ASXY TC, AsAt, and UpAp. All

remaining steps, except for the graph embedding step, are computed using ordinary

relational operators. Information in these three tables are sufficient to compute an

embedding and generate a CPN Tools artifact. First, we briefly summarize each of

their contents, and describe any supervised data cleansing required.

Node set ASXY TC is comprised of (i) abbreviated name A that uniquely

identifies the node per Tables 5.2 and 5.3, (ii) node type S whether it be (P)lace

or (T)ransition, (iii) X coordinate and (iv) Y coordinate of node from its PNML

embedding, (v) subnet type T to which the node belongs which assumes one of three

values including (S)tructured, (B)asic, and (F)usion, and (vi) a transition’s color or

place’s color set C. The differing meanings ascribed to C are because a place can hold

many tokens, while a transition is enabled and fires with exactly one token to/from

each adjacent place. Arc set AsAt is a simple binary relation mined directly from the

PNML file and made up of source node name As and target node name At. Finally,

the set of subnet designators UpAp is made up of subnet number Up and subnet name

Ap. The PNML artifact uniquely numbers each occurrence of an activity, which we

153

simply index as Up. Subnet name Ap assumes the name of the core transition within

that activity.

Given arc set AsAt the tool identified nodes that do not have inbound or

outbound arcs. In our experiment, we remedied this by manually inserting transitions

and arcs to simulate the interaction of the entire BPEL process with its environment.

Augmenting arc set AsAt with information in node set ASXY TC results in

the relation named TsTtSsStAsAtXsYsXtYtCyCz. This one table captures all of the

information present in both the arc and node tables. The meaning of each attribute

remains unchanged, with the lower case s and t referring to source and target nodes,

respectively. Attribute Cy refers to the transition’s color, while Cz refers to the color

set of the place end of the arc. The tool partitioned set TsTtSsStAsAtXsYsXtYtCyCz

into basic activities subnet bTsTtSsStAsAtXsYsXtYtCyCz, infrastructure and struc-

tured activities subnet sTsTtSsStAsAtXsYsXtYtCyCz, and finally the link-related sub-

net lTsTtSsStAsAtXsYsXtYtCyCz based on activity type T . Activity pairs in which Ts

and Tt differ will prompt the creation of fusion places. The tool further partitioned

the basic type subnet bTsTtSsStAsAtXsYsXtYtCyCz into a subnet for each occurrence

of a basic activity, resulting in seven such basic subnets. The tool then invoked the

embedding algorithm on each of the subnets for both the orientation provided by the

BPEL2PNML tool, and for a 90 degree rotation. Rotating the subnets for the basic

activities 90 degrees resulted in fewer edge crossings, so from here on out we worked

with the rotated versions of these subnets, with the remaining subnets assuming their

154

original orientation.

Since these subnets were originally constructed in [114] using a local replace-

ment strategy and later refined in [100], their PNML artifact was not yet minimized.

We found that applying just one minimization rule involving collapsing degree two

nodes while retaining the bipartite nature of places and transitions, and retaining all

fusion places resulted in a smaller model. Originally, the PNML artifact contained 94

places, 89 transitions, and 246 arcs. These were reduced to 63, 57, and 180, respec-

tively. Recently, [87] described a tool named BPEL2oWFN for constructing a type of

Petri net known as an open workflow net from a BPEL artifact. That tool performs

model reduction prior to generating its artifact. Adapting our prototype to this tool

is left for future work. For each subnet, the tool invoked the embedding algorithm,

which we describe in the next section.

5.4 Embedding Subnets

Placement and curvature of arcs in the figures in [150] is the result of human

judgment, which we wish to remove. Minimizing the number of arc bends is widely

recognized as a desirable property of graph drawings [10]. A visibility representation

is a means of rendering graphs in a manner free of arc bends. Recent improvements in

computing layout and efficiency are typified by [19, 60]. The approach we use is easy

to implement and explain, but far from optimal. Intuitively, it involves a topological

deformation of nodes.

155

Figures 5.7(a) and (b) appeared in the celebrated paper on planarity testing

by Hopcroft and Tarjan [68] who used the graph in Figure 5.7(a) as input to their

palm tree construction that resulted in Figure 5.7(b). This construction was thence

used to determine planarity.

Figure 5.7: Equivalent graphs: (a) original, (b) palm tree and (c) visibility repre-
sentation

156

5.4.1 Strategy

Deforming each vertex of the palm tree in Figure 5.7(b) into a horizontal line,

results in the visibility representation in Figure 5.7(c). To assure planarity, their al-

gorithm reordered vertices (i.e., by placing vertex 16 to appear before 11). Although

their embedding is planar, the vertices ceased to be lexically ordered. We wish in-

stead to retain this lexical ordering at the expense of arc crossings, since reordering

of vertices results in a visual artifact that would require reorienting eye movement

whereas arc crossings require only a measure of visual discernment. To accomplish

this, we need to modify the palm tree construction of [68].

We devised an algorithm for expressing each subnet in terms of a pair of pages

approximating a book embedding. A graph representing a page in a book has its

vertices arranged in a line along the spine of the book, with arcs arranged to avoid

crossings [29]. This algorithm relaxes the requirement that there be no crossings.

Knowing that minimizing the number of crossings for an arbitrary graph is NP Hard,

we instead chose to define a simple greedy strategy that produces a correct albeit

suboptimal embedding. We extend this simple algorithm to account for two mutually

conflicting constraints: (i) minimize number of arc crossings, and (ii) balance the

aggregate arc length between even and odd pages in the embedding. Introducing a

third constraint would allow us to minimize the number of crossings at the expense of

an increased number of page pairs. Such a constraint must place entire transition type

nodes, including all inbound and outbound arcs and places, onto the same page pair

157

(or CPN subnet) to produce a valid bipartite graph acceptable for import into CPN

Tools. Incorporating this constraint into an optimized state-of-the-art algorithm is

left for future work.

5.4.2 Processing

Before solving for layout attributes in the CPN Tools XML artifact under con-

struction, we substitute each (x, y) coordinate in TsTtSsStAsAtXsYsXtYtCyCz with

counting numbers (is, it) for is ∈ Is and it ∈ It determined primarily by the value of its

y coordinate. From the resulting relation ItIsTsTtSsStAsAtCyCz, the tool computed

the length L of each arc, forming the input relation LIs to algorithm bookEmbed-

Subnet. For each arc in LIs, the algorithm computes subnets U and width specifiers

W for each source node Is and target node It, outputting relation UWIsIt.

After computing the direction of each arc, we included the remaining attributes

from the input relation, resulting in relation UWIsItTsTtSsStAsAtCyCz. At this

point, the tool has enough information to place each directed arc onto the proper

page and at the correct ordinal distance from the spine of its two-page book, which

we will be doing in Section 5.5. That final phase first performs the required topological

deformation of each node, and then generates a valid XML file for importing into CPN

Tools. Before doing so, we first discuss the algorithm.

158

5.4.3 Implementation

We use a simple greedy strategy, by which arcs are first sorted from shortest to

longest to form graph G for input to algorithm bookEmbedSubnet. The algorithm

performs an arc-wise insertion that first fills in the spine of the book. Successively

longer arcs get arranged around either the left or right hand sides depending on which

side results in fewer edge crossings. The result is a 2-page book embedded into a single

CPN subnet. The following paragraphs describe this algorithm in greater detail.

Given graph G, we allocate and initialize tables M and W , and vector b in lines

2-4 using built-in functions OrderOf, InitializeTo, HeadOf, FirstOf, and

SecondOf, all of which are self-explanatory. The size of these tables is proportional

to the order of the graph, namely its number of vertices. Crossings table M is a two

dimensional array indexed by page i and vertex j. Thus, entry Mi,j represents the

number of arcs situated between the spine of the book, at page i and vertex j, and

the outer side of the page where the arc may be inserted. Widths table W has the

same dimensions as M but each of its entries Wi,j denotes the geometric width (not

cut width) at page i and vertex j. It is used to specify the horizontal dimension

along which the arc is to be inserted. To insert a new arc we compute the maximum

geometric width along the extent of the new arc as the width at which it will be

inserted. Vector b denotes for each page i the aggregate arc length for non-spine arcs

and is used to assure balance around the spine of the graph.

The while loop that occupies the remainder of the algorithm processes each

159

successive arc in G, identifying the page in the pair best suited for insertion. First

it parses out arc variables, including source and terminating arcs s and t in lines

8-11. Next, it identifies which page in the pair where the arc should be inserted using

the decision structure on lines 13-20, which entails two decisions. Lines 14 and 15

inserts the arc into the page in the pair that minimizes arc crossings. If both pages

are otherwise equally satisfactory, lines 19 and 20 select the page having the lower

aggregate arc length for insertion. This helps to assure a balanced appearance of the

page pair around its spine.

The portion of the algorithm in lines 21-33 updates crossings table M , geomet-

ric widths table W , and balance vector b. Finally results of the form (pageNumber,

width, startVertex, terminatingVertex) are output as relation UWIsIt described ear-

lier.

These 4-tuples provide sufficient information to draw the visibility represen-

tation. With regard to the algorithm’s complexity, one may initially guess it to be

O|E| for graph size |E|. However, during preprocessing, the arc set needed to be

sorted, so the complexity is actually O|E|log|E|. The algorithm seeks not to min-

imize edge crossings as much as place nodes and edges that are involved in longer

distance dependencies toward the periphery of the diagram. Presumably these ele-

ments represent the execution concerns that change little between applications. Con-

versely, application-specific concerns tend to be clustered toward the diagram’s center

as shown in Figure 5.1(a).

160

5.5 Generating the CPN

After some post-processing, the result of the algorithm described in the pre-

vious section is relation UWIsItTsT tSsStAsAtCtCp. It preserves all meaning and

values of attributes from input relation TsT tSsStAsAtXsY sXtY tCtCp but with x

and y coordinates Xs, Xt, Ys, and Yt replaced by subnet U , width specifier W , source

node index Is, and target node index It. This one relation provides sufficient infor-

mation to generate the XML model for CPN Tools. We use it directly to produce

CPN <arc> type elements, and apply further processing to generate CPN <place>,

<trans> and <fusion> type elements. As mentioned earlier, this final phase first

performs the required topological deformation of each node, and then generates a

valid XML file for importing into CPN Tools.

To topologically deform each node, the tool must first produce minimum and

maximum widths for each page and node index in UWIsItTsTtSsStAsAtCyCz. This

deformation is required to generate <place> and <trans> type CPN elements. The

tool generated set UIWlWhTSACyCz, where Wl and Wh represent the low and high

values of the width specifier for each node I in subnet U .

Since a book embedding involves page pairs that share a spine, using relation

UIWlWhTSACyCz, the tool produced pair wise page statistics so that each subnet

can be made up of a page pair from a book embedding. The resulting relation

UIPlWlPhWhTSACyCz provides enough information to produce these mirrored page

pairs. Nodes straddling the spine will have different values for attributes Pl and Ph,

161

whereas nodes to the left or to the right will have the same even or odd values for Pl

and Ph, respectively.

A final step before generating the XML file for a CPN model involves gluing

together corresponding fusion places so that tokens may travel between subnets during

simulation and for construction of the state space. The tool generated relation AfUfIf

from UIPlWlPhWhTSACyCz. Af is the name of the fusion place, while subnet Uf

and node index If together locate the fusion place. Thus, any given name Af of a

fusion place will have two or more values of (Uf , If) that effectively bind two or more

subnets.

Finally, the tool generated the CPN model using the following four relations:

(i) nodes UIPlWlPhWhTSACyCz, (ii) arcs UWIsItTsTtSsStAsAtCyCz, (iii) fusions

AfUfIf , and (iv) pages UpAp. Excerpts from these results appear in figures through-

out this chapter. An explanation of each figure appears in Section 5.2. The algorithm

produces all elements required by CPN Tools, namely subnets in a binder, each sub-

net comprised of node elements, followed by arc elements. The geometry of each node

and arc is determined by the nodes and arcs relations respectively.

Finally, we manually inserted initial markings and simulated the resulting

system of nets.

162

5.6 Simulation Results

Once built and imported into CPN Tools, the simulator detected a number of

interaction faults manifested mostly as deadlocks. Partitioning into subnets provided

a clearer context of where these faults lie. The layout of control flows from top to

bottom, with some exceptions, was easy to follow. Color assignment to places and

transitions provided business-level intuition of what type of data flows were being

orchestrated. Color coding the distinction between data-related control flows and

control flows for cross-cutting concerns provides insights into what control flows are

application-related (i.e. basic and structured activities), and what are implied by the

BPEL execution model. Together, these provide more intuition into an orchestration’s

structure and behavior than that provided by PNML. More specific results appear in

the following paragraph.

Running the simulation revealed either deadlocks or unreachable subnets, ex-

amples of which we describe here. The workflow net produced by BPEL2PNML does

not automatically generate an environment with which the BPEL process interacts.

At minimum, this required including an arc between a process-level finished place and

the process’s initiating transition. This arc can be replaced by an environment ex-

hibiting arbitrarily intricate behavior. We also encountered an unreachable portion of

the net that did not completely specify the non-deterministic choice between a faulty

and normal execution. We traced that fault back to a failure to properly specify in

the BPEL artifact if an instance was created. Finally, the simulation deadlocked in

163

the subnet for the control link, due to a failure to specify whether or not to suppress

join failure. Our contributions involving partitioning, layout, and automatic genera-

tion of CPN artifacts, enabled us to efficiently locate and troubleshoot problems like

these.

5.7 Chapter Summary

We described an end-to-end process by which an executable BPEL artifact is

automatically translated into a colored Petri net suitable for formal verification by

CPN Tools. Using a tool that already converts a BPEL artifact to a workflow net,

we generated a colored Petri net with equivalent topology and labeling, but imbued

with notions of hierarchy and color and enhanced with a simple and consistent layout.

Perhaps the biggest contribution was development of the prototype that automates

this process thereby minimizing human judgment in model capture. We presented

a means of inducing the hierarchy of subnets while preserving the notion of type or

color through a stepwise description of a recently developed prototype. Included in

this prototype conversion tool is a layout algorithm which renders the resulting CPN

artifact as a visibility representation.

The layout algorithm preserves the sequencing of basic activities and the nest-

ing of structured activities found in the BPEL artifact. However, portions of the

BPEL artifact crosscuts activities (raising exceptions) or are implied but not written

164

(overall control of process execution). Although the workflow net we use as input cor-

rectly reflects these concerns, crosscutting concerns may require reordering of nodes

prior to computing the embedding.

Enhancing the layout algorithm to reduce the number of edge crossings at the

expense of an increased number of page pairs is left as future work. Such a constraint

must place entire transitions, including all inbound and outbound arcs and places,

onto the same page pair (or CPN subnet) to produce a valid bipartite graph acceptable

for import into CPN Tools. Incorporating these features and constraints into a state-

of-the-art algorithm is also left for future work.

Applications with intractably large state spaces must instead be verified us-

ing Petri net analysis tools like WofBPEL that implement techniques like transition

invariants that do not require generation of a state space. Since WofBPEL uses the

identical PNML artifact as our prototype, future work may involve more seamlessly

integrating this tool.

We already highlight arcs in green for data-related control flows representing

structured activities in the top-level net. An obvious enhancement would be to factor

these data-related control flows out into their own subnet. Doing so would result in

the activity-level flows resembling the hand-drawn ones in [150]. Further discussion

and implementation of such an enhancement is reserved for future work.

165

01 <process name="purchaseOrderProcess"

02 ..

03 <sequence>

04 <receive partnerLink="pOP" operation="placeOrder"

05 variable="vPO" createInstance="yes">

06 </receive>

07 <flow>

08 ..

09 <sequence>

10 <assign>

11 <copy> <from>vPO.ci</from> <to>vShr.ci</to> </copy>

12 </assign>

13 <invoke partnerLink="pWhs" operation="checkInventory"

14 inputVariable="vPO" outputVariable="vAvl">

15 <sources> <source linkName="xStI" /> </sources>

16 </invoke>

17 </sequence>

18 <sequence>

19 <invoke partnerLink="pPay" operation="orderPayment"

20 inputVariable="vPO">

21 <targets> <target linkName="xStI" /> </targets>

22 </invoke>

23 <invoke partnerLink="pWhs" operation="shipOrder"

24 inputVariable="vPO" outputVariable="vShI">

25 </invoke>

26 <receive partnerLink="pPay" operation="sendInvoice"

27 variable="vNvc"/>

28 </sequence>

29 </flow>

30 <reply partnerLink="pOP" operation="placeOrder"

31 variable="vNvc">

32 </reply>

33 </sequence>

34 </process>

Table 5.1: Excerpt of purchase order process (top) and its PNML silhouette (bot-
tom)

166

Name: S Role:
activity T act mnemonic + act number
act mnemonic T (ass)ign (inv)oke (rec)ieve (rep)ly

.. for core activity in basic subnet
act number B 2 or 3 digit number n uniquely

identifying occurrence of an
activity

r n P activity number n is ready
f n P activity number n is finished
bypass n T bypass basic core activity n
toSkip n P activity n to be skipped
skip n T skip activity n
skipped n P activity n was skipped
to Continue P to continue entire BPEL process
to Stop P to stop entire BPEL process
toInvoke P invoke entire BPEL process
eFault T register a fault within a scope

of a BPEL process
beginScope T begin a scope inside a BPEL

process
endScope T end a scope inside a BPEL

process
snapshot P snapshot of BPEL process state

is available at end of scope

Table 5.2: Activity and infrastructure namings

167

Name: S Role:
m identifies the origin activity of a link
c activity P to stage result of either activity

or of bypass transitions for
evaluation of the post condition
that feeds one or more links

T post m T initiate evaluation of post condition
.. used for source end of links

tc out m P transition condition that activates
a control link

lsf in m P link status false when skipping an
activity that feeds a control link

lst in m P link status true if BPEL process is to
be continued

tt m T link transition producing a true result
tf m T link transition producing a false result
n identifies the destination activity of a

link
BNT n 0 T a Boolean Petri net abstracted to one

transition for one set of link status
paths

BNT n 1 T a Boolean Petri net abstracted to one
transition for another set of link
status paths

jct n P join condition evaluating to true
jcf n P join condition evaluating to false
Tjct n T transition activated by jct
Tjcf n T transition activated by jcf
jcv n P join condition has been evaluated
pre n T precondition requiring basic activity

to be both ready and have its join
condition evaluate to true.

s activity P place holding the result of the
precondition

Table 5.3: Link-related node namings

168

bookEmbedSubnet (G)
01 . Allocate and initialize working variables
02 M ← allocate orderOf(G)/2 by orderOf(G) integers, initializeTo(0)
03 W ← allocate orderOf(G)/2 by orderOf(G) integers, initializeTo(0)
04 b ← allocate orderOf(G) reals, initializeTo(0)
05 . Process each arc in graph G:
06 while nonEmpty(G)
07 . Parse out arc variables
08 ls← headOf(G) . input arc of the form: (l s)
09 l ← firstOf(ls) . length of arc
10 s ← secondOf(ls) . starting vertex of arc
11 t ← l + s . terminating vertex of arc
12 i ← 0 . page number 0==left, 1==right
13 . Identify which page in pair minimizes crossings
14 if (M [1, s] + M [1, t]) < (M [0, s] + M [0, t])
15 then i ← i + 1
16 else if (M [1, s] + M [1, t]) > (M [0, s] + M [0, t])
17 then do nothing
18 . Or else identify which page can lend more balance
19 else if b[1] < b[0]
20 then i ← i + 1
21 . Find maximum geometric width for verticies spanned by the arc
22 for j from s through t− 1, with width w initially 0, do
23 if w < W [i, j]
24 then w ← W [i, j]
25 . Update geometric widths of each spanned vertex with maximum in range
26 for j from s through t− 1 do
27 W [i, j] ← w + 1
28 . .. and update the crossing number for each spanned vertex
29 if j > s
30 then M [i, j] ← M [i, j] + 1
31 . Update balance vector
32 if (t− s) > 1
33 then b[i] ← b[i] + t− s
34 . Output arc with book embedding coordinates
35 output(i, w + 1, s, t)
36 . Enable processing of the next arc
37 G ← tailOf(G)
38 end while

169

CHAPTER 6

ASSURING TIMELINESS

This chapter is based on the article titled: Beyond Correctness Assuring Time-

liness of Volunteer e-Science SOA’s [126]. It introduces an application of colored Petri

nets (cpn) and timed automata to an e-Science service oriented architecture (SOA).

Public-resource computing, known also as Volunteer Supercomputing, does

not implement the typical SOA. Its service providers operate on myriads of otherwise

idle PC’s, each working in isolation beyond the unreliable fringes of the Internet 12.

A typical provider at any one time, can be temporarily put out of service for a

variety of reasons. Such events are often of little consequence since each provides

but one service – computing power. So when providers register with an e-Science

portal, the only types of questions asked concern platform and scheduling preferences.

On the other hand, their few customers hail from the comparatively tiny research

community who request the help of the many service providers via that same e-

Science portal. That portal dynamically discovers available service providers, each of

which may be fully capable of supplying the solution to any one key piece of some vast

12 Known as the Last Mile Problem, this refers to the performance and reliability degradation
associated with delivering broadband services over its final leg to the home.

170

computational puzzle. In this uncertain setting, timing provides the key to whether

a portal must reassign a work unit it had previously assigned to some otherwise

non-responsive provider. This chapter models this decision making process, first

by presenting a simplified model of the Berkeley Open Infrastructure for Network

Computing (BOINC). We then translate this model into the kind of timed automata

used by UPPAAL, a model checking and simulation environment for verifying real

time systems, while extending the model to cover additional time-sensitive use cases.

Finally, we share our experiences and results from building and extending this model.

6.1 Chapter Introduction

As the deployment platform for such e-Science portals as Einstein@Home, cli-

mateprediction.net, and the ever-popular SETI@home, BOINC sets out to solve the

type of problem that can be partitioned into myriads of subproblems, each of which

can be solved on an Internet-enabled PC [6]. For BOINC, timely interaction between

portal and provider is an issue separate from correctness or accuracy of results as was

addressed in [134].

SOA focuses instead on coordination and deployment issues that can involve

increasingly intricate e-Science workflows, more I/O-bound processes, and participa-

tion by less sophisticated providers. Concrete problems arise from unreliable network

connections, new human users with different schedules, or software bugs that can

freeze up a provider’s PC. Most of these problems exhibit the same symptom – a

171

provider takes substantially more (or less) time to execute its work unit than the

portal expects. These may be addressed by an SOA deployment that uses machine-

verified code artifacts imbued with appropriate real-valued time constraints.

Ultimately, the portal’s decision to reassign or withdraw a work unit will be

based on measurements of the provider’s past performance and on the expected time

required by a work unit. Such measurements, however, must be taken with respect to

some reference model that can reflect both sound interaction and appropriate timing

between the portal and its providers. This chapter describes a four-stage process

by which such a model can be derived. We first model a deployment platform like

BOINC using an untimed formalism like a Petri net. Secondly, we identify the time-

critical places in the Petri net and construct a timed automata from these places and

their transitions. Thirdly, we specify properties and model check the resulting timed

automata to these properties. Finally, we simulate the timed interactions between

the portal and multiple providers.

Model checking is a popular formal verification technique with extensive tool

support. It detects interactions that are in some unexpected order – an order that vi-

olates pre-specified sequencing constraints. As the most frequently referenced model

checking tool in the SOA testing literature, SPIN [66] exhaustively lists each per-

missible sequence of interactions to detect deadlock, lack of progress, or other such

violations. Model checking involving real-valued time constraints, however, requires

a different model checker.

172

UPPAAL is an integrated verification environment for model checking systems

that are subject to real-valued time constraints [13]. It enables the practitioner to

graphically specify timed automata from its Editor tab, simulate it through its Sim-

ulator tab, and to model check for temporal logic properties through its Verifier tab

(see Figure 6.4). Model checking to temporal properties, however, results in a greatly

enlarged state space [79]. Thus, practitioners using timed model checkers like UPPAAL

will need to make simplifying assumptions on their models that they would otherwise

not need to make when using untimed model checkers like SPIN, or LTSA [49].

In Section 3, we will create a timed automata from the model defined in Section

2, extending it to model e-Science applications that are I/O-bound. Finally in Section

4, we will be sharing some of our experiences, conclusions, and forecasts.

6.2 Modeling BOINC

Requestors from the Research Community interact with a BOINC-enabled

portal through its front door, like any other user process accessing a web service over

the Internet. A BOINC-enabled portal, however, interacts with each of its service

providers through its back door in three phases.

The first phase schedules work units based on preferences expressed by the

human user who administers that PC. Here, the user acts on behalf of the service

provider. The user may donate machine cycles to more than one project within a

portal, and may even specify what share of otherwise unused cycles shall go to which

173

project. In this phase, a scheduler server at the portal also matches a requestor’s

requirements with the provider’s resources [6].

As the input to a computation, a work unit could point to or include an

executable file, input data, parameter values, or deadlines. It is downloaded in the

second phase by a portal’s download manager, executed by the service provider (reified

as a BOINC core client); with the result uploaded in the third phase to the portal’s

upload manager. The second and third phases repeat until the human user changes

scheduling preferences, adds or removes a portal, or brings the provider PC down

for any extended period of time. In the following paragraphs, we model only the

download and upload phases of a portal’s interaction with a typical service provider

and with a typical requestor from the research community.

The Petri net extended with inhibitor arcs [101] shown in Figure 6.1 describes

how a portal might operate. Starting from an initial marking at places (2), (3), and

(10) we assume that a human user is already using the provider PC (2) while a request

from the research community (10) is pending, and the service provider is blocked in

its initialized state (3). As long as the user is logged in (1) to a provider PC, the

inhibitor arc prevents any further progress. The service provider remains initialized

(3) but blocked (6) until the user logs out (4) 13.

Logging out causes the provider PC to become idle (5), unblocking the service

13 Since most home PC’s run with Administrator privilege, without requiring the user to login or
logout, BOINC waits until the machine had become idle with the screen saver enabled before
unblocking.

174

Figure 6.1: A Petri net model of BOINC.

provider (6), causing the service provider to inform the portal of its availability (7),

and to await a work unit (8). In the meantime, the portal has been collecting requests

(10) from the research community. Given a request, the portal assigns a work unit (9),

sending it (11) to an awaiting (8) service provider. Upon receiving a work unit (12),

the provider PC executes it (13), sending the result (14) to the portal (15), and awaits

acknowledgement (16). Receiving the results (15), the portal posts and distributes

them (17) back to the appropriate member of the research community (18), sending

an acknowledgement back to the provider PC (19). Awaiting an acknowledgement

175

(16), and upon receiving it (20), the service provider returns to its initialized state

(3). From here on out, steps (6) through (20) will repeat until the human user logs

back in (1), enabling the inhibitor arc, to use the provider PC (2).

6.3 Modeling BOINC with UPPAAL

Expressing the untimed model in Figure 6.1 using a Petri net tool that supports

inhibitor arcs (i.e., CPN Tools [73, 96]) would reveal three distinct problems. Firstly,

in an untimed net, the user would be logging in (1) and out (4) as frequently as the

firing of any other transition. This is not realistic, since a service provider typically

completes multiple work units between user logout and login. Secondly, Figure 6.1

is optimistic, since it does not model network errors that result in lost work units.

Modeling such an error with an untimed net would result in a deadlock that could

have otherwise been resolved with the expiration of a timer. Lastly, the provider

spends the vast majority of its time in one of only three places, or dwell points, in

Figure 6.1. Thus, it makes sense to abstract a timed model from only these portions

of the Petri net.

6.3.1 Mapping the Petri Net to Timed automata

The timed automata in Figures 6.2 and 6.3 were transcribed from the UPPAAL

application we developed and show in Figure 6.4. They abstract away details not

directly pertinent to timing. Dwell points include places 3 (initialized but blocked), 5

(provider PC idle), and 13 (provider PC running) of the Petri net of Figure 6.1. They

176

are the only places that directly correspond to locations 14 in the timed automata for

the service provider in Figure 6.3.

Figure 6.2 depicting the portal, has its location 1 (paused) corresponding to

location 1 (available) of Figure 6.3 that depicts a provider. These locations in Fig-

ures 6.2 and 6.3 together correspond to place 3 (initialized but blocked) in Figure 6.1.

Location 3 (idle) of the provider in Figure 6.3 corresponds to place 5 (PC idle) in the

Petri net of Figure 6.1. Focusing on the time-constrained behavior of a provider, we

chose to model place 13 (provider PC running) in Figure 6.1 in greater detail. We

mapped this place to locations 6 (Loaded), 8 (Running), and 11 (Done) of Figure 6.3.

Before describing the timing behavior for the portal in Figure 6.2, and the provider in

figure 6.3, we wish to make three observations that will further motivate extensions

to these figures.

6.3.2 Extending the Timed Automata

The Petri net leaves out three important things that we wish to simulate in

our UPPAAL case study. First, the human user can pre-empt the process only at one

point, unfairly requiring the user to wait for completion of any long-running work

units before having full use of the machine. Here, we wish to explore some policy

alternatives allowing pre-emption half way through a run. Second, no distinction is

made between predictably long-running work units, and those requiring predictably

less time. Default configurations of infrastructures like BOINC are currently tuned to

14 Nodes in timed automata are known as locations while their arcs are known as edges.

177

compute-bound processes involving little data traffic. Not all e-Science applications,

however, fit this mold. For example, deploying a facility like BLAST [3] for querying

gene sequences in this massively parallel fashion requires first downloading a portion

of a gene sequence database to a provider PC prior to querying it. The download

will be a predictably long work unit, while an individual query will be a predictably

short one. This case study models the typical situation in which a batch of 50 or so

queries are processed in order to defray the initial cost of downloading a portion of

the database [16]. Thirdly, Figure 6.1 ignores any notion of time or time constraint,

considering only sequences of events. Much can go wrong, so often the best strategy,

is to simply abort the timed out work unit.

The portal depicted in Figure 6.2 abstracts to a generic queue manager that

eagerly sends tokens (i.e., work units) subject to time constraints on the provider

in Figure 6.3. Thus, to understand the timing behavior of the portal, it is best to

explain it from the perspective of the provider.

Initially in the Available location (1), the provider sends a signal to the portal

once it becomes idle (2) with the sending synchronization construct idle[id]!, setting

timer X to 0 units. The portal will, in turn, be listening for this message with its

corresponding listening synchronization construct idle[e]? at either of its transitions

(2) or (4). Once the provider is in the Idle location (3), the portal has up to 20 time

units to respond with a database download as specified by the location invariant 15

15 A location invariant is a time constraint associated with a location in a timed automata.

178

Figure 6.2: UPPAAL model of service portal.

X <= 20. If the download takes more than the expected number of time units (i.e.,

10) the provider will abort it and reset timer X (4). From there, it is done (11) and

will send an error message back to the portal (12).

On the other hand, if the download completes when expected (5), then the

provider transitions to the Loaded location (6). Once loaded, the provider listens

for a batch of queries on the go channel with the construct go[id]? and resets the

clock in (7). The portal will send a corresponding go[front()]! signal from (8) only

if it has at least one work unit queued. From time to time in our simulations, we

179

Figure 6.3: UPPAAL model of service provider.

observed the portal having no work to send a provider, which corresponds to the real

world situation in which a provider momentarily waits for a work unit from a BOINC

application. Once the portal sends a batch of queries for the provider to process, the

provider transitions to the Running location (8).

In the Running location, the provider has up to 15 time units to process this

batch, trickling the results back to the portal. If a human user pre-empts the provider

PC before 7 time units, then it will take transition (9) and simply abort the job. On

the other hand, if pre-empted after 7 time units, we modeled the batch as running

180

to completion (10) to reach the Done location (11). In the meanwhile, both the

service provider and the human user will be using the machine, each experiencing

some performance degradation. From the provider’s Done location (11) it has up

to 5 time units to upload results via the Sent[id]! synchronization construct (12)

corresponding to the portal’s Sent[e]? construct on its transition (7). A screen shot

of this simulation in the UPPAAL environment appears in Figure 6.4.

Figure 6.4: UPPAAL simulation environment showing one portal and three
providers.

181

6.3.3 Model Check Timed Automata

We specified and successfully model checked nine properties expressed in com-

putational tree logic (CTL) [13] in Table 1. Validation properties (1) through (4)

provide sanity checks. For example, in (1) the portal can eventually receive and en-

queue work units from waiting providers. In (2) provider 0 can eventually reach the

Done location, while in (3) provider 0 can be finishing a work unit while provider 1 is

Loaded and awaiting a query type work unit. Some of these properties can get quite

sophisticated as in (4) in which provider 0 can be finishing a work unit while all other

providers are Loaded and awaiting query type work units. One safety property, known

as a boundedness condition is (5) where there can never be N work units in the queue,

where N is greater than the number of providers. Liveness properties (6), (7), and

(8) assure that whenever a work unit is queued up for processing, it will eventually

be processed. Finally, (9) specifies that the system must be deadlock-free. Note how

most locations have invariants that force a timeout if a work unit remains there for

too long. This is how UPPAAL uses timers to break possible deadlocks. Negating the

properties in Table 1 causes UPPAAL to generate counterexamples that can be used

as a test suite. This and other novel uses of model checkers are discussed in [119].

6.4 Experiences and Conclusions

This chapter is an outgrowth of a comparison of three model checkers over

three case studies [103], prompting us to notice certain patterns. Little change was

182

Table 6.1: Model Checked Properties

Validation Properties:
1 E <> Portal.Resumed
2 E <> Provider(0).Done
3 E <> Provider(0).Done and Provider(1).Loaded
4 E <> Provider(0).Done and (forall (i : id t) i != 0 imply Provider(i).Loaded)

Safety Properties:
5 A[] (Portal.list[N] == 0)

Liveness Properties:
6 Provider(0).Idle −− > Provider(0).Done
7 Provider(1).Idle −− > Provider(1).Done
8 Provider(2).Idle −− > Provider(2).Done

Deadlock freedom:
9 A[] not deadlock

required in the UPPAAL design of the portal side between seemingly disparate case

studies, since Figure 6.2 implements a queuing manager interaction pattern with

portal behavior subject to provider-side time constraints. Additionally, all three

model checkers (i.e., SPIN, LTSA, and UPPAAL) support modeling from a process-

oriented perspective.

UPPAAL exhibited some superficial idiosyncrasies concerning time bounds,

which ranged from a low of 3 to a high of 20. This narrow range avoids state space

explosion due to wide variations in time constraints. A more realistic interpretation of

these bounds involves scaling them in powers of 2. Thus 3 time units may correspond

to 23 or 8 seconds – a maximum request/response latency over the Internet. On the

other hand, 20 time units may correspond to 220 or just over a million seconds or two

weeks – the amount of time a human user may be on vacation, rendering the provider

183

inactive. Interpreting Figure 6.3 using these scaled values can provide more realistic

timing constraints, although caution must be exercised when reasoning in terms of

these scaled values. To model e-Science workflows that each operate within tight (i.e.,

[3..20]) time bounds at each of two distinct time scales (i.e., milliseconds and hours),

requires introduction of two distinct unscaled clock variables. In a broader sense, we

foresee increased interest in time as a first-class concept.

Contrasting e-Science Volunteer Supercomputing from e-Commerce Web Ser-

vices applications, we note that the former has a larger and possibly more volatile set

of providers, where each provider furnishes a narrower range of services (i.e., compute

power). These characteristics may pose challenges to applying existing Web Services

approaches that use standards like WS-BPEL [7].

We foresee the incorporation of I/O-bound processing into Volunteer Super-

computing. To this end, we modeled this proposed extension to BOINC’s function-

ality. In our case study of BLAST, batching may inconvenience the requestor, who

must wait for other requestors to submit the required sized batch. Modeling smaller

batches will not change the topology of the timed automata, only the time invariant

for location (8) and for edges (9) and (10).

We foresee an externalizing of certain operating systems functionality out to

the Internet. Implementing a demand paging scheme where each provider holds a

distinct portion of a database over some period of time, can support the processing

of individual independent queries. Modeling this extension involves bypassing the

184

loading phase by placing an additional edge between locations 3 and 8 of Figure 6.3.

Process-oriented modeling, treatment of time as a first-class concept, burdens

placed on existing standards, the incorporation of I/O-bound processing, and the

externalization of operating systems functionality – all promise to shape the future

of e-Science SOA’s.

185

CHAPTER 7

STATE COMPRESSION AND ABSTRACTION

This chapter is based on the paper titled: Formalizing Fault Trees for Remote

Ocean Systems [125], which provides a set-theoretic formulation for fault trees. Eval-

uating a fault tree given some system state, results in an abstraction on that state

containing a list of failure types and metrics for severity.

Real time condition-based evaluation of system health must not only be ef-

ficient, but also produce usable and expressive results. To this end, this chapter

presents a set-theoretic formulation of fault trees. Such a formulation provides a us-

able scaffolding on which ensembles of machine health measurement techniques may

eventually operate. Initially, we present a negation-free formulation of a forest of fault

trees as a set of 2-level sum-of-products expressions. Given this formulation, we ex-

press measures for certainty and specificity, both of which further qualify the various

well-studied measures for severity. This formulation is subsequently refined to repre-

sent multi-state systems, non-coherent valuations, and node sharing – all necessary

for practical monitoring solutions. Finally, we present an evaluation rule embodying

these refinements and analyze its complexity. Examples pertaining to unattended

ocean systems illustrate these concepts.

186

7.1 Chapter Introduction

Fault tree analysis uses individual state snapshots emanating from the ma-

chines being monitored for condition-based reliability assessment. This analysis re-

quires well-conditioned and de-noised data from a machine’s data acquisition / ma-

nipulation system. As a type of logical fault model, fault trees require data captured

at some point in time and bundled into a vector V n of n state variables indexed by

{i : 0 < i ≤ n}. Such data initially16 comprises the state snapshot. Prior to conduct-

ing fault tree analysis, each state variable vi ∈ V n had been coarsely discretized based

on a variety of state detection algorithms. Furthermore, each variable constitutes the

head element of its own timed data stream, where all such streams are subject to

some form of barrier synchronization [137].

In this work, we will assume that each snapshot V n had been made temporally

coherent. That is, all values in V n have been acquired within some acceptable time

window using data fusion strategies surveyed in [41]. Later work will parameterize

each state variable vi with time (i.e., vti) to represent some state variable in a snapshot

at time t. Transition fault models, like Markov chains or Petri nets, can then be

applied to sequences of these time-parameterized snapshots.

This chapter focuses on fault trees used for continuous monitoring and diag-

nosis of unattended ocean machinery. For an overview of reliability issues associated

with such machinery, see [123]. Since responding to false alarms (i.e., false positives)

16 In a later section we will be augmenting V n with events derived from combinations in V n.

187

for such machinery incurs a high expeditionary cost, this chapter considers logical

fault models that are sound.

A unifying formalism is required to express the capabilities of successively

more robust classes of fault trees. Section 7.2 defines an initial class of fault trees

based on simple sum-of-products expressions. Section 7.3 augments this basic struc-

ture for multi-state systems, (non-)coherent valuation functions, and shared nodes.

Section 7.4 presents a real time fault tree evaluation rule and examines its complex-

ity, distinguishing this result from complexity results for various aspects of fault tree

construction. Section 7.5 presents a summary and lists future work.

7.2 Mathematical Structure

A physical machine produces a valuation of vector V n of n state variables using

Boolean function Φ : V n → {0, 1}n, where for state variable vi a fault is indicated

by its value [vi] = 1. The collection of all such faults, or more generally events,

are referred to as the extension of V n, namely V + = {vi : [vi] = 1}. Extension

V + provides the input instance to an analysis involving fault trees described in the

next paragraph, while Table 7.1 summarizes parameters and properties of the state

snapshot.

Fault trees are used to assess the machine’s health given V +. Consider a forest

of p 2-level fault trees for p possible event types. Each tree represents a logical sum-

of-products expression over vi ∈ V n mapping to some event type xl. In particular,

188

a fault (sub)tree l is a mapping Ψl : Eq → X1 defining the disjunction of ql cut sets

corresponding to exactly one event type xl ∈ Xp among p possible fault types. The

resulting event type xl may be interpreted as a type of low-level failure or higher-level

fault.

Each cut set ej ∈ Eq is itself a conjunction or product over rj state variables

wherein each state variable is indexed by k. Each such variable comprising ej is thence

denoted as ujk. Cut sets are manually specified by a domain expert, with additional

cut sets generated using a variety of imputation techniques. The resulting m cut sets

indexed by {j : 0 < j ≤ m} spanning all p fault trees are nonetheless many orders

of magnitude smaller than the cardinality the power set over V n. Already known at

run time, the total number of cut sets m is expected not to exceed several million.

Table 7.2 summarizes parameters and properties of cut sets. Formula 7.1 computes

the value [xl] as a Boolean function in disjunctive normal form (DNF).

[xl] =

ql∨
j

rj∧

k

ujk (7.1)

Formula 7.1 can be made concrete by the following evaluation condition:

[xl]=1 ⇔ {k : (∃j)(ujk∈ej, xl =Ψ(ej), ej⊆V +)} (7.2)

Formula 7.2 stipulates that a fault tree rooted in xl evaluates to true (i.e.,

[xl] = 1) iff every variable ujk in at least one cut set ej corresponding to xl is wholly

189

contained in extension V +. This firing condition provides a scaffold on which diagnos-

tic measures for certainty, severity, and specificity can be computed. First, consider

the certainty measure. For some fault, two cut sets evaluating to true will result in a

higher certainty measure for an event than if only one cut set were to fire. Likewise,

if the same number of two or more cut sets were to fire for one event as it did for

some other event, then the event having the more dissimilar cut sets would have the

higher certainty score. Next, consider the severity measure. An extensive literature

exists for the computation of such scores based on the severities of individual events

making up the cut set and on the combination of events comprising the cut set. Fi-

nally, consider the specificity measure. Given two distinct firings xl0 = Ψ(ej0) and

xl1 = Ψ(ej1), if ej0 ⊂ ej1 , then xl1 will have a higher specificity value than would xl0 .

Although Formula 7.2 may be satisfactory for a single 2-level fault tree, real

time fault tree evaluation requires listing all such fault trees evaluating to true given

V +. This entails propagating extension V +, including its associated metrics, to ex-

tension E+ for cut sets and thence to extension X+ for fault trees in the forest.

Extension E+ = {ej : ej ⊆ V +} comprises all cut sets ej that are wholly contained in

V +. Based on E+, the list of all fault trees evaluating to true entails computing X+

described in Table 7.3, which also summarizes the parameters and properties of fault

trees. Composing extension properties from Tables 7.1 - 7.3 results in Formula 7.3.

X+ = {(xl, j) : (∃ej)(xl = Ψ(ej), ej ⊆ V +)} (7.3)

190

Among other things, the following section augments this 2-level structure into

a hierarchy so that X+ and its metrics may thence be propagated up to some Top-

Level Event (TLE).

7.3 Refinements

The structure in Section 7.2 can neither represent multi-valued state variables,

nor composition of fault trees into a hierarchy ultimately rooted in some Top-Level

Event (TLE). The negation-free notion of extension developed thus far has limitations,

which we extend to multi-state systems in Section 7.3.1. Section 7.3.2 introduces a

means of specifying hierarchies of events using the notion of shared nodes. Shared

nodes reduce the need to replicate fault trees for multiple types of events common to

specific combinations of lower level events. As alluded to earlier, shared nodes provide

placeholders for certainty, severity, and specificity measures, as well as a framework for

propagating these values to the TLE for overall machine health assessment. These

values will furthermore depend on whether the valuation of the system’s state is

coherent. Closely related to multi-state systems, the coherence property is examined

in Section 7.3.3.

7.3.1 Multistate Systems

The extension expressed in Formula 7.3 can express the presence but not the

absence of events. That is, negation is not supported. Unfortunately, the inability

to affirmatively test for the absence of events prevents use of diagnostic procedures

191

involving the ruling out of certain other lower-level events. Modeling explicitly binary-

valued variables will enable differential diagnosis – a process by which one event

can be distinguished from some other event based on the absence of certain other

events. A fault tree that supports negation can make explanation of an event easier

by stipulating inside the contents of cut sets which events are expressly absent.

Suppose by V n1 , we mean vector V n of negation-free states defined in Sec-

tion 7.2. Introducing the notion of negation entails augmenting V n with a set V n2

of binary-valued state variables. Applying the technique used to reduce the Satisfia-

bility Problem (SAT) to Monotone SAT referred to in Appendix A9 of [52], we can

augment V n with distinct and indivisible state variables ¬vi subject to the separation

condition in Formula 7.4.

{i, j : vi ∈ ej,¬vi ∈ ej} = ® (7.4)

A parsimonious state V n2 would include only ¬vi variables for which there

exists at least one cut set. Subjecting V n2 to this relevance condition – necessary for

coherence – results in Formula 7.5.

V n2 = {¬vi : ∃(ej)(¬vi ∈ ej)} (7.5)

Three-valued variables, like operating temperature, are useful for detecting

departures from some interior optimum. Notions like: ’depressed’, ’normal’, and

’elevated’ can be expressed in a manner similar to the negation case by including

192

state variables like {−vi,¬vi, +vi} respectively into V n3 . By a similar construction

one may define the four-valued notion: ’normal’, ’alert’, ’warning’, and ’emergency’

into V n4 . Hence, the refinement for multi-state systems involves computing the state

vector in Formula 7.6, and redefining superscript n accordingly.

V n = V n1 ∪ V n2 ∪ V n3 ∪ V n4 (7.6)

Fault trees for multi-state systems entail more intricate computation of severity

scores like those described in [25, 149]. Such fault trees require construction of a

larger number of cut sets, or alternatively, incorporating a notion of ordering when

computing extension X+. Subjecting their construction to separation and relevance

conditions partially mitigates these tractability problems.

7.3.2 Node Commonality

As a two-level sum of products expression, Formula 7.1 cannot represent an

arbitrary Boolean expression without replicating a potentially large number of sub-

trees. The same event xl may be in common with more than one fault sub-tree.

Furthermore, xl may be a member of more than one cut set within a fault tree.

Finally, fault trees are rarely balanced so that a (sub)tree rooted in event xa may

include cut sets comprised of faults vi and child events xl. By a technique similar to

that in Section 7.3.1 we may further augment V n with xl ∈ Xp to result in W n+p.

Inclusion of xl into W n+p is subject to a separation condition like that in Formula 7.4.

193

If all events xl ∈ Xp are relevant to the TLE – by a condition similar to Formula 7.5

– then the augmented state is computed by Formula 7.7.

W n+p = V n ∪Xp (7.7)

Defining W+ in a manner similar to V +, extension X+ can be redefined by

Formula 7.8.

X+ = {(xl, j) : (∃ej)(xl = Ψ(ej), ej ⊆ W+)} (7.8)

7.3.3 State Coherence

The hazard scoring and propagation techniques described in [25, 75, 149] as-

sume the multi-state system being modeled is coherent, namely the valuation of its

state does not improve with an increasing number of component faults. We adapt

the definition of coherence in [31] to specifically highlight the problem of transient

effects causing false positives.

Valuation function Φ : W n+p → Bn+p of augmented state snapshot W n+p is

said to be coherent if (i) all variables are relevant, and (ii) Φ(W n+p) is monotonically

non-decreasing.17 For condition (i), every state variable vi ∈ W n+p and failure type

xl ∈ W n+p are part of at least one cut set, so all variables in W n+p are relevant. For

17 Φ() is said to be strictly coherent if it is monotonically increasing.

194

condition (ii), consider two successive state snapshots, W n+p
t0 and W n+p

t1 at times t0

and t1 respectively. If W n+p
t0 ⊆ W n+p

t1 then valuation function Φ is coherent.

The succession of states in the previous paragraph indicates either the presence

of a spreading fault or transient effects. To rule out transient effects, suppose the only

difference between the two states is the change of one or more variables wi from zero

to one. If at some later time t′, W n+p
t′ = W n+p

t0 and there were no repair actions, then

intermediate state W n+p
t1 reflects transient effects.

The notion of what constitutes transient effects is open to interpretation. Few

would argue that a machine experienced transient effects when it broke down but was

subsequently repaired. Considering events requiring repair as stuck-at faults, excludes

these situations from the notion of transient effects.

Less obvious are transient effects stemming from routine operation and au-

tomated control. Such effects are expected to occur often as ocean turbines right

themselves in the presence of turbulent waters. Data streaming from an attitude

sensor known as an Inertial Measurement Unit (IMU) at 10 Hz may be used for

self-righting. The fault tree, however, must depend on these pitch yaw and roll mea-

surements conditioned over longer time intervals. The intention is to detect failures

in the control system, rather than registering an abundance of false positives that

have been automatically corrected by movement of any rudders or fins. Other sensor

types noted for displaying transient effects include the five vibration sensors located

at various points on the turbine’s drive train.

195

A recent study [31] surveyed other scenarios in which non-coherence apparently

arises, and how machine health assessment procedures can be adapted. One such

scenario in [31] anticipated our need to operate ocean turbines at reduced output as

its state gradually degrades. For example, operating the turbine closer to the surface

maximizes momentum flux, and hence output, but at the expense of both turbulence

and accelerated rates of fouling. As its state degrades, due either to bad weather or

biofilm formation, the turbine can operate at reduced output further down the water

column. Such degraded operation comes at the expense of increased bathymetric

pressure on seals. Hence, formulating an appropriate response to degraded states due

to one set of variables like turbulence and fouling, will often depend on other variables

like bathymetric pressure.

7.4 Algorithm Design and Analysis

Fault tree evaluation ultimately entails evaluation of Boolean functions. A

variety of implementations of Boolean function manipulation and evaluation involve

binary decision diagrams (BDD)’s, hypergraphs, and SAT solvers. In addition to

work already cited, implementations of fault trees using BDD’s or their variants

also appear in [8, 18, 95, 97, 109]. Visualizing Satisfiability (SAT) instances and

Boolean functions that include the use of hypergraphs were reported in [118]. Use of

hypergraphs that relate vertices to state predicates wi and hyperedges to clauses ej

were reported in [59], providing a context for the complexity analysis in the following

196

paragraphs.

7.4.1 The Evaluation Problem

Recall that to solve the Satisfiability Problem (SAT) requires finding a satisfi-

able truth assignment, given some Boolean formula [53]. That entails first guessing a

truth assignment, then checking if that assignment is indeed satisfied. Although both

operations can be done in low-order polynomial time, what makes SAT NP-Complete

(NP-C) in the number of variables n + p is the intractably large number of guesses

required to identify a satisfying truth assignment.

The checking phase of SAT trivially reduces to computing extension X+ in

Formula 7.8. To see this, negate the problem instance for SAT originally expressed

by Cooke in Conjunctive Normal Form (CNF) to obtain the fault tree in DNF shown

in Formula 7.1, and then reverse the sense of the truth assignment.

In condition-based monitoring, we are already given truth assignment V + so

checking whether X+ is non-empty can be done in polynomial time. Event expla-

nation and possibly localization, however, requires listing all event types generated

ultimately from extension V +. Known as the SAT Evaluation Problem, implemen-

tations of this checking procedure are defined for most variants of BDD’s surveyed

in [38]. One state-of-the-art data structure known as Zero-suppressed Decision Dia-

grams (ZBDD) is adapted to efficient identification of sets of subsets [93]. Run time

comparison of these and other data structures and techniques for computation of

197

X+ is left for future work. As a reification of Formula 7.8, Formula 7.9 provides an

evaluation rule for computing extension set X+.

{i, j : [[wi ∈ W+, wi ∈ ej] ⇒ cj ← cj + 1]; cj = |ej| ⇒

X+
t+1 ← X+

t · (Ψ(ej), j); W+
t+1 ← {Ψ(ej)} ∪W+

t ; cj ← 0} (7.9)

This rule supposes that for each cut set ej, we maintain a count cj, initially

0, that gets incremented for each wi ∈ W+ whenever wi ∈ ej. Once count cj equals

|ej|, clause ej is fully satisfied, so we append the event associated with ej and cut set

identifier j to extension X+. Including j in the solution facilitates fault localization

and explanation, Finally, we include the event associated with ej into set W+ and

re-initialize cj to zero. Implied in this rule is some stepwise algorithm, the description

of which is forthcoming.

Formula 7.9 solves the Fault Tree Evaluation Problem with a worst case com-

plexity of O(m2). To see this, contrive a problem instance comprised of m cut sets

with n+ p = m elements in W+. Such pathological cases are easy to spot at the time

of fault tree construction by detecting violations of the bounds in Formula 7.10.

{i, j : |W+| ¿ (n + p), |ej| ¿ (n + p), |Qi| ¿ m} (7.10)

Formula 7.10 asserts that the fault tree rooted in the TLE is comprised of a

sparse set of cut sets wherein each cut set is itself sparse in the number of variables.

Note that set Qi represents the set of cut sets in which wi is a member. The actual

198

number of steps can be expressed by Formula 7.11 and can be predicted in O(|W+|)

steps.

|W+|∑
i

|Qi| (7.11)

7.4.2 Construction Problems

Although this chapter focuses on SAT Evaluation, a number of problems asso-

ciated with the construction of fault trees remain NP-C. Unless P = NP, fault trees

for machinery like ocean turbines will always remain not fully specified with imperfect

fault coverage. This is unfortunate, since silent failures (i.e., false negatives) disrupt

maintenance schedules, which are driven by the high expeditionary cost incurred prior

to ocean equipment maintenance and repair. Silent failures too often mask unexpect-

edly severe damage, while providing insufficient or misleading diagnostic information

to maintenance personnel.

An NP-C problem known as the Automatic Test Pattern Generation Problem

(ATPG), from the field of electronic design automation, can be reduced to a corre-

sponding problem in fault tree construction. ATPG requires the listing of all test

patterns (cut sets) that can lead to failure. Not only is ATPG NP-C, but it is also

PSPACE-Complete – requiring intractably large storage. Under a similar guise, any

imputation technique by which one must infer a complete set of cut sets given some

199

’starter’ set, also appears to be PSPACE-Complete. Still another intractable prob-

lem reducible from SAT involves the computation of prime implicants in a Boolean

expression – important for identifying the cut sets having the least number of condi-

tions that can prompt some given event. Additional NP-C problems associated with

BDD’s and hence fault trees were identified in [38]. Fault trees generated by impu-

tation procedures will have its number of cut sets vastly exceeding the number of

variables. Partially mitigating this, we observed cut sets rarely exceeding four terms

when formulating the starter set for ocean turbines.

7.5 Chapter Summary

The set-theoretic perspective on condition-based evaluation of fault trees en-

abled us to define a class of fault trees useful for health assessment of remote ocean

machinery. This class can represent multi-state systems, non-coherent valuations, and

node sharing – all of which are pre-requisites for current research into logical fault

models like fault trees. Due to high expeditionary cost to service this machinery, we

sought to minimize the number of false positives by formally characterizing one class

of transients in terms of a state coherence condition.

Each successive refinement exposes variables to which we may attach health

assessment indicators. In addition to the well-studied phenomenological measures for

severity, the compositional framework also characterized epistemological measures of

certainty and specificity. The proposed framework provides an effective fault tree

200

evaluation rule having complexity bounds known at fault tree construction time.

Future work involves identifying fault tree evaluation tools included with SAT

solvers and BDD packages. Run time and usability comparison of these tools to

our software implementation of the SAT evaluation rule is anticipated. Technical

documentation currently underway will be posted, along with the current version of

the executable code for the SAT evaluator in Formula 7.9, its supporting tools, and

sample fault trees.

201

Property: Description:
indexing {i : 0 < i ≤ n}
membership vi ∈ V n

valuation Φ : V n → Bn

extension V + = {vi : [vi] = 1}

Table 7.1: Properties of state snapshots

Property: Description:
indexing {j : 0 < j ≤ m}
membership ej ∈ Em

valuation Em = {ej : ej ⊆ V n}
extension E+ = {ej : ej ⊆ V +}

Table 7.2: Properties of cut sets

Property: Description:
indexing {l : 0 < l ≤ p}
membership xl ∈ Xp

valuation Ψ : Em → Xp

extension X+ = {(xl, j) : xl = Ψ(ej), ej ∈ E+}

Table 7.3: Properties of fault trees

202

CHAPTER 8

CASE STUDY – OCEAN TURBINES

This chapter is based on the paper titled: Ocean Turbines – a Reliability As-

sessment [123], which identifies factors that impact reliability and safety of ocean

turbines. We describe how physical and environmental factors will impact the de-

sign of its machine condition monitoring (MCM) system. Environmental factors like

fouling, corrosion, and inaccessibility of equipment sets this MCM problem apart

from those encountered by wind turbines, hydroelectric plants, or even ship hulls

and propellers. Fouling constitutes the primary and most persistent source of failure.

In addition to compromising turbine efficiency and reliability, fouling reduces sensor

data quality – masking faults that will ultimately lead to failure. Unmitigated foul-

ing triggers a form of biological succession known as flocculation that may eventually

attract threatened species of tortoises and cetaceans to this rotating machinery. We

review and suggest refinements to a class of non-toxic biologically-inspired anti-fouling

techniques known as engineered topographies. Advances in this area will enable tur-

bines to operate in portions of the water column that maximize momentum flux while

minimizing retrieval cost.

203

8.1 Chapter Introduction

Ocean turbines for generating electricity from the Gulf Stream had been pro-

posed since the 1970’s. Although no such equipment had been deployed in the Gulf

Stream, an experimental turbine had been deployed in the turbulent waters of the

East River in New York City by Verdant Power, LLC. Since 2007, the authors from

the Center for Ocean Energy and Technology (COET) at Florida Atlantic Univer-

sity 18 have been measuring the Gulf Stream’s potential as an energy source using

acoustic Doppler current profilers (ADCP) [40]. They concluded that the ocean cur-

rent at the deployment site is suitable for base power generation at some minimum

guarantee [39] – fetching a higher rate per kilowatt hour than intermittently available

sources like wind. One minimum guarantee may promise a minimum output from a

minimum current velocity for a guaranteed uptime. An example of the former is a

water current velocity of 1.2 meters per second, and the latter of eighty-five percent.

Concurrent with the ADCP effort, COET is developing a small scale ocean

current turbine and mechanical test bed. This turbine and test bed will provide base-

line technical, environmental, and ecological data to help guide the commercial and

policy development of open ocean hydrokinetic resources.

Recent advancements in ocean and marine technology introduced complexity

in MCM systems, while long-standing problems remain. A problem spanning both

worlds – the world of the measurement and the world of the observation – is fouling.

18 http://coet.fau.edu/

204

Fouling compromises accuracy of data emanating from various sensors, which conse-

quently reduces effectiveness of MCM systems. Fouling constitutes the initial stage

of flocculation. As a process in which successively more complex species are attracted

to the surfaces of submerged structures, flocculation encounters some state transition

in which whole clumps peel off from the big colony into individual flocs. Each floc

can sustain life until the floc fastens itself to some surface farther downstream. Ulti-

mately, this process can attract threatened species of tortoises and cetacean mammals

to (albeit) slowly rotating machinery.

This chapter examines risk factors associated with deployment of a proposed

fleet of ocean turbines that will be harnessing the energy from the Gulf stream located

about forty miles off the East coast of Fort Lauderdale Florida. Monitoring the rate

of fouling and mitigating it, presents the single biggest and most unique reliability

challenge for this particular application. Any MCM solution will demand dedicated

functionality for assessing degree of biofouling. Data from these automated assess-

ments need to be fused with data emanating from the other types of sensors (i.e.,

vibration) to compensate for the masking of higher modes due to bioflouling. Barring

significant advances in anti-fouling technology, retrieval and maintenance schedules

will continue to be dominated by rates of fouling. Responding to this critical need, we

examine the effectiveness of biologically-inspired or biomimetic surface topographies.

We extend a definition for engineered roughness to account for the effectiveness of

self-similar surfaces. Finally, we suggest refinements to the design and fabrication of

205

such surfaces.

The rest of this chapter is organized as follows: Section 8.2 describes the

physical design of the turbine and its moorings. Section 8.3 elaborates on reliability

concerns that are unique to this application. Section 8.4 surveys related work. Sec-

tion 8.5 takes aim at biofouling, particularly for propellers, by proposing refinements

to engineered surfaces. Finally, Section 8.6 provides a summary and description of

future work.

8.2 Physical Design

A 20-kW turbine prototype [39] being developed at COET along with its

moorings are shown in Figure 8.1. This figure denotes (a) Northbound direction

of the ocean current as seen from shore, (b) observation control and deployment

platform (OCDP), (c) mooring and telemetry buoy (MTB), (d) a tether to the ocean

floor, and (e) a nacelle that includes the turbine, buoyancy chambers, and connecting

structures. In short, the turbine is housed in a buoyancy controlled vessel tethered

to a barge, with electrical and communication cabling to a buoy, and anchored to the

seafloor via a towline.

Figure 8.2 provides a close up look at the turbine. A three-blade propeller

(a), is connected to pressurized enclosure or nacelle (b). The nacelle contains an

asynchronous electric motor/generator connected by a shaft supported by bearings

and thence connected to a gear reduction box. Pitch, yaw, and roll of the nacelle are

206

Figure 8.1: Moorings for an ocean turbine

partially controlled by pressure buoy (c). The propeller occupies the most downstream

portion of this design, where the nacelle and its propeller are passively pulled by the

Gulf Stream current.

Table 8.1 lists the physical characteristics of the turbine and its moorings.

The critical components to be monitored include the turbine nacelle pressure vessel,

motor/gearbox, propeller, and electrical system. Temperature, position, roll, pitch,

yaw, and bilge water level of the turbine nacelle pressure vessel will be monitored

using thermometers, a 6-axis inertial measurement unit (IMU), and water sensors.

207

Figure 8.2: Nacelle and adjoining structures

Vibrations in the transmission shaft, gearbox, and motor will be monitored using low

and high-frequency accelerometers, indicating any imbalance or wear on bearings or

gears. The torque, strain/vibration, water flow, turbulence, and immediate environ-

mental surrounding of the propeller during operation will be monitored respectively

by a load cell, strain gauge, flow meter, ADCP, and video cameras. This will indicate

the loss of a portion of the propeller, excessive strain thereto, or significant unbal-

ance due to biofouling. Finally, a ground fault interrupter will detect and protect the

system from ground faults in the electric motor or electric cable.

208

The safety system operates independently from its monitoring system and can

halt turbine operation automatically in the event of a number of top-level faults. A

non-exhaustive list includes signs of overheating, dynamic instability, leak, excessive

voltage and current across the power plant, cable failure or dramatic change in pro-

peller angular velocity (i.e., sudden stop). This safety system enables an external

operator to properly shutdown the power plant.

The machine condition monitoring (MCM) system records and processes a se-

ries of measurements, producing a timed data stream for real time health assessment,

prognostics, and advisory generation. Some of these measurements include mechan-

ical vibration, propeller angular velocity, heat, cable tension, voltage and current of

the power plant, lubricant quality, and video imaging. Some of the sensors are shared

between the safety system and the MCM system. Due to its steep downside risk, the

safety system samples data at a substantially higher rate than the one for MCM.

Both safety and MCM systems are distributed between the wet-side (i.e., sub-

merged nacelle) and the topside (i.e., pontoon and shore). Initially the user control

and display is located on the pontoon, however, this functionality will eventually be

migrated onto shore. The safety system uses lower latency but slower throughput

serial channels. The machine monitoring unit uses Ethernet due to its higher band-

width. Data is relayed between wet-side and topside via fiber-optic cables that can

support a large number of sensors. Since this design presents a single point of failure,

future designs might involve redundant channels implemented perhaps by acoustic

209

modems to transmit safety-related signals.

The wet-side portion of the safety and MCM systems will be packaged as a

self-contained unit approximating one cubic foot in volume. The topside portion

will include a user panel that indicates the safety status through a simple LED-

type display and contains a switch for emergency shutdown. Initially housed on

the pontoon, this topside portion will be migrated to an on-shore control center,

with the topside component remaining unmanned during routine operation. The

topside portion will initially be centralized to a single microprocessor, collecting all

the information onto a single drive and displaying the health diagnostic and prognostic

results using a single display. Future generations will add in spatial redundancy for

these computing and networking resources.

8.3 Reliability Concerns

This section discusses several classes of concerns, some of which are highly

complex and interrelated. Some aspects of these concerns can be addressed by MCM,

while others require advances in materials science, while still others remain inherent

to this application. MCM applications can address seasonally changing water cur-

rents, surface conditions that range from calm to rough, turbidity due to biological

activity and suspended debris. Advances in materials science can retard fouling due

to suspended biota and corrosion due to salinity. Concerns that cannot be addressed

include distance from medical facilities in the event of an at-sea mishap, travel time

210

required to the site for maintenance, and retrieval cost of each turbine for servic-

ing. Along the margin, retrieval cost may be reduced with advances in anti-fouling

technologies.

Table 8.2 lists broad classes of reliability concerns from specific to general, the

top ranked of which are specific to ocean turbines. Somewhat less specific concerns

follow and pertain to ocean systems in general. Finally, the most general concerns

should pertain to any human-made system. Although some of these concerns are

shared with wind turbines, hydroelectric plants, and ship hulls and propellers, the

top concerns predominate for ocean turbines. In the following paragraphs, we discuss

each class of concerns, starting with the most chronic concern of fouling.

Fouling presents the single biggest most unique and persistent challenge to an-

nualized reliability of ocean turbines. Fouling of sensors reduce effectiveness of MCM

applications, while triggering flocculation. Unstable biofilms during early stages of

fouling exert unstable loads on the propeller, accelerating wear. Turbid waters can

contain human-made debris, gelatinous species like jellyfish, and sessile organisms

like barnacles and whelks. For biofouling, factors in addition to depth include water

temperature and time of year, which also influences velocity of water flow. COET

will be assessing these rates and types of fouling at their deployment location, with

the development of a turbidity model left for future work.

The presence of human-made structures (i.e., ocean turbines) and suspended

debris (i.e., plastic bags) provide an ecological niche that attracts these and other

211

fouling organisms. Bacteria, diatoms, spores, and other single celled organisms ini-

tially settle on the surface of a structure forming a slime layer that sets the stage for

flocculation. Left unchecked, this process attracts marine life at successively higher

levels on the food web, eventually including turtles and cetacean mammals. Floccu-

lation both accelerates turbine failure and may ultimately expose threatened species

to increased concentrations of floating plastic flocs. Additionally, hazards associated

with machinery rotating at less than one revolution per second cannot be overlooked.

Assessments of these environmental impacts is left for future work.

Salinity can corrode all human-made structures with network cabling present-

ing a single point of failure. Corrosion of network cabling disrupts identification of

machine status. Backup/redundant communication channels using acoustic signaling

has low bandwidth and high propagation delays [5], which confines their usefulness

to short safety-critical status/shutdown signals. This communication problem for

ocean turbines is a subproblem of that for autonomous underwater vehicles (AUV).

As such, ocean turbines can assume three things that AUV’s can’t: (i) centralized

topside master, (ii) tethering that simplifies routing and acoustic relay of data, and

(iii) ability to detect degree of biofouling of network cabling by percussion of the

tether to measure degree of dampened oscillation.

Turbulence places stress on propellers and connecting structures and is in-

versely proportional to depth of submersion. Starting with a pilot deployment in 2007,

with more extensive profiling since March of 2009, COET had submerged acoustic

212

Doppler current profilers (ADCP) at the deployment site to measure currents, turbu-

lence, and momentum flux at a variety of depths. Empirical analysis established that

both turbulence and momentum flux decrease with submersion depth [39]. Increased

depth, however, increases bathymetric pressure. To minimize fabrication cost and

pressure on seals, the initial deployment depth for the 20-kW prototype will be ten

meters.

Based on the previous discussion, we wish to maximize turbine efficiency while

minimizing costs related to depth of submersion. To minimize costs associated with

turbidity, fouling, and turbulence suggests greater submersion depths. To minimize

retrieval cost and bathymetric pressure suggests just the opposite. Maximizing mo-

mentum flux requires operation closer to the ocean’s surface. Advances in anti-fouling

technology pushes the optimum depth closer to the ocean’s surface. MCM technology

will do likewise if it can both adjust orientation to turbulence and safely halt with

sudden incidence of waste fouling (i.e., plastic bags, monofilament line, or crude oil).

Development of a depth optimization model is reserved for future work.

The remaining reliability concerns are not specific to ocean turbines, nor even

rotating machinery. Since ocean turbines are a relatively new engineering application,

COET anticipates creating more generations of turbine prototypes. Each generation

will not only produce more electricity, but will also demand a simpler design. What

constitutes simplicity is not always clear. For example, the first generation 20-kW

213

turbine uses a fixed pitch propeller, which requires an electric motor to initiate rota-

tion to its operating speed of between 40 and 55 revolutions per minute. A variable

pitch propeller will not require such a motor. However, varying propeller pitch could

require more control logic, while exposing more moving parts to the harsh and tur-

bid ocean environment. Each generation turbine would require modifications to the

MCM, with some revision of equipment health indicators and failure modes.

8.4 Related Work

To date, few scientific papers concern reliable ocean turbine design. This is

surprising considering the ocean’s immense potential as a source for base power gen-

eration. Reliability issues that set ocean turbines apart from other power generation

systems, stem from their harsh yet fragile ocean environment. Here we survey related

literatures concerning its potential, its environment, MCM, and wind turbines.

8.4.1 Potential

The potential for generating energy from ocean currents, including benefits and

promising technologies were discussed in [94]. As early as the late 1970’s the Coriolus

Program [83] proposed construction of an array of large ducted catenary turbines

moored about 30 km east of Miami. They provided early estimates of power avail-

able and listed environmental issues that needed to be addressed. They cited earlier

studies that concluded, based on simulating the hydroelastic behavior of submerged

components, that rotors will be free of adverse vibrations. Neither an ocean-deployed

214

prototype nor any use of an MCM system was subsequently reported for that project.

From this we surmise that reliability problems due to impact from the environment

may have been overlooked.

8.4.2 Environment

Fouling of submerged components by gelatinous zooplankton and sessile or-

ganisms has been widely studied in conjunction with ship’s propellers and hulls. For

ocean turbines, formation of unstable biofilms on moving members will induce im-

balance that reduces efficiency and accelerates wear on rotor bearings. Fouling due

to the increasing prevalence of human-made debris, mostly plastics, was assessed in

one meta-study for the Caribbean Basin [37]. The following paragraphs focus on the

impact of biofouling on submerged sensors and structures.

Sensors need to be the last of the submerged components to fail, since they

report failures to the MCM on all other types of components. In the UCSD Spray

Project 19, sensors mounted on their AUV stopped functioning after three to four

weeks of deployment in the highly productive waters of the Monterey Canyon [116].

Although turbidity of Gulf Stream waters is substantially lower, achieving the relia-

bility goals of a one-year trouble-free deployment with a minimum of an 85 percent

availability 20 requires a variety of on-board mitigation techniques. One such tech-

nique is to induce mechanical surface vibrations using piezo-polymer transducers to

19 http://spray.ucsd.edu/
20 This availability is required for the electricity generated to qualify as base load, which typically

fetches a higher price per kilowatt hour.

215

prevent the adhesion of fouling species on immersed structures, particularly glass

components like sensors and lenses [80].

Submerged structures, particularly rotating members, should be as free as

possible from biofouling. Due to high cost per surface unit of such piezo-polymers,

coatings have traditionally been considered for rotating and structural members. A

variety of coatings have been developed to retard fouling, typified by use of toxic

metals like tin, copper, and zinc. One mitigation strategy employs less toxic al-

ternatives like methyl caproate [104]. Still another uses biomimetically designed

phosphorylcholine-based polymers as a substrate [81]. A protein-rich coating reported

in [82] depletes the oxygen within 0.2mm of the surface. Since it is effective in still

waters, it would be more appropriate for docked watercraft than for ocean turbines.

Other mitigation strategies involve superhydrophobic surfaces [54] and engineered

topographies [26, 45, 88, 115, 130].

Examining the impact of feature size, geometry and roughness of engineered

surface topographies, [115] identified factors that influence the rate of bioadhesion.

These factors include surface chemistry, topography, and bulk properties of the sub-

strate. The authors devised non-toxic antifouling techniques that involve manipu-

lating the surface topography of a polymer surface by embossing it with periodic

patterns. Feature sizes of these patterns approximated 1 to 2 µm, corresponding to

that of common zoospores and marine bacteria. Using polydimethylsiloxane (PDMS)

elastomer, or silicone, they fabricated a variety of textured surfaces, each with its own

216

Engineered Roughness Index rE. As a dimensionless ratio, the rE in Equation 8.1

is a function of rugosity r (i.e., Wenzel’s Roughness Factor), depressed surface area

fraction φ, and degrees of freedom ν of cell movement.

rE = (r ∗ ν)/φ (8.1)

As the ratio of actual surface area to projected planar surface area, r alone

did not sufficiently explain affinity of cells to walls of some types of textured surfaces.

Hence, [115] extends rugosity r with parameters φ and ν. As the ratio of recessed area

to projected area, a decrease in φ increases rE, assuming r remains constant. This

has the effect of reducing period λx0 of Figure 8.3(a) to λx in Figure 8.3(b). From a

biological perspective, smaller values of φ discourage cell attachment, since recessed

areas need to be narrower (∆x) than cell diameter and deeper (∆z) than the cell’s

elongated actin cytoskeleton (i.e. foot). From the perspective of macro-scale fluid

dynamics, such channels maximize hydraulic radius, and hence efficiency of drainage.

Effects at the micro- and nano-scales warrant future examination.

Thus far, φ was defined for surfaces having exactly two elevations or values

of z – an artifact of their fabrication technique. Generalizing φ to more than two

elevations, [33] introduces the notion of topographic aspect ratio, ∆z/∆x which they

interpreted according to the theory of contact guidance in microbiology. They found

that aspect ratios as low as 5 percent caused cells to align to a grooved topography.

Degrees of freedom ν refers to the number of possible paths along a surface a

217

cell can take at any given time. For example, patterns involving a series of parallel

grooves drained by gutters orthogonal to these grooves have one degree of freedom

when subject to unidirectional water flow. By contrast, grooved patterns drained by

a diagonal rectangular lattice of gutters have two degrees of freedom. Increasing the

number of possible directions of drainage, decreases the likelihood of a cell adhering

to the wall of an engineered surface. This diagonal lattice pattern in Figure 8.3(c)

can be seen at the 10µm scale with the placoid skin of sharks. This figure depicts

features on two scales – finer grained grooves with period λx ≈ 2µm, and coarser

grained diagonal gutters with period λy ≈ 10µm. The coarser gutter width ∆xy

needs to be much larger than the finer groove width ∆x, without somehow being too

large. In [115], these relative sizes were empirically derived from observation of the

placoid scales of sharks and incorporated into the design of the Sharklet 21 anti-fouling

surface.

Culturing the cobetia marina bacterium in an artificial seawater medium con-

taining the Ulva linza alga, [115] measured rate of colonization for each type of surface

using the smooth surface as the control. They established a correlation between rE

and colonization rate for five candidate surfaces. The surface that minimized colo-

nization rate was Sharklet. Contrary to the intuition that smooth surfaces discourage

bio-adhesion, the smooth sample exhibited the fastest rate of fouling. Nonetheless,

pitted surfaces with ν = 0, typifying basalt rock, exhibit even faster rates of fouling.

21 Sharklet is a Registered Trademark of the University of Florida Research Foundation.

218

Figure 8.3: Surfaces ranked by rE: (a) shallow and wide, (b) deep and narrow, (c)
lattice drained

A word of caution is needed with regard to biomimetic surfaces. Such surfaces

have been optimized on the survival behaviors of the species being mimicked. With

sharks, these surfaces needed to remain pliant to support all six degrees of freedom

associated with underwater navigation. Propellers or other submerged structures do

not need these high degrees of pliancy. In general, designs having fewer constraints

will be easier to design and fabricate. Relaxing this particular constraint will require

further optimization of widths ∆x and ∆xy, which we leave for future work.

219

In [88], the authors extended the assay protocol in [115] by fabricating and

evaluating a library of surfaces, each having a different feature size or scale λ. In ad-

dition to [33] which introduced the notion of topographic aspect ratio, another study

positively related surface elasticity to integrin protein mediated cell adhesion [27].

This suggests fabrication of surfaces having a low modulus of elasticity, consequently

requiring the relaxation of the biomimetic constraint of surface pliancy.

Although [88] and [33] studied promotion of bio-adhesion in a bio-medical

context, their investigation into the influence of feature scale on bio-adhesion provided

a conceptual bridge to surfaces in which any given surface can have multiple levels

of nesting. These nested or self-similar surfaces were fabricated as Hierarchically

Wrinkled Topographies (HWT) in [45]. This involved stretching a PDMS elastomer

outward by about thirty percent, and then performing five iterations of hardening and

relaxation. The first iteration i = 1 produced wrinkles having periods λ1 ≈ 50nm.

Each subsequent iteration, produced wrinkles having λi ≈ 10λi−1. After the fifth and

final iteration, λ5 ≈ 500µm.

The design outperformed smooth surfaces in ocean emersion tests lasting from

fifteen weeks to sixteen months. Three reliability problems were identified in decreas-

ing order of severity, including surface cracking, cell agglomeration, and delamination

from the substrate. Due to the material’s positive Poisson ratio, cracks developed

during each release phase of fabrication. These faults did not become evident until

220

the presence of diatoms (silica-rich organisms) were observed after 15 weeks of sub-

mersion. Secondly, agglomeration of Ulva spores into grooves approximating their

size was observed in accelerated testing in a nutrient-rich artificial seawater medium.

This agglomeration was also consistently observed on samples after eighteen months

of ocean emersion. Since portions of wrinkled surfaces had no gutters, degrees of

freedom ν and hence rE would have locally vanished to zero, while other portions

drained into either one or two higher-scaled channels. Precise determination of φ for

this surface type would have required a microscopic examination followed by a sta-

tistical analysis of drainage patterns. Since ν and φ were defined in [115] for surfaces

at only two discrete elevations, they could not be directly applied to experiments

involving the more analog type surfaces in [45]. Section 8.5 further refines rE and

applies it to a proposed fabrication process for multi-scale self-similar surfaces that

may overcome cracking and agglomeration. The problem of delamination can be a

topic for future study.

8.4.3 Machine Condition Monitoring

Sensor technologies and inexpensive microprocessors birthed a vast literature

on MCM. ISO Standard 13374 promulgates a six-layer architecture spanning Data

Acquisition up through the Advisory Generation layers. Our brief survey follows

this architecture, focusing on three aspects: (i) physical layer issues involving vibra-

tion, (ii) interface layer issues like data or sensor fusion, and (iii) logical layer issues

221

involving remote monitoring and control of turbine farms.

On the physical layer, ISO Standard 13373 promulgates use of well-accepted

practices for acquiring and evaluating vibration measurements over extended periods

of time, emphasizing changes in vibration behavior rather than any particular be-

havior taken in isolation. This standard recommends procedures for processing and

presenting vibration data and analyzing vibration signatures, particularly for rotating

machinery [35, 36]. Expert systems (i.e., [44, 147]) have been proposed for vibration

analysis for fault detection, where [147] applies adaptive order-tracking techniques to

rotating machinery.

Middle or interface layer issues like data or sensor fusion has been studied

for rotating machinery using machine learning techniques. Collecting signals that

may indicate rotational imbalance vibration from an array of sensors, [84] extracts

characteristic features of each vibration signal using an auto-regressive model, then

implements data fusion with a cascade-correlation neural network.

For fault diagnosis of induction motors, signals emanating from multiple sen-

sors are preprocessed and then put through a discrete wavelet transform for decom-

position into different frequency ranges of products, followed by a feature extraction

step. Finally, an ensemble of two decision-level fusion strategies are employed, in-

cluding a form of Bayesian belief fusion and a fusion technique involving multiple

agents. In this machine learning technique, fault features are classified using several

classifiers with generated decisions in turn fused using a specific fusion algorithm [99].

222

Field balancing of rotors was addressed in [85] to reduce turbine vibration in

power plants. Using a unidirectional sensor mounted on one bearing section does

not capture complex spatial motions. Instead, the authors propose a field balancing

technique involving multiple sensors situated at various bearing sections along with

a data fusion technique. They applied a holospectral principle and a genetic algo-

rithm to simulate and minimize rotor vibration, empirically validating results by field

balancing several 300 MW turbo-generator units.

Remote monitoring and control of equipment health, specifically the role of

information and communication technologies, was surveyed in [22]. The authors iden-

tified emergent roles of web and agent technologies for remote MCM and control, and

traced their origins to efforts in distributed artificial intelligence. Their survey was

organized in terms of the OSA-CBM (Open System Architecture Condition-Based

Maintenance) framework 22, an implementation of ISO 13374. They conclude that

only limited consistent and systematic efforts have been made, in an isolated manner,

to apply web service and agent techniques to MCM.

A case study in remote monitoring and diagnosis of an electro-mechanical

system was presented in [110]. Of interest, is their development of a virtual (software)

instrument using LabView. This may provide an approach to generating output from

the Data Manipulation Layer up to the higher levels of the OSA-CBM (ISO 13374)

framework. Messages from the top layers, particularly the Advisory Generation layer,

22 http://www.mimosa.org/downloads/43/specifications/index.aspx

223

can be implemented as a remote monitoring and control center using web services

standards. Unfortunately, such implementations may involve many middleware layers

that will impede timeliness, posing steep downside risks for safety-critical systems.

Addressing this problem, [106] suggests an architecture for predictable and interactive

control, with a case study involving remote laboratory experiments.

8.4.4 Wind Turbines

Sharing many commonalities, experience from the wind energy sector can be

applied to ocean turbines. IEC Standard 61400-25 stipulates how wind power plants

should be integrated into the power grid to assure power system stability. A paper

describes how this standard seeks to promulgate vendor-neutral messaging proto-

cols [102].

Other standards like IEC 61850 and IEC 61499 specify automation of dis-

tributed power systems. Based on these standards, [63] proposes a means of com-

bining functionality of IEC 61850-compliant devices with IEC 61499-compliant ”glue

logic” via the communication services of IEC 61850-7-2. The result is the ability to

customize control automation logic, particularly important for developing power gen-

eration systems. IEC 61850-compliant devices are abstractions of system components.

On its bottom-layer, each (virtual) device corresponds to the set of all sensors respon-

sible for a given portion of the turbine. For rotating machinery, a bearing assembly

may be represented as several virtual devices. Each such device can be thought of as

224

being located along the circumference of the assembly. The actual physical sensors,

however, may be located near the bearing assembly in such a way as to minimize

noise. The state of each virtual device becomes the collection of fused calibrated and

de-noised signals emanating from its set of physical sensors.

Like wind turbines, ocean turbines may require optimizing orientation to max-

imize laminar flow over the surface of the propeller, reducing vibration and improving

reliability. One proposal [111] describes a smart sensor that is insensitive to turbulent

air flux, enabling measurement of incident wind direction and energetic transforma-

tion efficiency. This recently patented sensor extracts suitable information from the

structural deformation of rotating members, where deformation is a function of inci-

dent wind direction, velocity and vibration modes. Adapting this sensor to submerged

environments will pose additional technological challenges, which we leave for future

work.

8.5 Anti-fouling Topographies

The Gulf current is always moving, placing kinetic energy on turbine propellers.

Ocean turbulence will require the nacelle to orient itself via all six degrees of freedom.

To fully exploit the momentum flux of ocean current and to assure equipment acces-

sibility, turbines will need to operate close to the surface in the more turbid portions

of the water column [39]. Turbid waters, however, accelerate biofouling. This sec-

tion describes the role of surface topographies in mitigating the effects of biofouling,

225

providing refinements to biologically-inspired biomimetic solutions.

Sharks are always moving, efficiently exercising all six degrees of freedom,

while remaining completely free of the biofilms commonly found on tortoises and

some cetaceans. Taking inspiration from nature, precision biomimetic topographies

like Sharklet have been found to be effective against organisms in the 1 to 10µm range

– a range occupied by many common species of bacterium and algae spores. On the

other hand, HWT is effective against biofouling at the broader 50nm to 500µm range,

with impressive performance in ocean emersion tests. Both end products have merit

and, as we will see, their properties are compatible.

An engineered roughness index rE was derived in [115] to explain the effec-

tiveness of certain biomimetically designed surfaces. In addition to rugosity r, it also

factored in the number of possible drainage paths ν, and depressed area fraction φ.

Although φ hints at the need for features smaller than cell diameters, [115] considered

surfaces having only two scales. In that study, the most effective surface, Sharklet,

had the highest rE followed by grooved surfaces.

HWT having a self-similar topography performed surprisingly well against a

wide range of fouling species of wide-ranging sizes despite a varying ν, difficult to

measure φ, and fabrication problems [45]. These surfaces exhibited cracking due

to deformation of the silicone substrate, consequently creating a habitat for silica-

rich organisms. The deformation required to produce these topographies cannot be

precisely generated. Consequently, cells tended to agglomerate wherever wrinkles

226

abruptly ended in cul-de-sacs. Furthermore, this wrinkling cannot be precisely repro-

duced, and hence cannot be improved upon. Nevertheless, these results highlight the

importance of self-similar topographies in counteracting biofouling.

8.5.1 Self-similar Surfaces

We apply the notion of engineered roughness rE to corrugated self-similar sur-

faces, proposing the use of one such surface known as the Koch Curve of Figure 8.4.

We chose this curve for its known properties and consistent structure – one that

maximizes rE. Please be aware that fractal surfaces do not automatically confer

anti-fouling properties. To the contrary, surfaces like those found on basalt rock – a

material commonly used in the construction of ocean jetties – actually facilitate bioad-

hesion. Pits on such surfaces cause ν to locally vanish to zero, providing ecological

niches for successive species of fouling organisms.

Figure 8.4 depicts how the Koch curve is generated, along with the size of

representative fouling organisms. For this curve, rugosity tends toward infinity as

cross-sectional feature size approaches zero. Feature sizes coming closest to those

reported in [45], range from 75nm to 500µm. Achieving this will require i = 8

generations resulting in r8 ≈ 10. At each generation i, the curve has ni = 4i features

each of size λi = 3−i units. Since λ0 = 500µm, λ8 = 75nm with n8 = 65,536

features and r8 = (4/3)8 ≈ 10. Without surface defects or further modifications,

this corrugated surface will have one degree of freedom, ν = 1 – the same as for the

227

grooved topography reported in [115]. Depressed area fraction φ can be deduced by

inspection from the unit generator in the upper left corner of Figure 8.4. By similar

triangles, elevated area fraction is 1/6, making depressed area fraction φ = 5/6. Since

the same generator is used at successively smaller scales, their depressed area fractions

will also be the same. Derivation and usefulness of the notion of a composite depressed

area fraction is reserved for future work.

Figure 8.4: Generation of Koch curve

Table 8.3 shows roughness parameters by surface type, with the row labeled

Koch 60o pertaining to an ideal fractal surface that spans the range of scales reported

228

in [45]. Such an ideal surface may not be possible to fabricate to eight generations

with present technology. Later paragraphs provide initial ideas as to how such a

surface might be fabricated. Nonetheless, if rE were an accurate predictor, then

embossing the Koch surface with a diagonal lattice at the 6µm scale should double its

effectiveness, possibly requiring fewer generations. Embossing a lattice at each scale

may also require fewer generations. However, effectiveness of the wrinkled topography

may stem from the very fact that its finest wrinkles are at the nanoscale, halting the

attachment of nanoscale bacteria and preventing biological succession. Evaluating

this nanoscale fabrication requirement will involve future statistical estimation of ν

and φ based on microscopic examination of the wrinkled surfaces in [45].

Surfaces based on the standard Koch curve will be difficult to fabricate due

to its angle of incidence θ = 60o. After just the second generation, Figure 8.4 shows

surfaces that are hidden along the (vertical) z-axis. After eight generations, access

to such surfaces would require as much as a 480o curl, precluding ejection of molded

elastomer along the z-axis. A more feasible approach to fabricating these corrugated

surfaces involve smaller angles of incidence. An eight-generation Koch curve having

no hidden surfaces will require θ < 90o/8. This constrained Koch curve has the same

number of features n = 65, 536, but rather than the generator being of length l = 4/3,

it is l′ = 2
√

(1/2)2 + (sin(θ)/2)2. Thus, for a θ = 11o, l′ = 3.0182/3, making r ≈ 1.05

after eight generations. Since there are no hidden surfaces, the constrained Koch

surface may also be more amenable to embossing with diagonal lattices on multiple

229

scales. Despite the low rugosity, topographic aspect ratio ∆z/∆x = sin(11o)/2 ap-

proximates 9 percent. Based on evidence reported in [33], this may be sufficient to

align these organisms along various drainage paths. The row in Table 8.3 labeled Koch

11o predicts a worse performance than the smooth surface. Assessing the accuracy of

this prediction is left for future work.

8.5.2 Fabrication Issues

To fabricate the Koch surface involves techniques described in [26, 130, 33, 12].

These include fine-tuning the properties of the polymer [26], tool path optimization

for fractal shapes [130], and nanoscale lithography techniques [33, 12]. The following

paragraphs review these techniques.

Most experiments have used the multi-purpose PDMS formulation known as

Sylgard 184 from Dow Corning. The authors of [26] propose a formulation more

appropriate for nanofabrication that (i) enhances photo-curing, (ii) exhibits a higher

modulus of elasticity, (iii) increased physical toughness, (iv) decreased curing-induced

shrinkage, and (v) a decreased thermal expansion coefficient.

Traditional tool-path generation techniques based on Euclidean geometry are

unsuitable for laser scanning of multi-scaled structures like fractals. In addition to

defects from both jerk and having to approximate durations of electron pulses, [130]

cited the excessive time required for prototyping fractal curves. For their case study

involving the Koch curve, any given scale has exactly one feature length and two

230

angles – a ’gradual’ concave one and a ’pointy’ convex one. Introducing the Radial

Annular Tree data structure and implementing it for a variety of fractals and CAD

systems, tool-paths optimized to each fractal were reported in [130].

The process of nanoscale lithography starts with scanning a beam of electrons

across a surface coated with a resist, selectively removing it, and chemically etching

through the exposed surface. These techniques have been intensively studied in con-

nection with fabrication of semiconductor devices, details of which are provided in

[12, 33, 77].

Fabrication involves three steps. First, design and fabricate a micro-die suit-

able for nanoscale lithography. The result will have a cross-section resembling the

Koch Curve. Second, lithograph n ’perfectly’ flat billets for n features. This large

number of billets are needed, since the ratio of billet thickness to minimum (gen-

eration 8) feature size cannot exceed 2 without producing surface defects. Third,

assemble the billets to approximate the corrugation of the Koch surface, avoiding

misalignment that will vanish ν to zero. The result is a 500µm by 500µm stamp for

poured polymer replication, with assembly of such replicates forming a tessellated

surface suitable for ocean emersion testing.

For angle of incidence θ = 60o, deformation of the partially cured polymer

during ejection from its stamp becomes a problem. Such an ejection may not be pos-

sible, considering the high rugosity and the abundance of hidden surfaces. Reducing

θ reduces rugosity but makes fabrication possible. Considering the high modulus for

231

PDMS, some hidden surfaces may be tolerated placing 11o < θ < 60o.

Direct embossing of the diagonal lattice onto the PDMS substrate would re-

quire three dimensional microscale movement of a laser probe. An easier way may

involve ablating billets with slots of width
√

2∆xyi at each scale i, with each successive

billet having its slots transposed ∆xyi units. Billet flatness along the x-dimension,

groove alignment along the y-dimension, and cross-sectional uniformity along the

z-dimension may introduce constraints that make the fabrication of such a surface

infeasible. Nonetheless, the standard Koch surface may serve as an upper bound on

engineered roughness, while lower values of θ may make less expensive techniques like

embossing, extrusion, or calendarization more feasible.

8.6 Chapter Summary

We examined risk factors associated with deployment of a proposed fleet of

turbines that harness the hydrokinetic energy of ocean currents. After describing a

20-kW turbine prototype, we identified a number of factors that impact its reliability

and safety. Specific reliability concerns include fouling, salinity, and inaccessibility of

equipment. We focused on the most critical source of faults, namely fouling. This

focus led to our refinement of a measurement for engineered roughness to account

for the effectiveness of self-similar surfaces. We then proposed an ideal anti-fouling

topography based on a deterministic fractal known as the Koch curve. Finally, we

outlined obstacles to its fabrication, and proposed a variant that may be easier to

232

fabricate.

Future generations of the physical design need to add spatial redundancy for

computing and networking resources. This includes possibly redundant communica-

tion channels for safety-related signals, and the migration of the MCM application

from topside onto shore. We described non-biocidal countermeasures to bio-fouling,

while preserving more complex marine species by delaying flocculation. Added macro-

level assessment of impacts on the environment, along with more specific descriptions

of our MCM implementation are left for future work.

A turbidity model needs to be developed to gauge fouling rates on turbine

propellers. An assay at the deployment site should gauge fouling rates as a function

of depth, water temperature, time of year, and water velocity. Such a model needs

to distinguish fouling due to biota from fouling due to human-made polymers.

A depth optimization model based on turbidity, fouling, turbulence, retrieval

cost, bathymetric pressure, and momentum flux also needs to be developed for the

deployment site. Simulation and subsequent empirical verification will be needed to

gauge how optimum submersion depth is affected by advances in anti-fouling tech-

nologies.

The field of biomimetic anti-fouling surfaces presents more open engineering

problems than immediate solutions. A reproducible means of fabricating HWT that

admits to accurate measurement of rE, will be needed prior to its direct comparison

to Sharklet. Ocean emersion tests will then provide one way of affecting a direct

233

comparison between the two surfaces. Since both surfaces have exhibited significant

anti-fouling properties, accelerated testing may be required. Such testing will re-

quire development of a uniform bioassay protocol to test three hypotheses. The first

hypothesis asserts that HWT provides a defense against a broader range of fouling

organisms. The second asserts that two-elevation surfaces like Sharklet, are sufficient

in preventing succession to more complex organisms. The third hypothesis asserts

that topographies are more effective than coatings that use tin, zinc, or copper.

Further refinements to and empirical validation of the Engineered Roughness

Index rE will be needed, particularly of the notions of submerged area fraction φ and

degrees of freedom ν. This validation needs to be conducted from both biological

and physical perspectives. Relaxing certain biomimetic constraints in the design of

engineered topographies may result in human-made structures that in some respects

outperform their natural counterparts. Identifying what constraints can be relaxed

and designing accordingly is also left for future work.

234

MTB
weight 2750 kg
length 5.25 m
H2O displacement 12,730 kg
wall thickness 1 cm
wall material steel
number of compartments 3
dry compartments reqd. 2
winged compartments 2
Identification beacon yes
time between battery charges 7 days
OCDP
weight 5051 kg
length 4.8 m
H2O displacement 14,645 kg
hull type twin
hull thickness 1 cm
hull material steel
hull diameter 1 m
number of compartments 5
hydraulic jack 24 hp
winch capacity 2000 kg
Nacelle
weight to be determined
length to be determined
H2O displacement to be determined
casing material stainless steel
connections material stainless steel
fastener material copper alloy
maximum pitch 2o

maximum roll 30o

buoyancy +10-20 kg
submersion depth 10 m
turbine output 20 kW
propeller diameter 3 m
drive shaft diameter 2.5 cm
gearbox step-up ratio 25:1
maximum torque 4,000 joules
vessel pressure above ambient 1 atm.
cooling contact conduction
acoustic locator beacon yes

Table 8.1: Physical features of turbine and moorings

235

1 fouling of propeller and other mechanical components
2 impact on marine life including species affected
3 salinity that causes corrosion of network cabling
4 underwater turbulence affecting turbine operation
5 high cost to retrieve equipment for servicing
6 equipment heterogeneity
7 presence/absence of technological maturity
8 eventual impact on global climate

Table 8.2: Reliability concerns

surface: r: ν: φ: rE: ref
smooth 1.00 2 1.00 2.0 [115]
grooved 2.50 1 0.50 5.0 [115]
shark 2.50 2 0.53 9.5 [115]
wrinkled 1.30 0-2 – – [45]
Koch 60o 9.97 1 0.83 12.0 proposed
Koch 11o 1.05 2 0.83 1.8 proposed

Table 8.3: Roughness parameters by surface type

236

CHAPTER 9

CONCLUSION AND FUTURE WORK

My research has been focusing on verifying the safety of distributed high-

assurance systems, be they a collection of web services or a fleet of ocean machinery.

We examined both mission type and technology type tradeoffs in determining whether

to non-exhaustively test versus exhaustively verify. Mission type tradeoffs identify if

formal and exhaustive verification is worth doing based on the mission of a system,

be it for engineering, commerce, or entertainment. The safety-critical portions of

an engineered system, like the portion of an oil well located kilometers beneath the

ocean’s surface, or the fiscally-critical portions of a financial system, like online credit

card payments, all require formal and exhaustive verification.

Using a variety of software tools for implementing transition fault models in-

cluding model checkers, Petri nets, and timed automata, I described a number of

practical engineering methods to support the logistics underlying exhaustive verifi-

cation. With these methods I developed and presented software tools that require

tractable state spaces. This led me to formally describe a class logical fault models

known as fault trees to provide suitably abstracted states for these transition fault

237

models. I then described how these techniques may be incorporated into engineering

projects involving the monitoring of novel ocean machinery. In my reliability assess-

ment of such machinery, I also identified how various marine life were able to combat

persistent reliability problems associated with biofouling. This suggested finite mod-

els for biomimetic surfaces that may also impede biofouling.

In the sections that follow, I briefly state conclusions and describe future work.

9.1 Conclusions

Internal and external sets of tradeoffs for assuring the quality of high-assurance

systems, are influenced by the coupling between critical and non-critical portions of

a system. Considering external tradeoffs between assurance on the one hand and

flexibility and performance on the other, we drew one obvious conclusion: Complete

decoupling is not possible in many legacy systems, since critical and non-critical

portions often share resources. The remainder of this section draws more specific

conclusions concerning transition fault models and logical fault models.

9.1.1 Transition fault models

When applying this class of model to web service compositions, not only must

the internals of each web service be individually verified, but verification must be

performed with respect to each remaining service prior to verifying the top-level web

service composition. This can be accomplished by representing the behavior of each

web service by its own process algebraic expression. Verification of the composition of

238

web services therefore reduces to the verification of the composition of these process

algebraic expressions.

The state space resulting from these expressions has long been observed to

become intractably large, and a number of state space reduction strategies have been

proposed elsewhere. This dissertation proposes structuring this interaction using

a form of assume-guarantee reasoning known as the two-phase commit. The two-

phase commit structures interactions between web services so that certain state space

reduction strategies like linearization and removal of non-determinism can be made

computationally feasible.

Even after application of these techniques, state spaces may still remain in-

tractably large, so this dissertation further proposes a non-exhaustive agent-oriented

testing framework appropriate for lower-assurance systems. In such a framework,

the behavior of each agent is guided by its process algebraic expression, while the

behavior of the society of agents is guided by the process algebraic expression that

represents the two-phase commit. We conclude that the advantage of such an ap-

proach supports massive parallelism, wherein cyclic dependencies (i.e., deadlock) can

be more efficiently detected than other forms of automated testing.

Not all legacy systems lack compositionality. Indeed, we conclude that the

boinc execution framework is compositional. Under boinc, an individual worker

process interacts only with the manager process that delegated work to it, without

sharing resources with other workers. Hence, massively (and embarrassingly) parallel

239

processes can be independently spawned, executed, and completed. The Petri net

for boinc manager and workers is therefore sufficiently small for process interactions

to be exhaustively verified. Furthermore, we conclude that more state-space inten-

sive verification techniques like timed automata can be feasibly applied to assess the

timeliness of such a system’s behavior.

bpel provides an execution framework for implementation of systems that are

not necessarily compositional. This dissertation describes how fault transition models

may be generated from bpel artifacts. Although a number of such generators appear

in the literature, this dissertation enables solution providers to stipulate what specific

portions may be regarded as compositional. We conclude that newer portions cannot

be assumed to be compositional, since they risk introduction of hidden dependen-

cies. Portions deemed reliable, however, can be abstracted to models having smaller

state spaces while newer, less reliable portions can be modeled in greater detail. By

enabling solution providers to confine assumptions concerning synchrony, atomicity,

and parallelism to specified portions of a web service composition, we conclude that

engineering practices that encourage incremental changes to artifacts under test can

be made more effective.

When automating model capture and presentation, we introduced notions of

hierarchy layout and typing along with a prototype for translating a flat classical Petri

net in the Petri Net Modeling Language to one implemented as a hierarchical colored

Petri net in CPN Tools. The contributions include an algorithm for improving layout

240

through construction of a visibility representation for a Petri net, and partitioning

that net into sub-nets of similar structure, while carrying over notions of partner links

and variables in bpel to the coloring of places and arcs in a colored Petri net.

9.1.2 Logical fault models

The bulk of this dissertation thus far concerns transition fault models for web

service compositions – models that span a succession of points in time. Logical fault

models, by contrast, concern exactly one point in time. Logical models may be

distinguished from transition models based on notions of state signature and state

space. In Petri net parlance, a state signature is a specific marking at some given

time, while the state space is the set of all reachable markings for all times. By

reducing the cardinality of each state signature, we can hence reduce the cardinality

of the overall state space. Again in Petri net parlance, reducing the state signature is

tantamount to reducing the number of tokens in a Petri net. Such reduction strategies,

however, need to robustly characterize the phenomena being modeled, predicted, and

evaluated.

Toward the construction of predictive models, this dissertation considers a spe-

cific class of logical fault models that can be decomposed into state signatures and

amplitude signatures, each of which are stochastic. Fault trees can provide an imple-

mentation of such state/amplitude stochastic logical fault models. The goal of fault

tree analysis in prognostic assessment of machine health involves predicting states

241

and amplitudes given present and previous states and amplitudes. These predictions

may be evaluated by some fitness function that recalibrates these signatures to predict

values for successive signatures. Evaluation of specific fitness functions lies outside

the scope of this dissertation.

This dissertation instead sought to control level of abstraction by controlling

the level of detail expressed in the underlying state space. It did so by reducing

the number of variables from which the state space is generated. Using a purely

set-theoretic formulation of fault trees and fault tree evaluation, we described how

our formulation supports epistemological measures like well-studied event certainty

measures and the less studied event specificity measures. These measures can be

used to further predicate any severity measure associated with each fault signature

or event.

9.1.3 Case study

Finally, we described a tangible system – a proposed fleet of ocean turbines –

to which techniques in this dissertation may be applied. We conclude that monitoring

the rate of fouling and mitigating it will postpone or counteract secular drifts in and

masking of baseline state and amplitude signatures. Since fouling poses a challenge

unique to any other type of energy production system, this dissertation examined the

role of engineered topographies in postponing fouling. From that investigation, we

conclude that self-similarity of topographies at the nanoscale may be more important

242

than initially realized.

9.2 Future Work

Future work will formally seek a nexus between transition fault models and

logical fault models. In particular, real time evaluation of a fault tree given a system

state, results in a marking for a fault transition model like a Petri net. Future work

will compose logical fault models into transition fault models. Work currently under

way broadens the notion of single point in time to include a fixed (and small) number

of points in time. Although these points indicate a sequence of states within some

fixed window, collectively treating them as a set can avoid problems of overfitting

when training and evaluating fault trees. Nonetheless, there remains an abundance

of work within each class of model described in the following sections.

9.2.1 Transition Fault Models

This dissertation examines only safety properties. Liveness properties like

fairness and efficiency are best investigated in the context of quality of service. Timed

automata could play a role in such investigations. Indeed, we may opt to implement

a portion of the Advisory Generation Layer in an MCM/PHM framework for ocean

turbines using timed automata.

State space reduction strategies can be a topic for future investigation. This

may include deriving an automated means of separating critical portions of a system

243

from its non-critical portions. Tools like WofBPEL sidestep the state space generation

problem. Yet, future work can provide such tools with improved graphics support.

The ocean turbine case study revealed a need to represent each of its physical

components as its own state transition system. For this we may leverage our work on

colored Petri nets so that each component has its own subnet. For CPN Tools, this

will entail extending existing graph drawing algorithms to bipartite graphs subject to

the constraint that entire transition type nodes must appear on exactly one page pair

or subnet. Place type nodes, however, may be distributed across multiple subnets as

fusion places in CPN Tools parlance. For CPN Tools, this dissertation already high-

lights data flows in one color and control flows in another. An obvious enhancement

would be to partition data flows from control flows into their own subnets.

Assumptions that confine fault proneness to portions of a web service com-

position, and their incorporation into a model capture mechanism could also be

investigated. Likewise, modeling exception or compensation handling can be fur-

ther investigated. Although these efforts have already been done elsewhere on an

all-or-nothing basis, to my knowledge, confining assumptions of fault proneness and

handling to specified portions of interacting services has yet to be done. One approach

may involve translation of workflow patterns supported in bpel into some CSP-like

process algebra like that implemented by promela.

244

9.2.2 Logical Fault Models

Using the formalization of fault trees in this dissertation as a reference, a run

time comparison of various fault tree evaluation techniques can be performed. such

comparisons can identify implementations capable of supporting real time evalua-

tion of fault trees for data streaming from a potentially large collection of sensors.

Such implementations must efficiently identify sets of subsets, with Zero-suppressed

Decision Diagrams (ZBDD) as one implementation of interest.

The fault tree evaluation rule stated in this dissertation requires development

of suitable algorithms and data structures. Work is under way to do just that, along

with its integration into a larger MCM/PHM framework currently under development.

In addition to the run time comparison alluded to earlier, a usability comparison

between an implementation of the evaluation rule and competing implementations

packaged with SAT solvers and BDD packages may be needed.

9.2.3 Case study

As we incorporate the techniques described in this dissertation into the design

of ocean turbines, we identified a number of topics for future work. These include:

(i) baseline calculation, (ii) timing display, (iii) status display, (iv) fault trees, and

(v) fouling countermeasures.

In the first area, finite models of operating behavior constituting a coordina-

tion baseline will provide operations personnel with expected sequences of events on

245

startup, shutdown, and during fault-free and fault-prone operation. This, along with

the computation baseline comprised of healthy vibration signatures that may vary

with operating conditions, occupy the State Detection Layer in an iso-defined ma-

chine condition monitoring (mcm) hierarchy. These two classes of baselines still need

to be computed.

The second area concerns a timing display at the Advisory Generation Layer

of the mcm hierarchy. At that layer, we can develop transition fault models that

visually represent state transitions driven in real time and presented to shore-side op-

erations staff. We can use the simulator for a timed automata to concretely represent

propeller motion for any given turbine unit. The simulation, however, will be driven

in real time by incoming data from the topside buoy. In this way, an uppaal virtual

propeller can depict propeller motion using only a fraction of the bandwidth required

of real time video. This is a particularly salient advantage given the bandwidth con-

straints on ocean buoy-to-shore telemetry. This data can also drive generation and

pinpoint alerts on radar-like radial sweep diagrams rendered for easy recognition by

operations personnel. In these cases, a form of semantic compression can be achieved

by exchanging only the markings of the timed automata.

The third area concerns status display, wherein a succession of operating states

can be reflected as a succession of markings through the rendering of cpn models

described herein. Hence, data on a turbine stuck in some undesired state can be

presented to shore-side operations staff. Being hierarchical, cpn models support yet

246

another form of semantic compression in which common cause failures shared by more

than one turbine will prompt display of a cpn at a higher fleet or sub-fleet layer of

abstraction. Often these common cause failures are due not to any one turbine’s

behavior, but to operating conditions shared by more than one unit. Conversely, a

semi-automated process can drill down to the subnet for a component of some faulty

turbine unit. Semantic compression can be achieved by exchanging only the markings

of the cpn.

The fourth area of future work concerns logical fault models like fault trees.

Given a comparatively small collection of higher level events for a state snapshot at

some given time, future work entails inducing fault transition model instances like

Petri nets from successions of state snapshots. Future attempts to unify fault trees

and Petri nets will lend a perspective on both classes of fault models. This unification

effort will improve the usefulness of advisories generated for operations personnel of

turbine farms.

The fifth and final area of future work addresses reliability, but not in terms

of fault models. Instead, this area expands the definition of finite model to include a

notion of self-similarity over a finite and countable number of scales. Waves, be they

tangible and made of water, or less tangible and made of vibrations observe a self-

similar structure that can be characterized by wavelet transforms. Turbulent waters

that maximize momentum flux also stress machinery, yet they discourage biofilm

formation known to clog moving elements. Future work will examine how biofouling

247

can be mitigated through use of non-toxic biomimetic surfaces, like those on mollusks

and sharks. These include examining the mechanism underlying biomimetic surfaces

and why these marine species are so effective at doing what the human race had

failed to do since the time of the Phoenicians, namely staving off biofouling. Further

examination of issues related to the nano-fabrication of biomimetic topographies will

be needed, as well as participation in projects examining impacts of human-made

waste on marine species, but from a Computational (e-)Science standpoint.

248

BIBLIOGRAPHY

[1] M. Abadi and L. Lamport. Composing specifications. ACM Transactions on
Programming Languages and Systems, 15(1):73–132, 1993.

[2] R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, M.-T. Schmidt, A. Sheth,
and K. Verma. Web service semantics – WSDL-S, November 2005.
http://www.w3.org/Submission/WSDL-S/.

[3] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic
local alignment search tool. Journal of Molecular Biology, 215(3):403–410,
October 1990.

[4] A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch, F. Curbera, M. Ford,
Y. Goland, A. Guzar, N. Kartha, C. K. Liu, R. Khalaf, D. Knig, M. Marin,
V. Mehta, S. Thatte, D. van der Rijn, P. Yendluri, and A. Yiu. Web Services
Business Process Execution Language Version 2.0, April 2007.
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

[5] E. An, P.-P. Beaujean, B. Baud, T. Carlson, A. Folleco, and T. J. Tarn.
Multiple communicating autonomous underwater vehicles. In Proceedings
of the 2004 IEEE International Conference on Robotics and Automation
(ICRA’04), pages 4461–4464. IEEE, 2004.

[6] D. Anderson. BOINC: a system for public-resource computing and stor-
age. In Proceedings of the Fifth IEEE/ACM International Workshop on Grid
Computing, (GRID’04), pages 4–10, November 8 2004.

[7] T. Andrews, F. Cubera, H. Dholakia, Y. Goland, J. Klein, F. Leymann,
K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana.
Business process execution language for web services, BPEL4WS v1.1 speci-
fication, May 2003.
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-
bpel/ws-bpel.pdf.

249

[8] T. Assaf and J. Dugan. Diagnosis based on reliability analysis using monitors
and sensors. Reliability Engineering & System Safety, 93(4):509 – 521, 2008.

[9] A. Barros, M. Dumas, and A. H. ter Hofstede. Service interaction patterns. In
W. van der Aalst et. al., editor, Business Process Management, volume 3649
of Lecture Notes in Computer Science, pages 302–318, Berlin/Heidelburg,
Germany, 2005. Springer.

[10] G. D. Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing
– Algorithms for the Visualization of Graphs. Prentice Hall, Upper Saddle
River, New Jersey, 1999.

[11] P.-P. Beaujean, T. M. Khoshgoftaar, J. C. Sloan, N. Xiros, and D. Vendittis.
Monitoring ocean turbines: a reliability assessment. In Proceedings of the
15th ISSAT International Reliability and Quality in Design Conference, pages
367–371. ISSAT, August 2009.

[12] H. Becker and C. Gärtner. Polymer microfabrication technologies for
microfluidic systems. Journal Analytical and Bioanalytical Chemistry,
390(1):89–111, January 2008.

[13] G. Behrmann, A. David, and K. G. Larsen. A tutorial on UPPAAL. In
M. Bernardo and F. Corradini, editors, Formal Methods for the Design of
Real-Time Systems, volume 3185 of Lecture Notes in Computer Science, pages
200–236. Springer, 2004.

[14] A. Bertolino and A. Polini. The audition framework for testing web services
interoperability. In EUROMICRO-SEAA, pages 134–142. IEEE Computer
Society, 2005.

[15] J. Billington, S. Christensen, K. M. van Hee, E. Kindler, O. Kummer,
L. Petrucci, R. Post, C. Stehno, and M. Weber. The Petri Net Markup Lan-
guage: Concepts, Technology, and Tools. In van der Aalst and Best [138],
pages 483–505.

[16] R. D. Bjornson, A. H. Sherman, S. B. Weston, N. Willard, and J. Wing.
TurboBLAST: a parallel implementation of BLAST built on the Turbohub.
In Proceedings of the International Parallel and Distributed Processing Sym-
posium (IPDPS’02), pages 183–190, 2002.

250

[17] S. Blom, W. Fokkink, J. F. Groote, I. van Langevelde, B. Lisser, and J. van de
Pol. µCRL: A toolset for analysing algebraic specifications. In G. Berry,
H. Comon, and A. Finkel, editors, Computer Aided Verification, volume 2102
of Lecture Notes in Computer Science, pages 250–254. Springer, 2001.

[18] A. Bobbio, D. Codetta-Raiteri, M. D. Pierro, and G. Franceschinis. Efficient
analysis algorithms for parametric fault trees. Techniques, Methodologies and
Tools for Performance Evaluation of Complex Systems, Workshop on, 0:91–
105, 2005.

[19] J. M. Boyer. A new method for efficiently generating planar graph visibility
representations. In P. Healy and N. S. Nikolov, editors, Graph Drawing,
volume 3843 of Lecture Notes in Computer Science, pages 508–511. Springer,
2005.

[20] A. Bucchiarone, A. Polini, P. Pelliccione, and M. Tivoli. Towards an archi-
tectural approach for the dynamic and automatic composition of software
components. In Proceedings of the ISSTA workshop on Role of software ar-
chitecture for testing and analysis, (RoSATeA’06), pages 12–21, New York,
NY, USA, 2006. ACM.

[21] T. Bultan, J. Su, and X. Fu. Analyzing conversations of web services. IEEE
Internet Computing, 10(1):18–25, Jan-Feb 2006.

[22] J. Campos. Survey paper: Development in the application of ICT in condi-
tion monitoring and maintenance. Computers in Industry, 60(1):1–20, 2009.

[23] G. Canfora and M. Di Penta. Testing services and service-centric systems:
challenges and opportunities. IT Professional, 8(2):10–17, March-April 2006.

[24] G. Canfora and M. D. Penta. SOA testing and self-checking. In Proceedings
of the International Workshop on Web Services, Modeling and Testing, (WS-
MaTe’06), pages 3–12, 2006.

[25] Y.-R. Chang, S. Amari, and S.-Y. Kuo. Obdd-based evaluation of relia-
bility and importance measures for multistate systems subject to imperfect
fault coverage. Dependable and Secure Computing, IEEE Transactions on,
2(4):336–347, Oct.-Dec. 2005.

251

[26] K. M. Choi and J. A. Rogers. A photocurable poly(dimethylsiloxane) chem-
istry designed for soft lithographic molding and printing in the nanometer
regime. Journal of the American Chemical Society, 125(14):4060–4061, 2003.

[27] S.-Y. Chou, C.-M. Cheng, and P. R. LeDuc. Composite polymer systems
with control of local substrate elasticity and their effect on cytoskeletal and
morphological characteristics of adherent cells. Biomaterials, 30(18):3136 –
3142, 2009.

[28] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web services
description language (WSDL) version 1.1, March 2001.
http://www.w3.org/TR/wsdl.

[29] F. R. K. Chung, F. T. Leighton, and A. L. Rosenberg. Embedding graphs
in books: A layout problem with applications to VLSI design. In Y. Alavi,
G. Chartrand, L. Lesniak, D. R. Lick, and C. E. Wall, editors, Graph Theory
with Applications to Algorithms and Computer Science, pages 175–188. John
Wiley & Sons, New York, USA, 1985.

[30] E. M. Clarke, J. M. Wing, R. Alur, R. Cleaveland, D. Dill, A. Emer-
son, S. Garland, S. German, J. Guttag, A. Hall, T. Henzinger, G. Holz-
mann, C. Jones, R. Kurshan, N. Leveson, K. McMillan, J. Moore, D. Peled,
A. Pnueli, J. Rushby, N. Shankar, J. Sifakis, P. Sistla, B. Steffen, P. Wolper,
J. Woodcock, and P. Zave. Formal methods: state of the art and future
directions. ACM Computing Surveys, 28(4):626–643, 1996.

[31] S. Contini, G. Cojazzi, and G. Renda. On the use of non-coherent fault
trees in safety and security studies. Reliability Engineering & System Safety,
93(12):1886 – 1895, 2008. 17th European Safety and Reliability Conference.

[32] M. S. Coyne and J. A. Thompson. Soil texture and surface area. In Math
for Soil Scientists, chapter 5. Thomson Delmar Learning, Clifton Park, New
York, U.S.A., 2006.

[33] A. S. Crouch, D. Miller, K. J. Luebke, and W. Hu. Correlation of anisotropic
cell behaviors with topographic aspect ratio. Biomaterials, 30(8):1560 – 1567,
2009.

252

[34] A. K. A. de Medeiros. Genetic Process Mining. PhD thesis, Technische
Universiteit Eindhoven, November 2006. Advised by W.M.P. van der Aalst.

[35] Dieter Hansen and Alf H. Olsson. ISO Standard 13373-1:2002 - Condition
monitoring and diagnostics of machines – Vibration condition monitoring –
Part 1: General procedures. International Standards Organization, February
2002.

[36] Dieter Hansen and Alf H. Olsson. ISO Standard 13373-2:2005: Condition
monitoring and diagnostics of machines – Vibration condition monitoring –
Part 2: Processing, analysis and presentation of vibration data. International
Standards Organization, January 2009.

[37] J. I. do Sul and M. Costa. Marine debris review for Latin America and the
wider Caribbean Region: From the 1970s until now, and where do we go from
here? Marine Pollution Bulletin, 58(8):1087–1104, August 2007.

[38] R. Drechsler and D. Sieling. Binary decision diagrams in theory and practice.
International Journal on Software Tools for Technology Transfer (STTT),
3(2):112–136, May 2001.

[39] F. R. Driscoll, G. M. Alsenas, P. P. Beaujean, S. Ravenna, J. Raveling, E. Bu-
sold, and C. Slezycki. A 20 kW open ocean current test turbine. In Proceed-
ings of the MTS/IEEE Oceans ’08, Quebec City, Quebec Canada, Sep 15-18
2008.

[40] F. R. Driscoll, S. H. Skemp, G. M. Alsenas, C. J. Coley, and A. Le-
land. Florida’s Center for Ocean Energy Technology. In Proceedings of the
MTS/IEEE Oceans ’08, Quebec City, Quebec Canada, Sep 15-18 2008.

[41] J. Duhaney, T. M. Khoshgoftaar, A. Agarwal, and J. C. Sloan. Mining and
storing data streams for reliability analysis. [72].

[42] J. Duhaney, T. M. Khoshgoftaar, I. Cardei, B. Alhalabi, and J. C. Sloan.
Applications of data fusion in monitoring inaccessible ocean machinery. [72].

[43] S. Dustdar and S. Haslinger. Testing of service-oriented architectures - a
practical approach. In M. Weske and P. Liggesmeyer, editors, Object-Oriented

253

and Internet-Based Technologies, volume 3263 of Lecture Notes in Computer
Science, pages 97–109. Springer, 2004.

[44] S. Ebersbach and Z. Peng. Expert system development for vibration anal-
ysis in machine condition monitoring. Expert Systems with Applications,
34(1):291–299, 2008.

[45] K. Efimenko, J. Finlay, M. E. Callow, J. A. Callow, and J. Genzer. Develop-
ment and testing of hierarchically wrinkled coatings for marine antifouling.
ACS Applied Materials & Interfaces, 1(5):1031–1040, 2009.

[46] A. Engels, L. M. G. Feijs, and S. Mauw. Test generation for intelligent
networks using model checking. In E. Brinksma, editor, Tools and Algorithms
for Construction and Analysis of Systems, volume 1217 of Lecture Notes in
Computer Science, pages 384–398. Springer, 1997.

[47] H. Foster, W. Emmerich, J. Kramer, J. Magee, D. S. Rosenblum, and
S. Uchitel. Model checking service compositions under resource con-
straints. In I. Crnkovic and A. Bertolino, editors, In Proceedings of the 6th
ESEC/SIGSOFT Symposium on Foundations of Software Engineering, pages
225–234. ACM, 2007.

[48] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Tool support for model-
based engineering of web service compositions. In Proceedings of the IEEE
International Conference on Web Services, (ICWS’05), pages 95–102 vol.1,
11-15 July 2005.

[49] H. Foster, S. Uchitel, J. Magee, and J. Kramer. LTSA-WS: a tool for model-
based verification of web service compositions and choreography. In L. J.
Osterweil, H. D. Rombach, and M. L. Soffa, editors, Proceedings of the 28th
International Conference on Software Engineering (ICSE’06), pages 771–774.
ACM, 2006.

[50] X. Fu, T. Bultan, and J. Su. WSAT: A tool for formal analysis of web services.
In R. Alur and D. Peled, editors, Computer Aided Verification, volume 3114
of Lecture Notes in Computer Science, pages 510–514. Springer, 2004.

254

[51] X. Fu, T. Bultan, and J. Su. Synchronizability of conversations among web
services. IEEE Transactions on Software Engineering, 31(12):1042–1055,
Dec. 2005.

[52] M. R. Garey and D. S. Johnson. Computers and Intractability: A guide to
the Theory of NP-Completeness. W.H. Freeman and Company, New York
City, 1979.

[53] M. R. Garey and D. S. Johnson. Computers and Intractability: A guide to
the Theory of NP-Completeness, chapter 2.6, pages 38–44. W.H. Freeman
and Company, New York City, 1979.

[54] J. Genzer and K. Efimenko. Recent developments in superhydrophobic sur-
faces and their relevance to marine fouling: a review. Biofouling: The Journal
of Bioadhesion and Biofilm Research, 22(5):339–360, 2006.

[55] A. Gravel, X. Fu, and J. Su. An analysis tool for execution of BPEL services.
In CEC/EEE, pages 429–432. IEEE Computer Society, 2007.

[56] J. F. Groote and F. van Ham. Interactive visualization of large state spaces.
International Journal on Software Tools for Technology Transfer, STTT,
8(1):77–91, 2006.

[57] O. Grumberg and S. Katz. VeriTech: a framework for translating among
model description notations. International Journal on Software Tools for
Technology Transfer, 9(2):119–132, 2007.

[58] F. Guerin and J. Pitt. Verification and compliance testing. In M.-P. Huget,
editor, Communication in Multiagent Systems, volume 2650 of Lecture Notes
in Computer Science, pages 98–112. Springer, 2003.

[59] D. Habet, L. Paris, and C. Terrioux. A tree decomposition based approach
to solve structured sat instances. In Proceedings of the 2009 21st IEEE Inter-
national Conference on Tools with Artificial Intelligence (ICTAI’09), pages
115–122, Washington, DC, USA, 2009. IEEE Computer Society.

[60] X. He and H. Zhang. Nearly optimal visibility representations of plane
graphs. SIAM Journal of Discrete Mathematics, 22(4):1364–1380, 2008.

255

[61] R. Heckel and H. Voigt. Model-based development of executable business
processes for web services. Lectures on Concurrency and Petri Nets 2003,
3098:559–584, April 2004.

[62] M. Hekking, J. Lindemans, and E. S. Gelsema. Design and representation of
multivariate patient-based reference regions for arterial pH, Pco2 and base
excess values. Clinical Biochemistry, 25(6):581–585, December 1995.

[63] N. Higgins, V. Vyatkin, N.-K. C. Nair, and K. Schwarz. Concept for intelli-
gent distributed power system automation with IEC 61850 and IEC 61499.
In Proceedings of the IEEE International Conference on Systems, Man and
Cybernetics (SMC’08), pages 36–41, October 2008.

[64] J. Himmelspach, M. Röhl, and A. M. Uhrmacher. Next generation modeling
III - agents: simulation for testing software agents - an exploration based on
james. In Proceedings of the 35th Winter Simulation Conference, (WSC’03),
pages 799–807. Winter Simulation Conference, 2003.

[65] G. J. Holzmann. The logic of bugs. In In Proceedings of the 10th ACM
SIGSOFT symposium on Foundations of software engineering (SIGSOFT
’02/FSE-10), pages 81–87, New York, NY, USA, 2002. ACM.

[66] G. J. Holzmann. The Spin Model Checker, Primer and Reference Manual.
Addison-Wesley, Reading, Massachusetts, U.S.A., 2003.

[67] H. S. Hong, S. D. Cha, I. Lee, O. Sokolsky, and H. Ural. Data flow testing as
model checking. In International Conference on Software Engineering, pages
232–243. IEEE Computer Society, 2003.

[68] J. E. Hopcroft and R. E. Tarjan. Efficient planarity testing. Journal of the
ACM, 21(4):549–568, 1974.

[69] C.-L. Huang, C.-C. Lo, Y. Li, K.-M. Chao, J.-Y. Chung, and Y. Huang. Ser-
vice discovery through multi-agent consensus. In Proceedings of the IEEE In-
ternational Workshop on Service-Oriented System Engineering, (SOSE’05),
pages 37–44, 20-21 Oct. 2005.

256

[70] H. Huang, W.-T. Tsai, R. Paul, and Y. Chen. Automated model checking and
testing for composite web services. In Proceedings of the Eighth IEEE Inter-
national Symposium on Object-Oriented Real-Time Distributed Computing,
(ISORC’05), pages 300–307, Washington, DC, USA, 2005. IEEE Computer
Society.

[71] R. Hull and J. Su. Tools for design of composite web services. In G. Weikum,
A. C. König, and S. Deßloch, editors, SIGMOD Conference, pages 958–961.
ACM, 2004.

[72] ISSAT. Proceedings of the 16th ISSAT Reliability and Quality in Design
Conference, Washington DC, USA. ISSAT, August 5-7 2010.

[73] K. Jensen, L. M. Kristensen, and L. Wells. Coloured Petri nets and CPN
Tools for modelling and validation of concurrent systems. International Jour-
nal on Software Tools for Technology Transfer (STTT), 9(3-4):213–254, 2007.

[74] W. jun Li, X. jun Liang, H. mei Song, and X. cong Zhou. QoS-driven service
composition modeling with extended hierarchical CPN. In Proceedings of
the First Joint IEEE/IFIP Symposium on Theoretical Aspects of Software
Engineering, (TASE’07), pages 483–492, Washington, DC, USA, 2007. IEEE
Computer Society.

[75] W. S. Jung, S. H. Han, and J. Ha. A fast bdd algorithm for large coherent
fault trees analysis. Reliability Engineering & System Safety, 83(3):369 – 374,
2004.

[76] R. Kazhamiakin, M. Pistore, and L. Santuari. Analysis of communication
models in web service compositions. In Proceedings of the 15th international
conference on World Wide Web (WWW’06), pages 267–276, New York, NY,
USA, 2006. ACM.

[77] R. W. Kelsall, I. W. Hamley, and M. Geoghegan. Nanoscale Science and
Technology, chapter 1, pages 36–37. John Wiley & Sons, Ltd, Chichester,
West Sussex, England, 2004.

[78] M. Koshkina and F. van Breugel. Modelling and verifying web service or-
chestration by means of the concurrency workbench. SIGSOFT Software
Engineering Notes, 29(5):1–10, 2004.

257

[79] K. Larsen, F. Larsson, P. Pettersson, and W. Yi. Efficient verification of
real-time systems: compact data structure and state-space reduction. In
Proceedings of the Eighteenth IEEE Symposium on Real-Time Systems, pages
14–24, 2-5 Dec 1997.

[80] M. Latour. Mechanical vibrations induced on elastic structures by piezopoly-
mer transducers. IEEE Transactions on Dielectrics and Electrical Insulation,
5(1):40–44, Feb 1998.

[81] A. L. Lewis. Phosphorylcholine-based polymers and their use in the preven-
tion of biofouling. Colloids and Surfaces B: Biointerfaces, 18(3-4):261 – 275,
2000.

[82] F. J. Lindgren, M. Haeffner, C. T. Ericsson, and P. R. Jonsson. Oxygen-
depleted surfaces: a new antifouling technology. Biofouling: The Journal of
Bioadhesion and Biofilm Research, 25(5):455–461, 2009.

[83] P. Lissamen and R. Radkey. Coriolis program: A review of the status of the
ocean turbine energy system. In OCEANS, volume 11, pages 559–565, Sep
1979.

[84] Q. Liu and H.-P. Wang. A case study on multisensor data fusion for imbalance
diagnosis of rotating machinery. Artificial Intelligence in Engineering Design
Analysis and Manufacturing, 15(3):203–210, 2001.

[85] S. Liu and L. Qu. A new field balancing method of rotor systems based on
holospectrum and genetic algorithm. Applied Soft Computing, 8(1):446–455,
2008.

[86] M. Lohmann, L. Mariani, and R. Heckel. A model-driven approach to dis-
covery, testing and monitoring of web services. In L. Baresi and E. D. Nitto,
editors, Test and Analysis of Web Services, pages 173–204. Springer, 2007.

[87] N. Lohmann, P. Massuthe, C. Stahl, and D. Weinberg. Analyzing interacting
WS-BPEL processes using flexible model generation. Data & Knowledge
Engineering, 64(1):38–54, 2008.

[88] J. Lovmand, J. Justesen, M. Foss, R. H. Lauridsen, M. Lovmand, C. Modin,
F. Besenbacher, F. S. Pedersen, and M. Duch. The use of combinatorial

258

topographical libraries for the screening of enhanced osteogenic expression
and mineralization. Biomaterials, 30(11):2015 – 2022, 2009.

[89] C. K. Low, T. Y. Chen, and R. Rönnquist. Automated test case generation
for BDI agents. Autonomous Agents and Multi-Agent Systems, 2(4):311–332,
1999.

[90] J. Magee and J. Kramer. Concurrency: State Models & Java Programs.
Wiley, Chichester, England, 2nd edition, 2006.

[91] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIlraith,
S. Narayanan, M. Paolucci, B. Parsia, T. Payne, E. Sirin, N. Srinivasan, and
K. Sycara. OWL-S: Semantic markup for web services, November 2004.
http://www.w3.org/Submission/OWL-S.

[92] J. Mendling, C. P. de Laborda, and U. Zdun. Towards an integrated BPM
schema: Control flow heterogeneity of PNML and BPEL4WS. In K.-D. Al-
thoff, A. Dengel, R. Bergmann, M. Nick, and T. Roth-Berghofer, editors,
Wissensmanagement, volume 3782 of Lecture Notes in Computer Science,
pages 570–579. Springer, 2005.

[93] S.-I. Minato. Zero-suppressed bdds and their applications. International
Journal on Software Tools for Technology Transfer (STTT), 3(2):156–170,
May 2001.

[94] Minerals Management Service – U.S. Dept. of the Interior. Ocean current
energy potential on the U.S. Outer Continental Shelf. Technology White
Paper, May 2006. http://oscenergy.anl.gov ; accessed March 16, 2009.

[95] Y. Mo. Variable ordering to improve bdd analysis of phased-mission systems
with multimode failures. Reliability, IEEE Transactions on, 58(1):53–57,
March 2009.

[96] N. A. Mulyar and W. M. P. van der Aalst. Patterns in colored Petri nets.
BETA Working Paper Series WP-139, Eindhoven University of Technology,
Eindhoven, Netherlands, April 2005.

259

[97] A. Myers and A. Rauzy. Efficient reliability assessment of redundant systems
subject to imperfect fault coverage using binary decision diagrams. IEEE
Transactions on Reliability, 57(2):336–348, June 2008.

[98] S. Nakajima. Verification of web service flows with model-checking tech-
niques. In First International Symposium on Cyber Worlds, pages 378–385.
IEEE Computer Society, 2002.

[99] G. Niu, A. Widodo, J.-D. Son, B.-S. Yang, D.-H. Hwang, and D.-S. Kang.
Decision-level fusion based on wavelet decomposition for induction motor
fault diagnosis using transient current signal. Expert Systems with Applica-
tions, 35(3):918–928, 2008.

[100] C. Ouyang, E. Verbeek, W. M. P. van der Aalst, S. Breutel, M. Dumas,
and A. H. M. ter Hofstede. Formal semantics and analysis of control flow in
WS-BPEL. Science of Computer Programming, 67(2-3):162–198, 2007.

[101] J. L. Peterson. Petri nets. ACM Computing Surveys, 9(3):223–252, 1977.

[102] E. S. T. Quecedo, I. Canales, J. L. Villate, E. Robles, and S. Apiñaniz. The
use of IEC 61400-25 standard to integrate wind power plants into the con-
trol of power system stability. In Proceedings of the European Wind Energy
Conference and Exhibition, pages 1–4, May 7–10 2007.

[103] V. Raghava. A comparison of model checking tools for service oriented archi-
tectures. Master’s thesis, Florida Atlantic University, Boca Raton, Florida
USA, December 2007. Advised by T. M. Khoshgoftaar.

[104] H. B. Rai, S. M. Jung, M. Sidharthan, J. H. Lee, C. Y. Lim, Y.-K. Kang,
C. Yeon, N. S. Park, and H. W. Shin. Chemotactic antifouling properties
of methyl caproate: its implication for ship hull coatings. In Proceedings of
the 6th WSEAS International Conference on Applied Informatics and Com-
munications (AIC’06), pages 474–480, Stevens Point, Wisconsin, USA, 2006.
World Scientific and Engineering Academy and Society (WSEAS).

[105] P. Ramsokul and S. Ramesh. A test bed for web services protocols. In Second
International Conference on Internet and Web Applications and Services,
(ICIW’07), pages 16–22, 2007.

260

[106] A. Rasche, F. Feinbube, P. Tröger, B. Rabe, and A. Polze. Predictable in-
teractive control of experiments in a service-based remote laboratory. In
Proceedings of the 1st International Conference on Prvasive Technologies Re-
lated to Assistive Environments (PETRA’08), pages 1–7, New York, NY,
USA, 2008. ACM.

[107] A. V. Ratzer, L. Wells, H. M. Lassen, M. Laursen, J. F. Qvortrup, M. S.
Stissing, M. Westergaard, S. Christensen, and K. Jensen. CPN Tools for
editing, simulating, and analysing coloured Petri nets. In van der Aalst and
Best [138], pages 450–462.

[108] S. Rayadurgam and M. P. E. Heimdahl. Coverage based test-case generation
using model checkers. In Engineering of Computer-Based Systems, pages 83–.
IEEE Computer Society, 2001.

[109] R. Remenyte-Prescott and J. Andrews. An enhanced component connection
method for conversion of fault trees to binary decision diagrams. Reliability
Engineering & System Safety, 93(10):1543 – 1550, 2008.

[110] I. Resceanu, M. Niculescu, N. G. Bizdoaca, and C. Pana. Remote mon-
itoring and diagnosis of a mechatronic system. In Proceedings of the 8th
conference on Applied informatics and communications (AIC’08), pages 234–
239, Stevens Point, Wisconsin, USA, 2008. World Scientific and Engineering
Academy and Society (WSEAS).

[111] J. Rodriguez and C. Perez. Advanced sensor for optimal orientation and
predictive maintenance of high power wind generators. In Proceedings
of the IEEE 28th Annual Conference of the Industrial Electronics Society
(IECON’02), volume 3, pages 2167–2172, Nov. 2002.

[112] M. Rohl, F. Marquardt, and A. M. Uhrmacher. Exploiting web service tech-
niques for composing simulation models. In Proceedings of the Winter Sim-
ulation Conference (WSC’07), pages 833–841, December 9-12 2007.

[113] N. Russell, A. H. M. ter Hofstede, W. M. P. van der Aalst, and N. Mul-
yar. Workflow control-flow patterns, a revised view. Technical Report BPM
Center Report BPM-06-22, Queensland University of Technology, Brisbane,
QLD, Australia, January 2006.

261

[114] B.-H. Schlingloff, A. Martens, and K. Schmidt. Modeling and model checking
web services. Electronic Notes Theoretical Computer Science, 126:3–26, 2005.

[115] J. F. Schumacher, M. L. Carman, T. G. Estes, A. W. Feinberg, L. H. Wilson,
M. E. Callow, J. A. Callow, J. A. Finlay, and A. B. Brennan. Engineered
antifouling microtopographies effect of feature size, geometry, and roughness
on settlement of zoospores of the green alga ulva. Biofouling: The Journal
of Bioadhesion and Biofilm Research, 23(1):55–62, 2007.

[116] J. Sherman, R. Davis, W. Owens, and J. Valdes. The autonomous underwater
glider “Spray”. IEEE Journal of Oceanic Engineering, 26(4):437–446, Oct
2001.

[117] M. P. Singh and M. N. Huhns. Service-Oriented Computing: Semantics,
Processes, Agents. John Wiley & Sons, Ltd., Hoboken, New Jersey, U.S.A.,
2005.

[118] C. Sinz. Visualizing sat instances and runs of the dpll algorithm. Journal of
Automated Reasoning, 39(2):219–243, August 2007.

[119] J. C. Sloan and T. M. Khoshgoftaar. Toward model checking web services
over the web. In Proceedings of the Twentieth International Software Engi-
neering and Knowledge Engineering Conference, (SEKE’08), San Francisco,
California, pages 519–524. Knowledge Systems Institute Graduate School,
July 1-3 2008.

[120] J. C. Sloan and T. M. Khoshgoftaar. Tradeoffs in testing service oriented
architectures. In Proceedings of the 14th ISSAT International Reliability and
Quality in Design Conference, Orlando, Florida, pages 141–145. ISSAT, Au-
gust 7-9 2008.

[121] J. C. Sloan and T. M. Khoshgoftaar. From web service artifact to a readable
and verifiable model. IEEE Transactions on Services Computing, 2(4):277–
288, October 2009.

[122] J. C. Sloan and T. M. Khoshgoftaar. Testing and formal verification of service
oriented architectures. International Journal of Reliability, Quality & Safety
Engineering, 16(2):137–162, April 2009.

262

[123] J. C. Sloan, T. M. Khoshgoftaar, P.-P. Beaujean, and F. Driscoll. Ocean tur-
bines – a reliability assessment. International Journal of Reliability, Quality
and Safety Engineering, 16(5):413–433, 2009.

[124] J. C. Sloan, T. M. Khoshgoftaar, and A. Folleco. Testing web services as
agents. In Proceedings of the 14th ISSAT International Reliability and Quality
in Design Conference, pages 151–155. ISSAT, August 7-9 2008.

[125] J. C. Sloan, T. M. Khoshgoftaar, and H. Hanson. Formalizing fault trees for
remote ocean systems. [72].

[126] J. C. Sloan, T. M. Khoshgoftaar, and V. Raghav. Assuring timeliness in an
e-science service-oriented architecture. Computer, 41(8):56–62, August 2008.
IEEE Computer Society.

[127] J. C. Sloan, T. M. Khoshgoftaar, and A. Varas. An extendible translation
of bpel to a machine-verifiable model. In Proceedings of the Twenty-first
International Software Engineering and Knowledge Engineering Conference,
(SEKE’09), Boston, Massachusetts, pages 344–349. Knowledge Systems In-
stitute Graduate School, July 1-3 2009.

[128] O. V. Sokolsky and S. A. Smolka. Incremental model checking in the
modal mu-calculus. In Proceedings of the Sixth International Conference on
Computer-Aided Verification (CAV’94), Lecture Notes in Computer Science
818, pages 351–363, 1994.

[129] M. Solanki, A. Cau, and H. Zedan. Introducing compositionality in web ser-
vice descriptions. In Proceedings of the Tenth IEEE International Workshop
on Future Trends of Distributed Computing Systems, (FTDCS’04), pages 14–
20, May 26-28 2004.

[130] S. C. Soo and K. M. Yu. Tool-path generation for fractal curve making.
International Journal of Advanced Manufacturing Technology, 19(1):32–48,
2002.

[131] Y. Sun, S. He, and J. Y. Leu. Syndicating web services: A qos and user-driven
approach. Decision Support Systems, 43(1):243–255, 2007.

263

[132] K. Sycara, M. Paolucci, J. Soudry, and N. Srinivasan. Dynamic discovery
and coordination of agent-based semantic web services. IEEE Internet Com-
puting, 8(3):66–73, May-June 2004.

[133] E. Tarjan, Robert. Depth first search and linear graph algorithms. SIAM
Journal of Computing, 1(2):146–160, 1972.

[134] M. Taufer, D. Anderson, P. Cicotti, and C. Brooks. Homogeneous redun-
dancy: a technique to ensure integrity of molecular simulation results using
public computing. In Proceedings of the 19th IEEE International Symposium
on Parallel and Distributed Processing, pages 119a–119a, April 2005.

[135] W.-T. Tsai, Y. Chen, and R. Paul. Specification-based verification and vali-
dation of web services and service-oriented operating systems. In Proceedings
of the Tenth IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems, pages 139–147, 2-4 Feb. 2005.

[136] W.-T. Tsai, X. Wei, Y. Chen, and R. Paul. A robust testing framework
for verifying web services by completeness and consistency analysis. In Pro-
ceedings of the IEEE International Workshop on Service-Oriented System
Engineering, (SOSE’05), pages 151–158, 20-21 Oct. 2005.

[137] L. G. Valiant. A bridging model for parallel computation. Commun. ACM,
33(8):103–111, 1990.

[138] W. M. P. van der Aalst and E. Best, editors. In Proceedings of the Twenty-
fourth International Conference on Applications and Theory of Petri Nets,
(ICATPN’03), Eindhoven, The Netherlands, June 23-27, 2003, volume 2679
of Lecture Notes in Computer Science. Springer, 2003.

[139] W. M. P. van der Aalst, J. B. Jørgensen, and K. B. Lassen. Let’s go all the
way: From requirements via colored workflow nets to a BPEL implementation
of a new bank system. In R. Meersman, Z. Tari, M.-S. Hacid, J. Mylopou-
los, B. Pernici, Ö. Babaoglu, H.-A. Jacobsen, J. P. Loyall, M. Kifer, and
S. Spaccapietra, editors, Proceedings of the OTM Conferences (1), volume
3760 of Lecture Notes in Computer Science, pages 22–39. Springer, October
31 - November 4 2005.

264

[140] A. Varas. Toward push-button verification of web service compositions. Mas-
ter’s thesis, Florida Atlantic University, Boca Raton, Florida USA, December
2009. Advised by T. M. Khoshgoftaar.

[141] A. Vreze, B. Vlaovic, and Z. Brezocnik. Sdl2pml – tool for automated gen-
eration of promela model from sdl specification. Computer Standards & In-
terfaces, 31(4):779 – 786, 2009.

[142] R. R. Wald, T. M. Khoshgoftaar, P.-P. Beaujean, and J. C. Sloan. Combining
wavelet and fourier transforms in reliability analysis of ocean systems. [72].

[143] R. R. Wald, T. M. Khoshgoftaar, P.-P. Beaujean, and J. C. Sloan. A review of
prognostics and health monitoring techniques for autonomous ocean systems.
[72].

[144] Y. Wang, X. Bai, J. Li, and R. Huang. Ontology-based test case gener-
ation for testing web services. In Proceedings of the Eighth International
Symposium on Autonomous Decentralized Systems, (ISADS’07), pages 43–
50, Washington, DC, USA, 2007. IEEE Computer Society.

[145] G. Weiß. Agent orientation in software engineering. Knowledge Engineering
Review, 16(4):349–373, 2001.

[146] M. Wooldridge. An Introduction to Multiagent Systems. John Wiley & Sons,
Ltd., Hoboken, New Jersey, U.S.A., 2002.

[147] J.-D. Wu, M. R. Bai, F.-C. Su, and C.-W. Huang. An expert system for
the diagnosis of faults in rotating machinery using adaptive order-tracking
algorithm. Expert Systems with Applications, 36(3):5424–5431, April 2009.

[148] Q. Wu, C. Pu, and A. Sahai. DAG synchronization constraint language for
business processes. In Proceedings of the 3rd IEEE International Conference
on E-Commerce Technology, pages 10–17, 2006.

[149] L. Xing and Y. Dai. A new decision-diagram-based method for efficient anal-
ysis on multistate systems. IEEE Transactions on Dependable and Secure
Computing, 6(3):161–174, 2009.

265

[150] Y. Yang, Q. Tan, J. Yu, and F. Liu. Transformation BPEL to CP-nets
for verifying web services composition. In Proceedings of the International
Conference on Next Generation Web Services Practices, NWESP’05, pages
137–142, Washington, DC, USA, 2005. IEEE Computer Society.

[151] M. Younas, Y. Li, and C.-C. Lo. An efficient transaction commit protocol for
composite web services. In Proceedings of the Twentieth International Con-
ference on Advanced Information Networking and Applications, (AINA’06),
pages 591–596, April 18-20 2006.

[152] Y. Zheng, J. Zhou, and P. Krause. Analysis of BPEL data dependencies. In
EUROMICRO-SEAA, pages 351–358. IEEE Computer Society, 2007.

[153] Y. Zheng, J. Zhou, and P. Krause. A model checking based test case gener-
ation framework for web services. In Information Technology: New Genera-
tions, pages 715–722. IEEE Computer Society, 2007.

266

