
Formalizing Fault Trees for Remote Ocean Systems
John C. Sloan

Taghi M. Khoshgoftaar
Computer and Electrical Engineering and Computer Science

Florida Atlantic University
777 Glades Rd., Boca Raton, FL 33431

Email: taghi@cse.fau.edu

Howard Hanson
Center for Ocean Energy Technology

Florida Atlantic University
777 Glades Rd., Boca Raton, FL 33431

Email: hphanson@fau.edu

Keywords: fault trees, condition-based monitoring, ocean systems, satisfiability, BDD.

Abstract—Real time condition-based evaluation of system
health must not only be efficient, but also produce usable
and expressive results. To this end, this paper presents a set-
theoretic formulation of fault trees. Such a formulation provides
a usable scaffolding on which ensembles of machine health
measurement techniques may eventually operate. Initially, we
present a negation-free formulation of a forest of fault trees as a
set of 2-level sum-of-products expressions. Given this formulation,
we express measures for certainty and specificity, both of which
further qualify the various well-studied measures for severity.
This formulation is subsequently refined to represent multi-
state systems, non-coherent valuations, and node sharing – all
necessary for practical monitoring solutions. Finally, we present
an evaluation rule embodying these refinements and analyze its
complexity. Examples pertaining to unattended ocean systems
illustrate these concepts.

I. INTRODUCTION

Fault tree analysis uses individual state snapshots emanating
from the machines being monitored for condition-based relia-
bility assessment. This analysis requires well-conditioned and
denoised data from a machine’s data acquisition/manipulation
system. As a type of logical fault model, fault trees require
data captured at some point in time and bundled into a vector
V n of n state variables indexed by {i : 0 < i ≤ n}.
Such data initially1 comprises the state snapshot. Prior to
conducting fault tree analysis, each state variable vi ∈ V n had
been coarsely discretized based on a variety of state detection
algorithms. Furthermore, each variable constitutes the head
element of its own timed data stream, where all such streams
are subject to some form of barrier synchronization [17].

In this work, we will assume that each snapshot V n had
been made temporally coherent. That is, all values in V n have
been acquired within some acceptable time window using data
fusion strategies surveyed in [6]. Later work will parameterize
each state variable vi with time (i.e., vti) to represent some
state variable in a snapshot at time t. Transition fault models,
like Markov chains or Petri nets, can then be applied to
sequences of these time-parameterized snapshots.

This paper focuses on fault trees used for continuous mon-
itoring and diagnosis of unattended ocean machinery. For an
overview of reliability issues associated with such machinery,

1In a later section we will be augmenting V n with events derived from
combinations in V n.

Property: Description:
indexing {i : 0 < i ≤ n}
membership vi ∈ V n

valuation Φ : V n → Bn

extension V + = {vi : [vi] = 1}
TABLE I

PROPERTIES OF STATE SNAPSHOTS

see [16]. Since responding to false alarms (i.e., false positives)
for such machinery incurs a high expeditionary cost, this paper
considers logical fault models that minimize non-determinism.

A unifying formalism is required to express the capabilities
of successively more robust classes of fault trees. Section II
defines an initial class of fault trees based on simple sum-of-
products expressions. Section III augments this basic structure
for multi-state systems, (non-)coherent valuation functions,
and shared nodes. Section IV presents a real time fault tree
evaluation rule and examines its complexity, distinguishing
this result from complexity results for various aspects of fault
tree construction. Section V presents a summary and lists
future work.

II. STRUCTURE

A physical machine produces a valuation of vector V n of
n state variables using Boolean function Φ : V n → {0, 1}n,
where for state variable vi a fault is indicated by its value
[vi] = 1. The collection of all such faults, or more generally
events, are referred to as the extension of V n, namely V + =
{vi : [vi] = 1}. Extension V + provides the input instance to an
analysis involving fault trees described in the next paragraph,
while Table I summarizes parameters and properties of the
state snapshot.

Fault trees are used to assess the machine’s health given
V +. Consider a forest of p 2-level fault trees for p possible
event types. Each tree represents a logical sum-of-products
expression over vi ∈ V n mapping to some event type xl.
In particular, a fault (sub)tree l is a mapping Ψl : Eq → X1

defining the disjunction of ql cut sets corresponding to exactly
one event type xl ∈ Xp among p possible fault types. The

hphanson
Typewritten Text

hphanson
Typewritten Text
Proceedings, 16th International ISSAT on Reliability and Quality in Design, 5-7 August, 2010, International Society of Science and Applied Technologies, 324-328.

Property: Description:
indexing {j : 0 < j ≤ m}
membership ej ∈ Em

valuation Em = {ej : ej ⊆ V n}
extension E+ = {ej : ej ⊆ V +}

TABLE II
PROPERTIES OF CUT SETS

resulting event type xl may be interpreted as a type of low-
level failure or higher-level fault.

Each cut set ej ∈ Eq is itself a conjunction or product over
rj state variables indexed by k, where each such variable is
denoted as ujk. Cut sets are manually specified by a domain
expert, with additional cut sets generated using a variety of
imputation techniques. The resulting m cut sets indexed by
{j : 0 < j ≤ m} spanning all p fault trees are nonetheless
many orders of magnitude smaller than the cardinality the
power set over V n. Already known at run time, the total
number of cut sets m is expected not to exceed several million.
Table II summarizes parameters and properties of cut sets.
Formula 1 computes the value [xl] as a Boolean function in
disjunctive normal form (DNF).

[xl] =
ql∨

j

rj∧

k

ujk (1)

Formula 1 can be made concrete by the following evaluation
condition:

[xl]=1 ⇔ {k : (∃j)(ujk∈ej , xl =Ψ(ej), ej⊆V +)} (2)

Formula 2 stipulates that a fault tree rooted in xl evaluates
to true (i.e., [xl] = 1) iff every variable ujk in at least one
cut set ej corresponding to xl is wholly contained in exten-
sion V +. This firing condition provides a scaffold on which
diagnostic measures for certainty, severity, and specificity can
be computed. First, consider the certainty measure. For some
fault, two cut sets evaluating to true will result in a higher
certainty measure for an event than if only one cut set were
to fire. Likewise, if the same number of two or more cut sets
were to fire for one event as it did for some other event, then
the event having the more dissimilar cut sets would have the
higher certainty score. Next, consider the severity measure. An
extensive literature exists for the computation of such scores
based on the severities of individual events making up the cut
set and on the combination of events comprising the cut set.
Finally, consider the specificity measure. Given two distinct
firings xl0 = Ψ(ej0) and xl1 = Ψ(ej1), if ej0 ⊂ ej1 , then xl1

will have a higher specificity value than would xl0 .
Although Formula 2 may be satisfactory for a single 2-

level fault tree, real time fault tree evaluation requires listing
all such fault trees evaluating to true given V +. This entails
propagating extension V +, including its associated metrics, to
extension E+ for cut sets and thence to extension X+ for fault

Property: Description:
indexing {l : 0 < l ≤ p}
membership xl ∈ Xp

valuation Ψ : Em → Xp

extension X+ = {(xl, j) : xl = Ψ(ej), ej ∈ E+}
TABLE III

PROPERTIES OF FAULT TREES

trees in the forest. Extension E+ = {ej : ej ⊆ V +} comprises
all cut sets ej that are wholly contained in V +. Based on E+,
the list of all fault trees evaluating to true entails computing
X+ described in Table III, which also summarizes the pa-
rameters and properties of fault trees. Composing extension
properties from Tables I - III results in Formula 3.

X+ = {(xl, j) : (∃ej)(xl = Ψ(ej), ej ⊆ V +)} (3)

Among other things, the following section augments this 2-
level structure into a hierarchy so that X+ and its metrics may
thence be propagated up to some Top-Level Event (TLE).

III. REFINEMENTS

The structure in Section II can neither represent multi-
valued state variables, nor composition of fault trees into a
hierarchy ultimately rooted in some Top-Level Event (TLE).
The negation-free notion of extension developed thus far
has limitations, which we extend to multi-state systems in
Section III-A. Section III-B introduces a means of specifying
hierarchies of events using the notion of shared nodes. Shared
nodes reduce the need to replicate fault trees for multiple
types of events common to specific combinations of lower
level events. As alluded to earlier, shared nodes provide
placeholders for certainty, severity, and specificity measures,
as well as a framework for propagating these values to the
TLE for overall machine health assessment. These values will
furthermore depend on whether the valuation of the system’s
state is coherent. Closely related to multi-state systems, the
coherence property is examined in Section III-C.

A. Multistate systems

The extension expressed in Formula 3 can express the
presence but not the absence of events. That is, negation is
not supported. Unfortunately, the inability to affirmatively test
for the absence of events prevents use of diagnostic procedures
involving the ruling out of certain other events. Modeling
explicitly binary-valued variables will enable differential diag-
nosis – a process by which one event can be distinguished from
some other event based on the absence of certain other events.
A fault tree that supports negation can make explanation of
an event easier by stipulating inside the contents of cut sets
which events are expressly absent.

Suppose by V n1 , we mean vector V n of negation-free states
defined in Section II. Introducing the notion of negation entails
augmenting V n with a set V n2 of binary-valued state vari-
ables. Applying the technique used to reduce the Satisfiability

Problem (SAT) to Monotone SAT refered to in Appendix A9
of [7], we can augment V n with distinct and indivisible state
variables ¬vi subject to the separation condition in Formula 4.

{i, j : vi ∈ ej ,¬vi ∈ ej} = ® (4)

A parsimonious state V n2 would include only ¬vi variables
for which there exists at least one cut set. Subjecting V n2 to
this relevance condition – necessary for coherence – results in
Formula 5.

V n2 = {¬vi : ∃(ej)(¬vi ∈ ej)} (5)

Three-valued variables, like operating temperature, are use-
ful for detecting departures from some interior optimum.
Notions like: ’depressed’, ’normal’, and ’elevated’ can be
expressed in a manner similar to the negation case by including
state variables like {−vi,¬vi,+vi} respectively into V n3 . By
a similar construction one may define the four-valued notion:
’normal’, ’alert’, ’warning’, and ’emergency’ into V n4 . Hence,
the refinement for multi-state systems involves computing the
state vector in Formula 6, and redefining n accordingly.

V n = V n1 ∪ V n2 ∪ V n3 ∪ V n4 (6)

Fault trees for multi-state systems entail more intricate
computation of severity scores like those described in [3],
[18]. Such fault trees require construction of a larger number
of cut sets, or alternatively, incorporating a notion of ordering
when computing extension X+. Subjecting their construction
to separation and relevance conditions partially mitigates these
tractability problems.

B. Node commonality

As a two-level sum of products expression, Formula 1
cannot represent an arbitrary Boolean expression without
replicating a potentially large number of subtrees. The same
event xl may be in common with more than one fault subtree.
Furthermore, xl may be a member of more than one cut set
within a fault tree. Finally, fault trees are rarely balanced
so that a (sub)tree rooted in event xa may include cut sets
comprised of faults vi and child events xl. By a technique
similar to that in Section III-A we may further augment V n

with xl ∈ Xp to result in Wn+p. Inclusion of xl into Wn+p

is subject to a separation condition like that in Formula 4. If
all events xl ∈ Xp are relevant to the TLE – by a condition
similar to Formula 5 – then the augmented state is computed
by Formula 7.

Wn+p = V n ∪Xp (7)

Defining W+ in a manner similar to V +, extension X+

can be redefined by Formula 8.

X+ = {(xl, j) : (∃ej)(xl = Ψ(ej), ej ⊆ W+)} (8)

C. Coherence

The hazard scoring and propagation techniques described
in [3], [10], [18] assume the multi-state system being modeled
is coherent, namely the valuation of its state does not improve
with an increasing number of component faults. We adapt
the definition of coherence in [4] to specifically highlight the
problem of transient effects causing false positives.

Valuation function Φ : Wn+p → Bn+p of augmented state
snapshot Wn+p is said to be coherent if (i) all variables are
relevant, and (ii) Φ(Wn+p) is monotonically non-decreasing.2

For condition (i), every state variable vi ∈ Wn+p and failure
type xl ∈ Wn+p are part of at least one cut set, so all
variables in Wn+p are relevant. For condition (ii), consider
two successive state snapshots, Wn+p

t0 and Wn+p
t1 at times t0

and t1 respectively. If Wn+p
t0 ⊆ Wn+p

t1 then valuation function
Φ is coherent.

The succession of states in the previous paragraph indicates
either the presence of a spreading fault or transient effects. To
rule out transient effects, suppose the only difference between
the two states is the change of one or more variables wi from
zero to one. If at some later time t′, Wn+p

t′ = Wn+p
t0 and there

were no repair actions, then intermediate state Wn+p
t1 reflects

transient effects.
The notion of what constitutes transient effects is open to

interpretation. Few would argue that a machine experienced
transient effects when it broke down but was subsequently
repaired. Considering events requiring repair as stuck-at faults,
excludes these situations from the notion of transient effects.

Less obvious are transient effects stemming from routine
operation and automated control. Such effects are expected to
occur often as ocean turbines right themselves in the presence
of turbulent waters. Data streaming from the attitude sensor at
10 Hz may be used for self-righting. The fault tree, however,
must depend on these pitch yaw and roll measurements
conditioned over longer time intervals. The intention is to
detect failures in the control system, rather than registering
an abundance of false positives that have been automatically
corrected by movement of any rudders or fins. Other sensor
types noted for displaying transient effects include the five
vibration sensors located at various points on the turbine’s
drive train.

A recent study [4] surveyed other scenarios in which non-
coherence apparently arises, and how machine health assess-
ment procedures can be adapted. One such scenario in [4]
anticipated our need to operate ocean turbines at reduced
output as its state gradually degrades. For example, operating
the turbine closer to the surface maximizes momentum flux,
and hence output, but at the expense of both turbulence and
accelerated rates of fouling. As its state degrades, due either
to bad weather or biofilm formation, the turbine can operate at
reduced output further down the water column. Such degraded
operation comes at the expense of increased bathymetric pres-
sure on seals. Hence, formulating an appropriate response to
degraded states due to one set of variables like turbulence and

2Φ() is said to be strictly coherent if it is monotonically increasing.

fouling, will often depend on other variables like bathymetric
pressure.

IV. ALGORITHM DESIGN AND ANALYSIS

Fault tree evaluation ultimately entails evaluation of
Boolean functions. A variety of implementations of Boolean
function manipulation and evaluation involve binary decision
diagrams (BDD)’s, hypergraphs, and SAT solvers. In addition
to work already cited, implementations of fault trees using
BDD’s or their variants also appear in [1], [2], [12], [13],
[14]. Visualizing Satisfiability (SAT) instances and Boolean
functions that include the use of hypergraphs were reported
in [15]. Use of hypergraphs that relate vertices to state
predicates wi and hyperedges to clauses ej were reported
in [9], providing a context for the complexity analysis in the
following paragraphs.

A. Evaluation

Recall that to solve the Satisfiability Problem (SAT) requires
finding a satisfiable truth assignment, given some Boolean
formula [8]. That entails first guessing a truth assignment, then
checking if that assignment is indeed satisfied. Although both
operations can be done in low-order polynomial time, what
makes SAT NP-Complete (NP-C) in the number of variables
n + p is the intractably large number of guesses required to
identify a satisfying truth assignment.

The checking phase of SAT trivially reduces to computing
extension X+ in Formula 8. To see this, negate the problem
instance for SAT originally expressed by Cooke in Conjunctive
Normal Form (CNF) to obtain the fault tree in DNF shown in
Formula 1, and then reverse the sense of the truth assignment.

In condition-based monitoring, we are already given truth
assignment V + so checking whether X+ is non-empty can
be done in polynomial time. Event explanation and possibly
localization, however, requires listing all event types generated
ultimately from extension V +. Known as the SAT Evaluation
Problem, implementations of this checking procedure are
defined for most variants of BDD’s surveyed in [5]. One state-
of-the-art data structure known as Zero-suppressed Decision
Diagrams (ZBDD) is adapted to efficient identification of sets
of subsets [11]. Run time comparison of these and other data
structures and techniques for computation of X+ is left for
future work. As a reification of Formula 8, Formula 9 provides
an evaluation rule for computing extension set X+.

(({i, j : wi ∈ W+, wi ∈ ej} ⇒ cj ← cj + 1) = |ej |) ⇒
X+ ← (Ψ(ej), j) ∪X+;W+ ← Ψ(ej) ∪W+; cj ← 0 (9)

This rule supposes that for each cut set ej , we maintain
a count cj , initially 0, that gets incremented for each wi ∈
W+ whenever wi ∈ ej . Once count cj equals |ej |, clause ej

is fully satisfied, so we append the event associated with ej

and cut set identifier j to extension X+. Including j in the
solution facilitates fault localization and explanation, Finally,
we include the event associated with ej into set W+ and re-
initialize cj to zero. Implied in this rule is some stepwise

algorithm which we will describe and implement in future
work.

SAT evaluation entails evaluating a logic circuit like the
one in Figure 1 (top). An equivalent schematic in Figure 1
(bottom) shows the evaluation rule for the same circuit, but in
terms of increment/compare/output/reset operators suggested
by Formula 9.

Fig. 1. SAT Evaluator example: (top) logic circuit, (bottom) rule schematic

Formula 9 solves the Fault Tree Evaluation Problem with
a worst case complexity of O(m2). To see this, contrive a
problem instance comprised of m cutsets with n + p = m
elements in W+. Such pathological cases are easy to spot at
the time of fault tree construction by detecting violations of
the bounds in Formula 10.

{i, j : |W+| ¿ (n + p), |ej | ¿ (n + p), |Qi| ¿ m} (10)

Formula 10 asserts that the fault tree rooted in the TLE is
comprised of a sparse set of cut sets wherein each cut set
is itself sparse in the number of variables. Note that set Qi

represents the set of cutsets in which wi is a member. The
actual number of steps can be expressed by Formula 11 and
can be predicted in O(|W+|) steps.

|W+|∑

i

|Qi| (11)

B. Construction

Although this paper focuses on SAT Evaluation, a number
of problems associated with the construction of fault trees
remain NP-C. Unless P = NP, fault trees for machinery like
ocean turbines will always remain not fully specified with
imperfect fault coverage. This is unfortunate, since silent
failures (i.e., false negatives) disrupt maintenance schedules,
which are driven by the high expeditionary cost incurred prior
to ocean equipment maintenance and repair. Silent failures too
often mask unexpectedly severe damage, while providing in-
sufficient or misleading diagnostic information to maintenance
personnel.

An NP-C problem known as the Automatic Test Pattern
Generation Problem (ATPG), from the field of electronic
design automation, can be reduced to a corresponding problem
in fault tree construction. ATPG requires the listing of all test
patterns (cut sets) that can lead to failure. Not only is ATPG
NP-C, but it is also PSPACE-Complete – requiring intractably
large storage. Under a similar guise, any imputation technique
by which one must infer a complete set of cut sets given
some ’starter’ set, also appears to be PSPACE-Complete. Still
another intractable problem reducible from SAT involves the
computation of prime implicants in a Boolean expression –
important for identifying the cut sets having the least number
of conditions that can prompt some given event. Additional
NP-C problems associated with BDD’s and hence fault trees
were identified in [5]. Fault trees generated by imputation
procedures will have its number of cut sets vastly exceeding
the number of variables. Partially mitigating this, we observed
cut sets rarely exceeding four terms when formulating the
starter set for ocean turbines.

V. SUMMARY

The set-theoretic perspective on condition-based evaluation
of fault trees enabled us to define a class of fault trees useful
for health assessment of remote ocean machinery. This class
can represent multi-state systems, non-coherent valuations, and
node sharing – all of which are pre-requisites for current
research into logical fault models like fault trees. Due to high
expeditionary cost to service this machinery, we sought to min-
imize the number of false positives by formally characterizing
one class of transients in terms of a state coherence condition.

Each successive refinement exposes variables to which
we may attach health assessment indicators. In addition to
the well-studied phenomenological measures for severity, the
compositional framework also characterized epistemological
measures of certainty and specificity. The proposed frame-
work provides an effective fault tree evaluation rule having
complexity bounds known at fault tree construction time.

Future work involves identifying fault tree evaluation tools
included with SAT solvers and BDD packages. Run time
and usability comparison of these tools to our software

implementation of the SAT evaluation rule is anticipated.
Technical documentation currently underway will be posted,
along with the current version of the executable code for the
SAT evaluator in Formula 9, its supporting tools, and sample
fault trees.

ACKNOWLEDGMENT

The work discussed here grew from collaborations within
the Prognostics and Health Monitoring (PHM) working group
of the Center for Ocean Energy Technology (COET) at Florida
Atlantic University and was funded through COET by the State
of Florida.

REFERENCES

[1] T. Assaf and J. Dugan. Diagnosis based on reliability analysis us-
ing monitors and sensors. Reliability Engineering & System Safety,
93(4):509 – 521, 2008.

[2] A. Bobbio, D. Codetta-Raiteri, M. D. Pierro, and G. Franceschinis.
Efficient analysis algorithms for parametric fault trees. Techniques,
Methodologies and Tools for Performance Evaluation of Complex Sys-
tems, Workshop on, 0:91–105, 2005.

[3] Y.-R. Chang, S. Amari, and S.-Y. Kuo. Obdd-based evaluation of
reliability and importance measures for multistate systems subject to
imperfect fault coverage. Dependable and Secure Computing, IEEE
Transactions on, 2(4):336–347, Oct.-Dec. 2005.

[4] S. Contini, G. Cojazzi, and G. Renda. On the use of non-coherent fault
trees in safety and security studies. Reliability Engineering & System
Safety, 93(12):1886 – 1895, 2008. 17th European Safety and Reliability
Conference.

[5] R. Drechsler and D. Sieling. Binary decision diagrams in theory
and practice. International Journal on Software Tools for Technology
Transfer (STTT), 3(2):112–136, May 2001.

[6] J. Duhaney, T. M. Khoshgoftaar, A. Agarwal, and J. C. Sloan. Mining
and storing data streams for reliability analysis. ISSAT, August 5-7
2010.

[7] M. R. Garey and D. S. Johnson. Computers and Intractability: A guide
to the Theory of NP-Completeness. W.H. Freeman and Company, New
York City, 1979.

[8] M. R. Garey and D. S. Johnson. Computers and Intractability: A guide
to the Theory of NP-Completeness, chapter 2.6, pages 38–44. W.H.
Freeman and Company, New York City, 1979.

[9] D. Habet, L. Paris, and C. Terrioux. A tree decomposition based
approach to solve structured sat instances. In Proceedings of the 2009
21st IEEE International Conference on Tools with Artificial Intelligence
(ICTAI’09), pages 115–122, Washington, DC, USA, 2009. IEEE Com-
puter Society.

[10] W. S. Jung, S. H. Han, and J. Ha. A fast bdd algorithm for large coherent
fault trees analysis. Reliability Engineering & System Safety, 83(3):369
– 374, 2004.

[11] S.-I. Minato. Zero-suppressed bdds and their applications. International
Journal on Software Tools for Technology Transfer (STTT), 3(2):156–
170, May 2001.

[12] Y. Mo. Variable ordering to improve bdd analysis of phased-mission
systems with multimode failures. Reliability, IEEE Transactions on,
58(1):53–57, March 2009.

[13] A. Myers and A. Rauzy. Efficient reliability assessment of redundant
systems subject to imperfect fault coverage using binary decision dia-
grams. IEEE Transactions on Reliability, 57(2):336–348, June 2008.

[14] R. Remenyte-Prescott and J. Andrews. An enhanced component connec-
tion method for conversion of fault trees to binary decision diagrams.
Reliability Engineering & System Safety, 93(10):1543 – 1550, 2008.

[15] C. Sinz. Visualizing sat instances and runs of the dpll algorithm. Journal
of Automated Reasoning, 39(2):219–243, August 2007.

[16] J. C. Sloan, T. M. Khoshgoftaar, P.-P. Beaujean, and F. Driscoll. Ocean
turbines – a reliability assessment. International Journal of Reliability,
Quality and Safety Engineering, 16(5):413–433, 2009.

[17] L. G. Valiant. A bridging model for parallel computation. Commun.
ACM, 33(8):103–111, 1990.

[18] L. Xing and Y. Dai. A new decision-diagram-based method for efficient
analysis on multistate systems. IEEE Transactions on Dependable and
Secure Computing, 6(3):161–174, 2009.

