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Abstract: In the context of wave resource assessment, the description of wave climate is usually
confined to significant wave height and energy period. However, the accurate joint description of both
linear and directional wave energy characteristics is essential for the proper and detailed optimization
of wave energy converters. In this work, the joint probabilistic description of wave energy flux and
wave direction is performed and evaluated. Parametric univariate models are implemented for
the description of wave energy flux and wave direction. For wave energy flux, conventional, and
mixture distributions are examined while for wave direction proven and efficient finite mixtures of
von Mises distributions are used. The bivariate modelling is based on the implementation of the
Johnson–Wehrly model. The examined models are applied on long-term measured wave data at
three offshore locations in Greece and hindcast numerical wave model data at three locations in
the western Mediterranean, the North Sea, and the North Atlantic Ocean. A global criterion that
combines five individual goodness-of-fit criteria into a single expression is used to evaluate the
performance of bivariate models. From the optimum bivariate model, the expected wave energy
flux as function of wave direction and the distribution of wave energy flux for the mean and most
probable wave directions are also obtained.

Keywords: wave energy flux; wave direction; mixture distribution; bivariate distribution; wave
energy converters; European seas

1. Introduction

Marine renewable energy applications (especially, offshore wind, wave, and cur-
rent/tide) are gaining ground as means for deriving electrical power due to the commit-
ment of the EU member states to reduce pollutant emissions by substituting fossil fuels
with clean energy sources [1,2]. To date, EU funds have supported particularly the wave
energy sector with respect to technology R&D. Although the technological progress is
remarkable with numerous design concepts and prototypes to harness energy from sea
waves, the corresponding commercial stage follows a slower pace.

The particular advantages of wave energy (e.g., high energy density, small energy
loss, predictability) render its exploitation promising not only in areas with high wave
energy flux like the Atlantic Ocean but also in areas with relatively calm wave climate
and thus with intermediate levels of power availability, like the Mediterranean Sea; see,
for example, [1,3,4]. Usually, the later areas are characterized by low variability achieving
better survivability, without increase of capital expenditure [5]. In order to make wave
energy production feasible and economically viable, it is necessary, among others, to deploy
wave energy converters (WECs) based on the accurate knowledge of the wave climate
and its temporal variability in the area of interest [6]. The wave climate variability is also
responsible to a great extent for the uncertainty in electricity production of a wave energy
project, an aspect that has been studied by [7,8].

The local wave resource assessment can be based on buoy measurements, reanalysis
results, and satellite altimetry data commonly through spectral analysis. See also [9–14].
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Such studies are usually confined in the statistical description of particular wave spectral
parameters, such as significant wave height HS defined as HS ∼= 4

√
m0; energy period

Te, Te = m−1/m0; and mean wave direction ΘW = tan−1
(s

Sηη( f ,θ) sin θdθd fs
Sηη( f ,θ) cos θdθd f

)
, where

mn =
∫ ∞

0 f nSηη( f )d f , n = · · · ,−2,−1, 0, 1, · · · , is the n—order spectral moment, Sηη( f ) is
the spectral density function, and f is the spectral frequency; see, e.g., [15]. However, there
are recent studies on wave energy resource characterization [16] that are based on the six
IEC parameters, which include at least two directional parameters: direction of maximum
energy and directionality coefficient.

Wave energy flux per unit length of wave front (W/m), which is also known as wave
power density or wave energy potential, can be evaluated from the following relation:

PW = ρg
∫ 2π

0

∫ ∞

0
cg( f , d)Sηη( f , θ)d f dθ, (1)

where ρ is the density of seawater, g is the acceleration of gravity, cg( f , d) is the group
velocity, d is the water depth, and θ is the direction of wave propagation; see also [17,18].
For deep water, the above relation for the total wave energy flux is simplified as follows:

PW =
ρg2

4π

∫ ∞

0

1
f

Sηη( f )d f , (2)

which is usually expressed through HS and Te via the following relation:

P = ρg2 H2
STe

64π
∼= 0.49H2

STe (in kW/m), (3)

where ρ = 1025 kg/m3 and g = 9.8066 m/s 2.
In the framework of wave resource assessment studies, data validation, variability

and uncertainty measures, and analysis of extreme waves should also be included. See,
e.g., [4,19–24].

Regarding wave climate analysis per se, a lot of work has been done for the modelling
of HS and Te (or spectral peak period TP and mean zero-up crossing period TZ). Among
the most common probability distributions for modelling HS (and/or Te/TP/TZ) are the
Beta, the Gamma, the Generalized Gamma, the Weibull, and the Lognormal distributions,
with the latter one being the most widely used. An alternative modelling approach is
non-parametric methods; in this context, kernel density estimation is frequently applied.
Essentially, the kernel is used as a weighting function centred at the data points and its
extension (around the data points) is defined by a smoothing parameter. Some standard
reference books for non-parametric estimation are [25,26].

However, the univariate models are not sufficient in the context of a detailed long-
term analysis, especially with respect to design purposes, load calculations, and reliability
analyses; thus, the bivariate description of the above-mentioned wave parameters is neces-
sary; [27–29]. Different approaches have been presented for the joint description of wave
height and period. For instance, parametric bivariate distributions, conditional-distribution
approach, kernel-based models, and copula-based models as well, provide alternative
probabilistic description of these variables; see, e.g., [27,30–32]. Furthermore, [33,34] have
provided distributions for the joint description of wave power–wave height and wave
power–wave period for individual waves, an approach that is complementary in long-term
analysis of the wave climate at a particular site.

WECs can be classified regarding their direction of orientation (and size) into three
categories: attenuators, point absorbers, and terminators; see, e.g., [35]. Unlike a point
absorber that converts energy from waves coming from all directions, attenuators and
terminators should be elongated parallel and perpendicular to the propagation of wave
direction, respectively, to yield high-energy conversion efficiency. This sensitivity to
directionality affects the standard deviation of the capture length (i.e., ratio of the WEC
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power output to the sea state power) of WECs as has been demonstrated by [8]. Moreover,
as is emphasized in [36], apart from HS and Te, the performance of a WEC should be
based on additional attributes of the sea state including variability of mean wave direction,
directional spread and spectral shape, and that the uncertainties of the performance results
of the WECs can be reduced if these dependencies are explored and quantified; see also [37].
In the same context, [38] highlighted that developers of WECs should provide information
regarding the effects of wave direction on the performance of WECs for an accurate
assessment of wave energy since it affects wave propagation and in turn, the distribution
of wave resource. A similar suggestion has been provided earlier by [36], advising to
provide power matrix for different mean wave directions with the related uncertainty
matrix. Reference [7] also has noted that vicinal sites characterized by similar resource
levels may exhibit differences in acquirable wave energy with time due to the varying
wave directional exposure.

The importance of analysing wave direction for performance optimization purposes
of a WEC, and generally, in wave energy studies, has been also emphasized in [39,40].
In [41], variability of wave heights and wave power has been assessed with respect to
wave direction for a more realistic wave resource analysis at different locations in the
southwest UK. The directional dependence of wave height and, consequently, wave energy
generation was more than evident. The authors concluded that site selection for commercial
development of wave energy, reduction of grid integration hindrances, and increase of
power smoothing are highly dependent on directional exposure of sites. Reference [42]
has assessed wave power and its temporal variability for various water depths off the
central west coast of India and examined the directional distribution of wave power at
shallower water depths. Reference [43] has highlighted the wave (and wind) directionality
effects on offshore wind turbines, supported by a jacket structure during hurricane events,
while [44,45] have stressed the significance of wave direction, among others, that may
lead to larger fatigue damage for certain platforms under specific conditions. Overall, the
accurate description of wave directional characteristics and their variability is important
when assessing wave energy potential at a site; see, e.g., [46], while wave direction affects
significantly wave propagation, and in turn, wave resource distribution, in an area.

In this work, instead of modelling the involved individual random variables in wave
energy assessment studies, i.e., significant wave height HS, energy period Te, and mean
wave direction ΘW (ΘW is subsequently denoted as Θ), the joint assessment of “wave
energy flux P” and “mean wave direction Θ” is performed. To the authors’ knowledge, the
joint description of P and Θ has not been presented yet, although it is of high importance
for the emerging wave energy sector and relevant wave resource analysis applications.
Moreover, some straightforward applications derived from the proposed methodology are
also presented.

In this framework, numerous univariate conventional and mixture parametric models
have been addressed with respect to the (linear) variable P. The directional variable Θ
is adequately described through a finite mixture of the von Mises distribution that has
already proven to be efficient in this case [40,47,48]. The construction of the bivariate distri-
bution functions for (P, Θ) is accomplished through the Johnson–Wehrly (JW) parametric
model. An important feature of the JW model is that its density functions rely on the
corresponding univariate marginal distributions while an additional parameter quantifies
the correlation/dependence of the linear and directional variable. A detailed evaluation of
the resulting bivariate distributions is made by applying five bin-defined metrics, namely,
adjusted coefficient of determination, index of agreement, mean absolute error, root mean
square error, and χ2 statistic, as well as a synthetic criterion that combines the above criteria
into a single expression. See also [47,49,50].

The structure of the present work is the following: in Section 2, wave data obtained
from three buoy locations in the Greek Seas along with data from numerical wave models
in three locations (Gulf of Lion, Gulf of Biscay, and North Sea) are described, and a
preliminary statistical analysis is performed for wave energy flux P and mean wave
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direction Θ (subsequently referred to as simply wave direction). The examined univariate
probability models for P and Θ are presented in Section 3. Specifically, for the parametric
modelling of wave energy flux, several conventional and mixture distributions are applied
while wave direction is modelled by using a finite mixture of the von Mises distribution.
The bivariate JW probability model is briefly presented in Section 4. Section 5 deals with
the statistical criteria used to evaluate the performance of both univariate and bivariate
models. Based on the goodness-of-fit evaluation criteria, the derived bivariate models
are compared, and the corresponding results are discussed in Section 6. In Section 7, the
best bivariate model for (P, Θ) for each examined area is implemented to provide analytic
results that could be used in feasibility studies regarding wave farm development in the
corresponding areas. The last section includes the concluding remarks of this analysis.

2. Description of Wave Data

Three different sources of wave data have been used in this work, corresponding
in offshore areas with different wave characteristics and in turn, wave climate. The first
source is in situ wave data from the Greek Seas (Aegean and Ionian seas), obtained from
three oceanographic buoys of the POSEIDON marine monitoring network [51,52]. Wave
measurements from buoys are confined in the Greek Seas as this data source was available
to the authors. The wave parameters that were obtained were the significant wave height
HS and the energy period Te in order to estimate wave energy flux P, and the wave direction
Θ. The geographical coordinates, the measurement period, the sample size, and the water
depth for each buoy location are listed in Table 1; see also Figure 1. The wave data were
firstly filtered while only concurrent wave measurements of the three parameters (HS, Te,
and ΘW) were taken into consideration.

Table 1. Location names, geographical coordinates, observation periods, sample size, and depth of wave data sets.

Location Name Latitude, Longitude (◦) Observation Period Sample Size Depth (m)

Mykonos 37.51◦ N, 25.46◦ E 2007–2010 7406 −92

Santorini 36.25◦ N, 25.49◦ E 2007–2010 8613 −342

Zakynthos 37.85◦ N, 20.36◦ E 2007–2010 5002 −2,072

Gulf of Lion 42.98◦ N, 4.00◦ E 2006–2010 14,364 −95

Gulf of Biscay 43.60◦ N, 3.00 W 2006–2010 14,364 −288

North Sea 56.25◦ N, 5.62◦ E 2006–2010 14,608 −48

Furthermore, wave data obtained from numerical wave models were also analysed.
The first numerical wave model data set is produced by the Mediterranean Sea Waves
forecasting system, i.e., a wave model that is based on WAM Cycle 4.5.4 and is provided by
the EU Copernicus service [53] with spatial resolution 0.042◦ × 0.042◦. The selected grid
points correspond to locations in the gulfs of Lion (France) and Biscay (Spain). The second
wave data set is obtained from the ERA20C reanalysis product of the European Centre
for Medium-Range Weather Forecasts (ECMWF), available at 1.25◦ horizontal spatial
resolution. Ocean waves are described by spectra on 25 frequencies and 12 directions [54].
The selected grid point corresponds to a location offshore southern Norway, in the North
Sea. All the spectral parameter time series (defined in Section 1) that are analysed in the
present work have a 3-h step. See also Table 1 and Figure 1. More details and discussion
as regards spatial distribution of wave spectral parameters, numerical wave models, and
their validation through field data can be found for example in [55–57].
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Figure 1. Locations of buoys and model grid points used in the analysis.

The following linear and directional parameters are necessary for the computations
regarding the probability density functions presented in Sections 3 and 4. Specifically, the
statistical parameters of wave energy flux P, i.e., mean µP, median P0.5 and maximum
values maxP, standard deviation σP, and coefficient of variation CVP = σP/µP, where µP
is the mean value of P, skewness Sk, and kurtosis Ku are presented in Table 2. For the
measured data, the highest mean, median, maximum, standard deviation, and skewness
values are recorded at Mykonos, and for the model wave data, the highest values for
median, maximum, and standard deviation are encountered at Gulf of Biscay. Gulf of Lion
exhibits by far the highest CVP, skewness, and kurtosis values. Clearly, the most energetic
wave climate from the examined locations is encountered in the Gulf of Biscay.

Table 2. Basic linear statistics of wave energy flux at the examined locations.

Location Name µP
kW/m

P0.5
kW/m

maxP
kW/m

σP
kW/m

CVP
% Sk Ku

Mykonos 4.634 2.136 135.961 8.031 173.31 6.155 60.025

Santorini 2.852 1.350 96.760 4.807 168.536 6.138 63.977

Zakynthos 3.720 1.567 101.183 6.747 181.389 5.870 53.964

Gulf of Lion 4.587 1.605 224.762 9.185 200.229 8.436 127.003

Gulf of Biscay 20.652 8.506 612.400 37.290 180.569 5.210 41.049

North Sea 14.465 5.801 491.759 25.340 175.184 4.975 42.137

In Table 3, the values of the main circular statistical parameters (i.e., mean direction mΘ,
median direction Θ0.5 (its interpretation is analogous to the classic median), mean resultant
length RΘ (that quantifies the spread of the variable), circular variance VΘ = 1− RΘ, and
circular standard deviation sΘ =

√
−2 ln RΘ, as regards wave direction Θ) are presented.

The definitions of the above parameters can be found in [58]. The mean wave direction
at Zakynthos and Gulf of Lion is coming from the WSW sector, at Santorini and Gulf of
Biscay from NW, at Mykonos from the NNW sector, and at the North Sea location from the
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WNW sector. Moreover, the highest and the lowest values of RΘ are encountered in Gulf
of Biscay (0.904) and Gulf of Lion (0.130), respectively, while the corresponding values for
VΘ can be found in Gulf of Lion (0.870) and Gulf of Biscay (0.096). The value of VΘ for Gulf
of Lion, which is close to 1, denotes that the range of the corresponding directions is wide
while the value of RΘ for Gulf of Biscay reveals a small dispersion of the data.

Table 3. Basic circular statistics of mean wave direction at the examined locations.

Location Name mΘ

deg
Θ0.5
deg

¯
RΘ

VΘ sΘ

Mykonos 353.65 76.07 0.595 0.405 0.900

Santorini 301.31 285.82 0.407 0.593 1.089

Zakynthos 249.69 253.96 0.628 0.372 0.862

Gulf of Lion 256.89 285.60 0.130 0.870 1.319

Gulf of Biscay 312.98 308.49 0.904 0.096 0.439

North Sea 286.93 294.99 0.415 0.585 1.081

In Figure 2, the directional histograms of wave energy flux are presented for the
examined locations.
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3. Univariate Probability Models for Linear and Directional Variables
3.1. Parametric Models for Linear Variables

Since there is no theoretical justification for adopting a particular probability distri-
bution for wave energy flux, several distributions are implemented according to specific
goodness-of-fit tests. The initial evaluation criteria are based on the performance of two
goodness-of-fit tests, the Kolmogorov–Smirnov (K-S) and the Anderson–Darling (A-D)
tests that were calculated for 24 conventional distributions for the modelling of P; see
also [47,59,60]. The examined distributions are the following:

(1) Two-parameter cdfs: Exponential, Gaussian, Rayleigh;
(2) Three-parameter cdfs: Erlang, Error, Fatigue Life, Fréchet, Gamma, Generalized

Extreme Value, Generalized Logistic, Generalized Pareto, Inverse Gaussian, Log-
Logistic, Lognormal, Log-Pearson 3, Pearson 5, Weibull;

(3) Four-parameter cdfs: Beta, Burr, Dagum, Generalized Gamma, Johnson SB, Ku-
maraswamy, Pearson 6.

The two- and three-parameter pdfs determine the first, second, and third moments of
the distribution (i.e., mean value and variance, and skewness), respectively, while the pdfs
with four parameters represent additionally kurtosis (fourth moment). Typically, as the
number of parameters increases, the distributions tend to be more robust and can provide a
better representation of the data. However, distributions with small number of parameters
can be more straightforward as regards their definition and use in applications.
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Then, the ten distributions that provided the smallest statistic values of K-S and A-
D tests were selected for each examined location. Due to several overlaps between the
examined locations and the two tests, the total number of the fitted distributions with
a good performance was relatively small; see also Section 6.1. The distributions that
proceeded to the next step of evaluation are the following: Burr (BUR), Dagum (DAG),
Lognormal (LGN), Fatigue Life (FAL), Pearson 6 (PE6), Log-Logistic (LGL), and Generalized
Gamma (GNG). In the Appendix A, the analytic forms of the above-mentioned probability
density functions (pdfs) are provided. Moreover, four parametric mixture distributions
are also considered: one homogeneous, the Weibull (WW) mixture distribution, and three
inhomogeneous, the 2-parameter Weibull–GEV (WGEV), the Exponential–Lognormal
(ELGN), and the Exponential–Weibull (EW) mixtures. For the definition of these mixture
distributions, see the Appendix A. The parametric mixture distributions were selected
due to their suitability in describing right-skewed data and were not considered in the
evaluation of the rest conventional distributions by means of K-S and A-D tests. The
selected mixture distributions are characterized by rather large values of R2

a,1 (≥ 0.99). See
also Section 5.1.

3.2. Parametric Models for Directional Variables

A finite mixture of von Mises (vM) distributions (i.e., the equivalent of the Gaussian
distribution for linear variables) has been proved very appropriate for modelling directional
variables with more than one mode such as wave or wind direction [40,61]. The pdf of a
vM mixture with J—components is defined as follows:

fΘ(θ) =
J

∑
j=1

ωj

2π I0
(
κj
) eκj cos (θ−µj), κj ≥ 0, θ ≥ 0, µj < 2π, 0 ≤ ωj < 1, (4)

where I0(κ) is the modified Bessel function of the first kind and zero-th order, i.e., I0(κ) =
1
π

∫ π
0 eκ cos θdθ; J is the number of components, κj and µj, j = 1, 2, · · · , J, is the concentration

parameter and mean direction, respectively, of each individual vM distribution, and ωj’s
are the weighting quantities that sum to one.

In order to determine the optimal number of components that should be included
in the vM mixture model, the Bayesian information criterion (BIC) is applied. BIC is
dependent on the sample size and balances the likelihood and the complexity of the
mixture model, i.e.,

BIC = −2 ln L + p ln n, (5)

where L is the maximized value of the likelihood function for the mixture model, p is
the number of parameters to be estimated and n is the sample size of each wave dataset.
For various values of j in the range [3, ln n + 1], the optimal number of components for
the estimation of the parameters corresponds to the model with the smallest value of
BIC. The packages “Directional” [62] and “movMF” [63] were used for the estimation of
the BIC values and the implementation of the expectation-maximization algorithm for
maximum likelihood estimates of parameters for the mixture model, respectively, available
at Comprehensive R Archive Network.

4. The Johnson–Wehrly Bivariate Model

In this section, the Johnson–Wehrly (JW) bivariate distribution is described for the
modelling of linear and directional variables, i.e., wave energy flux and wave direction.
The main feature of the JW model is that it is marginally consistent, i.e., the integration of
the bivariate model over the support of each of the two variables coincides with the two
corresponding marginal pdfs.

Bivariate probability models have been used to describe environmental and met-
ocean parameters, see, e.g., [32,50,64–67]. In particular, in [67], the joint pdf of significant
wave height HS and mean zero-up crossing wave period TZ was constructed based on
the Plackett family for various types of marginal distributions while [32] compared fits
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of HS and TZ from the Plackett model, along with two additional bivariate models, by
assessing their efficiency with real wave data sets. Moreover, [27] investigated the same
wave parameters by means of various bivariate models, including several families of
copulas, in order to study, among others, potential effects of climate change on the bivariate
modelling of HS and TZ.

The JW model [68] has been developed explicitly for the bivariate modelling of a linear
and a directional variable. The JW bivariate pdf is defined by

f J
PΘ(p, θ) = 2π fΨJ

PΘ

(
ψJ

PΘ

)
fP(p) fΘ(θ), −∞ < p < ∞, 0 ≤ θ < 2π, (6)

where ψJ
PΘ = 2π[FP(p)− FΘ(θ)], 0 ≤ ψJ

PΘ < 2π, expresses the dependence structure of P

and Θ, and fΨJ
PΘ

(
ψJ

PΘ

)
denotes the corresponding pdf. The latter pdf can be expressed as

a two-component vM mixture. There is no explicit formula for the bivariate cumulative
distribution function (cdf) of this model, thus it should be numerically estimated. The JW
model has been implemented among others, in [40] for the joint modelling of significant
wave height and wave direction and in [47] for wind speed and wind direction modelling.

5. Goodness-of-Fit Testing
5.1. Univariate Distributions

As mentioned in Section 3.1, the preliminary selection of the most efficient distribu-
tions for modelling wave energy flux was based on the K-S and A-D tests. Since the two
tests are not equivalent, with the latter being more sensitive to deviations in the tails of the
distribution, they result, in general, in different “best-fit” distributions; for this reason, the
first ten best-fit models provided by each test are selected. However, the total number of
the pre-final distributions is rather small due to many overlaps between the two tests.

The definitive evaluation of the univariate distributions is based on the coefficient
of determination R2

a,1, adopted in similar studies such as wind speed modelling; see,
e.g., [47,69–72]. R2

a,1 measures the degree of association between the estimated (predicted)
and observed cumulative probabilities of a selected distribution and is defined as follows:

R2
a,1 = 1− ∑n

i=1
(

Fi − F̂i
)2

∑n
i=1
(

Fi − F
)2 , (7)

where F̂i is the estimated cumulative distribution (obtained from each distribution exam-
ined), Fi is the empirical (observed) distribution function and F = (1/n)∑n

i=1 Fi. A value of
R2

a,1 close to 1 indicates that the candidate distribution provides a good fit to the observed
(measured) data.

5.2. Bivariate Distributions

The evaluation of the bivariate distribution fit is based on five bin-specific measures
of performance, namely, the root mean square error (RMSE), mean absolute error (MAE),
adjusted coefficient of determination R2

a,2, index of agreement (IA), and χ2 statistic. See
Table 4 and [47] for the definitions of the above goodness-of-fit measures. These global
measures are derived from various combinations (scales) of the fundamental quantity
∆o,e

ij =
(

f (o)ij − f (e)ij

)
, where f (o)ij and f (e)ij denote the observed and the estimated fraction

of points that belong to the (i, j)-cell, respectively. Evidently, ∆o,e
ij indicates the magnitude

of the difference between the observed and the estimated frequency of occurrence for a
specific bin. Nevertheless, bin-specific measures suffer from the subjective selection of the
bin size; see also Section 6.5 in [47], for a discussion on this issue. In the present work, the
selected bin size for wave energy flux is 1 kW/m and for wave direction is 5 deg. A “good
model” is characterized by small values (as close to 0 as possible) of MAE, RMSE, and χ2,
and high values (as close to 1 as possible) of IA and R2

a,2.
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Table 4. The definitions of the goodness-of-fit measures applied for evaluating the bivariate distribu-
tions.

IA = 1−
∑i,j

(
∆o,e

ij

)2

∑i,j

(∣∣∣ f ′(o)ij

∣∣∣+∣∣∣ f ′(e)ij

∣∣∣)2 ,

MAE = 1
NB

∑
i,j

∣∣∣∆o,e
ij

∣∣∣
R2

a,2 = 1−
∑i,j

(
∆o,e

ij

)2

N′B−q−1

∑i,j

(
f (o)ij − f (o)

)2

N′B−1

,

RMSE =

√
1

NB
∑
i,j

(
∆o,e

ij

)2
,

χ2 = ∑
i,j

n
(

∆o,e
ij

)2

f (e)ij

,

f ′(o)ij , ( f ′(e)ij ): difference between the observed (estimated) and the mean frequency,
respectively;

n: sample size;
N′B: total number of non-empty bins;
NB: total number of bins;
q: number of parameters estimated for the particular distribution.
Since ambiguity can be observed between the results of the above measures of perfor-

mance (i.e., when the values of the above goodness-of-fit measures do not converge to the
same model), a final, very simple, synthetic criterion (SC) is implemented that combines
all the above measures into a single expression. According to [49], this criterion can be
defined as follows:

SC =
R2

a,2 × IA
RMSE × χ2 × MAE

. (8)

SC is defined as the ratio of various goodness-of-fit statistics, where the nominator
corresponds to statistics that suggest a good fit when they take high values (in our case
R2

a,2 and IA), and the denominator corresponds to statistics that suggest a good fit when
they take low values (in our case RMSE, χ2, and MAE). Therefore, in this case, large
values of SC suggest a good fit. The nominator of Equation (8) is in the range [0, 1] while
the denominator in [0, ∞) . Let it also be noted that since there is not an established
acceptable threshold value for any of the abovementioned criteria (including SC) clearly
dictating that a distribution, say F, is a “good” distribution for modelling the data, they
should be interpreted and applied as comparative tools and not as absolute decision-
making measures.

Other approaches for combining different goodness-of-fit measures in order to select
the best-fit distribution are presented in [73], where the data envelopment analysis is
introduced, and [74], where a weighted sum of the evaluation criteria is implemented.

6. Numerical Results
6.1. Univariate Distributions for Wave Energy Flux

BUR, DAG, ELGN, EW, FAL, GNG, LGN, LGL, PE6, WGEV, and WW distributions
provide consistently good fit results with respect to the K-S and A-D tests at each examined
location. At the next step of the evaluation, the above-mentioned distributions were
evaluated by means of R2

a,1. Based on the values of R2
a,1, the following conclusions can

be drawn:

(i) The overall best fit is provided by ELGN distribution for North Sea (0.9998) and Gulf
of Lion (0.9997); LGN distribution for Santorini (0.9995), Gulf of Biscay (0.9999), and
Zakynthos (0.9989); and WGEV distribution for Mykonos (0.9987).
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(ii) The second-best fit is provided by LGN distribution for North Sea (0.9995), ING
distribution for Santorini (0.9994), WGEV distribution for Zakynthos (0.9987), FAL
distribution for Mykonos (0.9977), ELGN distribution for Gulf of Biscay (0.9998), and
EW distribution for Gulf of Lion (0.9992).

(iii) The third best fit is provided by WGEV distribution for North Sea (0.9993), Gulf of
Biscay (0.9995), and Gulf of Lion (0.9992); PE6 distribution for Santorini (0.9992); ING
distribution for Zakynthos (0.9981); and GNG distribution for Mykonos (0.9964).

In summary, the following univariate conventional distributions are further assessed
in the bivariate case (as marginal cdfs for P):

(i) For Mykonos: BUR, ELGN, FAL, GNG, and WGEV distributions;
(ii) For Santorini: DAG, ING, LGN, PE6, and WGEV distributions;
(iii) For Zakynthos: BUR, ING, LGN, PE6, and WGEV distributions;
(iv) For Gulf of Lion: EW, ELGN, FAL, WGEV, and WW distributions;
(v) For Gulf of Biscay: ELGN, ING, LGN, PE6, and WGEV distributions;
(vi) For North Sea: ELGN, EW, LGN, WGEV, and WW distributions.

The parameters for each candidate conventional distribution, along with the corre-
sponding parameters and the weighting parameter ω of the two mixture distributions, are
presented in Table 5. The presented parameters are the following:

(1) Conventional distributions: For DAG, BUR, and GNG: k, a, b, g; FAL and LGL: a, b, g;
LGN: s, m, g; PE6: a1, a2, b, g; GEV: ξ, σ, µ, ; ING: l, m, g; WEI: a, b;

(2) Mixture distributions: WGEV: a, b, ξ, σ, µ, ω; WW: α1, b1, α2, b2, ω; ELGN: µ, s, m, ω;
EW: µ, a, b, ω.

In Figure 3, the best-fit distributions along with the corresponding histograms for
wave power flux at the examined locations are presented. The range of the values on
the x—axis varies, depending on the corresponding behaviour at each examined location,
while the bin size of the histograms was kept the same, i.e., 1 kW/m.

6.2. Univariate Distributions for Mean Wave Direction

In Table 6, the parameters of the mixtures of vM distributions for Θ modelling are
summarized. In terms of BIC, wave direction at Athos, Zakynthos, and North Sea is best
described with five components of the vM mixtures, at Mykonos with four, at Santorini
with seven, and at the Gulf of Lion with twelve.

In Figure 4, the histograms of mean wave direction for the examined locations are
shown along with the plotted lines for vM mixtures.
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Table 5. Parameters of the five best-fit univariate conventional and mixture distributions for the examined locations.

Locations Probability Distributions and Parameters

Mykonos BUR ELGN FAL GNG WGEV

2.162, 0.975, 5.470, 0.099 8.388, 0.535, 1.253, 0.164 1.687, 1.879, 0.070 0.295, 5.866, 0.006, 0.098 2.541, 0.500, 0.657, 2.107,
2.366, 0.248

Santorini
DAG ING LGN PE6 WGEV

1.296, 1.284, 0.917, 0.124 1.079, 2.798, 0.054 1.246, 0.222, 0.121 1.837, 1.560, 0.998, 0.123 4.741, 0.330, 0.776, 0.926,
1.064, 0.072

Zakynthos BUR ING LGN PE6 WGEV

1.442, 1.069, 2.259, 0.133 1.131, 3.720, 0.000 1.435, 0.317, 0.129 1.215, 1.485, 1.823, 0.133 3.317, 0.401, 0.797, 1.363,
1.455, 0.173

Gulf of Lion
EW ELGN FAL WGEV WW

0.531, 0.770, 5.213, 0.280 0.533, 1.556, 0.991, 0.446 2.046, 1.474,
−0.027

1.034, 0.653, 0.501, 3.256,
4.122, 0.510 0.752, 4.773, 1.238, 0.412, 0.779

Gulf of Biscay ELGN ING LGN PE6 WGEV

67.660, 2.001, 1.215, 0.098 6.641, 21.057,
−0.405 1.363, 2.122, 0.151 1.456, 1.462, 8.341, 0.171 1.672, 3.171, 0.681, 9.622,

11.027, 0.321

North Sea
ELGN EW LGN WGEV WW

1.026, 1.890, 1.347, 0.073 5.397, 0.854, 25.724, 0.599 1.428, 1.744,
−0.050

0.797, 15.952, 0.896, 2.506,
2.298, 0.529

1.029, 5.205, 0.842, 24.339,
0.568
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Table 6. Parameters of the best-fit vM mixtures (κ, µ, ω) for the examined locations.

Locations

Parameters,
i=1,2,· · · Mykonos Santorini Zakynthos Gulf of Lion Gulf of Biscay North Sea

κi
9.07, 0.22, 39.79,

31.42

61.22, 33.96, 10.38,
1.13, 2.58, 22.99,

23.52

41.69, 8.73, 48.06,
4.78, 0.57

52.47, 16.17, 1.91,
25.29, 7.87, 16.01,
6.54, 2.26, 3.53,
6.13, 17.38, 3.16

33.18, 61.92, 1.27,
4.62

4.70, 1.22, 5.40,
39.32, 1.60

µi

−0.17,
−3.10,

−0.32, 1.99

−1.94, −1.88,
−0.41, 2.79,

−1.34, 0.07, 2.24

1.12, −1.92,
−1.33, −2.49,
−2.99

0.35,
−1.00,
−1.34,

−1.15, 2.06,
−1.03, 2.82,
−0.27,
−2.30,
−0.92,

−3.08, 0.39

−0.79,
−1.01,
−0.41,
−0.41

−2.26, 0.07,
−1.11,

−0.53, 2.21

ωi
0.25, 0.16, 0.46,

0.13

0.19, 0.09, 0.18,
0.12, 0.14, 0.22,

0.06

0.06, 0.31, 0.25,
0.22, 0.16

0.05, 0.06, 0.05,
0.14, 0.16, 0.06,
0.14, 0.06, 0.05,
0.04, 0.11, 0.08

0.28, 0.46, 0.10,
0.15

0.26, 0.13, 0.26,
0.18, 0.16

Processes 2021, 9, x FOR PEER REVIEW 13 of 23 
 

 

−3.10,  

−0.32, 1.99 

−0.41, 2.79,  

−1.34, 0.07, 2.24 

−1.33, −2.49,  

−2.99 

−1.00,  

−1.34,  

−1.15, 2.06,  

−1.03, 2.82,  

−0.27,  

−2.30,  

−0.92,  

−3.08, 0.39  

−1.01,  

−0.41,  

−0.41 

−1.11,  

−0.53, 2.21 

𝜔𝑖 
0.25, 0.16, 0.46, 

0.13 

0.19, 0.09, 0.18, 

0.12, 0.14, 0.22, 

0.06 

0.06, 0.31, 0.25, 

0.22, 0.16 

0.05, 0.06, 0.05, 

0.14, 0.16, 0.06, 

0.14, 0.06, 0.05, 

0.04, 0.11, 0.08 

0.28, 0.46, 0.10, 

0.15 

0.26, 0.13, 0.26, 

0.18, 0.16 

In Figure 4, the histograms of mean wave direction for the examined locations are 

shown along with the plotted lines for vM mixtures. 

  

  

  

Figure 4. Histograms of wave direction along with the fitted vM mixture distributions for the examined locations. 

6.3. Joint Pdf for Wave Energy Flux and Direction 

The parameters of the vM mixture (𝜅, 𝜇, 𝜔) for modelling 𝑓𝛹𝑃𝛩
 are also estimated 

(not provided here) for the examined locations and pdfs of wave energy flux. Since 𝑓𝛹𝑃𝛩
 

is a smooth function, two components of the vM mixture are adequate for its description. 

Figure 4. Histograms of wave direction along with the fitted vM mixture distributions for the examined locations.



Processes 2021, 9, 460 15 of 24

6.3. Joint Pdf for Wave Energy Flux and Direction

The parameters of the vM mixture (κ, µ, ω) for modelling fΨPΘ are also estimated (not
provided here) for the examined locations and pdfs of wave energy flux. Since fΨPΘ is a
smooth function, two components of the vM mixture are adequate for its description.

In Table 7, the values of the goodness-of-fit criteria for the bivariate parametric distri-
butions are provided for the examined locations and datasets. Boldface numbers denote
the best value obtained from all the examined bivariate families.

Table 7. Values of the GC
(
×106) goodness-of-fit criterion for the Johnson–Wehrly bivariate distribution for the examined

locations along with the best fit distributions for wave energy flux. Boldface digits indicate the optimum value of GC.

Distributions
Locations

Mykonos Santorini Zakynthos Gulf of Lion Gulf of Biscay North Sea

BUR 1291 9328

DAG 781

ELGN 1085 347 2629 4058

EW 329 3780

FAL 1191 299

GNG 1376

ING 865 10,194

LGN 814 5337 2249 3717

PE6 793 6861 2633

WGEV 1144 689 8253 335 2743 3742

WW 325 2430 3806

For Mykonos, the JW model with the GNG marginal distribution for wave flux, pro-
vides the optimum values for the FC criterion. Let it be noted that for Mykonos, the optimal
marginal distribution according to R2

a,1, was WGEV mixture, while the GNG distribution
provided the third best fit. For Santorini and Zakynthos, the ING distribution provides
the optimum values for the FC criterion, although the optimal marginal distribution was
LGN distribution. It is reminded that the ING distribution provided the second-best fit for
Santorini and the third best fit for Zakynthos in the univariate case.

For Gulf of Lion and North Sea, the JW model with the ELGN marginal distribution
(for wave flux) provides the optimum FC value. The same distribution provided the best fit
for the univariate case for both locations. Finally, for Gulf of Biscay, the JW model with the
WGEV mixture marginal distribution provides the optimum values for the FC criterion. Let
it be noted that the optimal marginal distribution according to R2

a,1 was LGN distribution
while the WGEV mixture distribution provided the third best fit for wave energy flux.

Regarding the involvement of the univariate distributions per se in the bivariate
models, mixture distributions (ELGN and WGEV) for wave energy flux provide the best
bivariate fits for the locations where numerical wave model data are available. For Santorini
and Zakynthos, ING distribution provides the best bivariate fits while for Mykonos GNG
provide the best bivariate fit. It can also be deduced that the best univariate conventional
distribution (in terms of R2

a,1) for wave energy flux does not necessarily provides the best
fit in the bivariate case.

In Figure 5, the best bivariate model for modelling the variables of interest is plotted
for each location.
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7. Application-Oriented Results

The preliminary assessment of the available wave energy in an area requires the
estimation of the wave energy flux per sea state that is a function of significant wave height
HS and energy period Te (see Equation (3)). Due to the temporal and spatial variability of
HS, Te, wave direction Θ, and sea water density ρ, more detailed information as regards
wave flux for different occurrences of these variables at the specific area is required during
the stage of wave farm design and layout. In this respect, for the evaluation of different
aspects of the wave energy flux at a particular location, the wave energy flux–wave direction
distribution should be used.

For a series of sea states HS,i, Te,i, Θi, i = 1, 2, · · · , n, in an area, and for constant sea-
water density, the corresponding realizations Pi, Θi of the bivariate random variable (P, Θ)
can be easily obtained, and its corresponding pdf fP,Θ(p, θ) can be estimated following the
procedure described in Section 4. The mean wave energy flux for all wave directions can
be obtained as follows:

E[P] =
∫ Pmax

Pmin

∫ 2π

0
p fP,Θ(p, θ)dpdθ, (9)
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where Pmin, Pmax are the minimum and maximum values of P observed in the area, respec-
tively (or, equivalently, of 0.49H2

STe). From Equation (9), useful and detailed characteristics
of the available directional wave energy flux in an area can be obtained. These characteris-
tics can be further used as design parameters for the WEC and the wave farm layout.

For example, the conditional mean value of P with respect to Θ can be derived
as follows:

E[P|Θ = θ ] =
∫ Pmax

Pmin

p fP|Θ(p|θ )dp, (10)

where fP|Θ(p|θ ) is the conditional pdf that is defined as follows:

fP|Θ(p|θ ) =
fP,Θ(p, θ)

fΘ(θ)
. (11)

From the above relations, the wave energy flux per wave direction for various ranges
of values of H2

S Te, the wave energy flux per 0.49H2
STe for various values of Θ, and the

distribution of wave energy flux for some critical directions of interest can also be obtained.
In Figure 6, the expected values of wave energy flux are depicted for the entire range

of wave directions in the examined areas. As shown in Figure 6, for Zakynthos, Mykonos,
and Gulf of Biscay, the highest values of the expected values of wave energy flux are
concentrated in relatively narrow bands of wave direction. For Santorini, North Sea, and
Gulf of Lion, the wave direction sectors that provide large values for the expected wave
energy flux are rather wide.
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Figure 6. Expected value of wave energy flux as function of wave direction at the examined locations. Left panel: Mykonos,
Santorini, and Zakynthos. Right panel: Gulfs of Lion and Biscay and North Sea.

In Figure 7, the distribution of wave energy flux for particular directions of interest,
i.e., the mean and the most probable direction (based on the histograms of Figure 4) are
depicted for the examined locations. It is observed that wave energy flux has the highest
likelihood for the most probable wave direction at all examined locations. Let it be noted
that regarding the examined locations with measured data, Mykonos is the only one
where the likelihood remains high enough for values of wave energy flux above 5 kW/m,
denoting that this area can be candidate for a more detailed assessment of wave energy
resource. Moreover, it is clear that the Gulf of Biscay is characterized by a very energetic
wave climate (especially for the most probable wave direction), which renders this location
very promising for wave energy utilization.
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8. Conclusions

The joint modelling of wave energy flux and wave direction in an area is important
for wave energy projects. For instance, wave resource assessment issues and, in turn, WEC
siting problems can be mitigated by constructing the most appropriate bivariate model
based on real world data, attaining in this way economic viability of the corresponding
projects. In this work, the Johnson–Wehrly parametric model was examined for the joint
probabilistic description of wave energy flux and wave direction, after evaluating various
conventional distributions for the linear variable. The proposed parametric bivariate
models were constructed by considering the corresponding marginal distributions along
with an appropriate dependence structure of the involved variables. The performance of
the bivariate models was evaluated based on a global goodness-of-fit criterion, formed
as a combination of RMSE, MAE, IA, χ2, and R2

a,2. The models were applied for six long-
term wave energy flux and wave direction time series, which were obtained from in situ
measurements in the Greek Seas and wave model results in the western Mediterranean
Sea, Gulf of Biscay, and the North Sea.

From the results, it was found that as regards wave energy flux, wave measurements
were best modelled by the Inverse Gaussian and Generalized Gamma distributions while
Exponential–Lognormal and Weibull–GEV mixture distributions provided overall the best
fits for the examined locations where numerical model results were available. However,
the above distributions were not the optimum ones in the evaluation of the univariate
case, highlighting thus the necessity to evaluate a wide range of models for wave energy
applications. The best bivariate model was also applied for the estimation of wave energy
flux per wave direction as a real-world scenario in wave farm design for the examined
locations.

This research revealed that an important prerequisite related to WEC developers is
the provision of the corresponding power matrices for different mean wave directions. In
this way, uncertainties as regards the annual wave energy production would be reduced
while the optimization and the siting of a wave farm can be greatly facilitated.
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Nomenclature

English letters
FX(x) cumulative distribution function of the random variable X
fX(x) probability density function of the random variable X
FXY(x, y) joint (bivariate) cumulative distribution function of the random variables X, Y
fXY(x, y) joint (bivariate) probability density function of the random variables X, Y
F̃X estimate of FX obtained from a fitted analytic model
I0 modified Bessel function of the first kind and zero order
n sample size
NB total number of bins
N′B total number of non-empty bins
f frequency/probability of occurrence
R2

a,1 coefficient of determination for the univariate case
R2

a,2 coefficient of determination for the bivariate case
X linear random variable
x(FX) quantile function of the random variable X (inverse cumulative

distribution function)
PW , P wave energy flux
HS significant wave height
Te mean wave energy period
TZ mean zero-upcrossing wave period
rPΘ linear-circular correlation coefficient between the linear variable P

and the circular variable Θ
Greek letters
ΘW , Θ mean wave direction (random variable)
Φ(·), ϕ(·) Gaussian cumulative distribution and probability density functions, respectively
ψPΘ “correlation-type” parameters for linear P and directional Θ random variables

in the Johnson—Wehrly model
χ2 chi square test or chi square statistic
Abbreviations
A-D Anderson–Darling (goodness-of-fit test)
BIC Bayesian information criterion
BUR Burr (distribution function)
cdf(s) cumulative distribution function(s)
DAG Dagum (distribution function)
ELGN Exponential–lognormal mixture distribution
EW Exponential–Weibull mixture distribution
FAL Fatigue Life (distribution function)
GEV Generalized Extreme Value (distribution function)
GNG Generalized Gamma (distribution function)
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Nomenclature

IA index of agreement
ING Inverse Gaussian (distribution function)
JW Johnson–Wehrly
K-S Kolmogorov–Smirnov (goodness-of-fit test)
LGL Log-logistic (distribution function)
LGN Lognormal (distribution function)
MAE mean absolute error
pdf(s) probability density function(s)
PE6 Pearson 6 (distribution function)
RMSE root mean square error
SC synthetic criterion
vM von Mises (distribution function)
WEI Weibull (distribution function)
WGEV Mixture of Weibull and Generalized Extreme Value distribution functions
WW Mixture of two Weibull distribution functions

Appendix A

Conventional distributions

(1) Lognormal distribution:

f (x; s, m, g) =
exp

(
− 1

2

(
ln(x−g)−m

s

)2
)

s(x−g)
√

2π
,

F(x; s, m, g) = Φ
(

ln(x−g)−m
s

)
, s > 0, g < x < +∞,

(A1)

where Φ(·) is the Laplace integral:

Φ(x) =
1√
2π

∫ x

0
e−t2/2dt. (A2)

(2) Fatigue Life (Birnbaum–Saunders) distribution:

f (x; a, b, g) =

√
x−g

b +
√

b
x−g

2a(x−g) φ

(
1
a

(√
x−g

b −
√

b
x−g

))
,

F(x; a, b, g) = Φ
(

1
a

(√
x−g

b −
√

b
x−g

))
, a > 0, b > 0, g < x < +∞,

φ(x) = e−x2/2
√

2π
.

(A3)

(3) Dagum distribution:

f (x; k, a, b, g) =
ak( x−g

b )
ak−1

b
(

1+( x−g
b )

a)k+1 ,

F(x; k, a, b, g) =
(

1 +
(

x−g
b

)−a
)−k

, k > 0, a > 0, b > 0, g ≤ x < +∞.

(A4)

(4) Burr distribution:

f (x; k, a, b, g) =
ak( x−g

b )
a−1

b
(

1+( x−g
b )

a)k+1 ,

F(x; k, a, b, g) = 1−
(

1 +
(

x−g
b

)a)−k
, g ≤ x〈+∞, k〉0, a > 0, b > 0

(A5)
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(5) Pearson 6 distribution:

f (x; a1, a2, b, g) = ( x−g
b )

a1−1

bB(a1,a2)(1+( x−g
b ))

a1+a2
,

F(x; a1, a2, b, g) = I (x−g)/b
((x−g)/b)+1

(a1, a2), g ≤ x〈+∞, a1〉0, a2 > 0, b > 0,

B(x, y) =
∫ 1

0 tx−1(1− t)y−1dt, for x, y > 0,

Ix(a, b) = B(x;a,b)
B(a,b) , B(x; a, b) =

∫ x
0 ta−1(1− t)b−1dt

(A6)

(6) Log-logistic distribution:

f (x; a, b, g) = a
b

(
x−g

b

)a−1(
1 +

(
x−g

b

)a)−2
, a > 0, g > 0, g ≤ x < ∞,

F(x; a, b, g) =
(

1 +
(

x−g
b

)−a
)−1 (A7)

(7) Generalized Gamma distribution:

f (x; k, a, b, g) = k(x−g)ka−1

bkaΓ(a)
exp

[
−
(

x−g
b

)k
]

, k > 0, a > 0, b > 0, g ≤ x < ∞,

F(x; k, a, b, g) =
Γ
(

x−g
b )

k (a)

Γ(a) = 1
Γ(a)

∫ (
x−g

b )
k

0 ta−1e−tdt.

(A8)

(8) Inverse Gaussian distribution:

f (x; l, m, g) =
√

l
2π(x−g)3 exp

(
− l(x−g−m)2

2m2(x−g)

)
, l > 0, m > 0, g < x < ∞,

F(x; l, m, g) = Φ
((

x−g
l

)−1/2( x−g−m
m

))
+ exp

(
2l
m

)
Φ
(
−
(

x−g
l

)−1/2( x−g+m
m

))
.

(A9)

Mixture distributions

(1) Weibull–GEV mixture:

f (x; ω, a, b; ξ, σ, µ) = ω a
b
( x

b
)a−1e−(

x
b )

a

+(1−ω) 1
σ e−(1+ξ

x−µ
σ )
− 1

ξ
[
1 + µ

x−µ
σ

]− 1+ξ
ξ ,

(A10)

where a > 0, b > 0, σ > 0, 1 + ξ
x−µ

σ > 0, for ξ 6= 0; −∞ < x < +∞ for ξ = 0. For
ξ = 0, the GEV distribution simplifies in the following:

f (x; ξ, σ, µ) =
1
σ

exp
{
− x− µ

σ
− exp

(
− x− µ

σ

)}
. (A11)

(2) Weibull mixture:

f (x; ω, a1, b1; a2, b2) = ω
a1

b1

(
x
a1

)a1−1
e−(

x
b1
)a1

+ (1−ω)
a2

b2

(
x
a2

)a2−1
e−(

x
b2
)a2

(A12)

(3) Exponential–Weibull mixture:

f (x; ω, m; a, b) = ωm exp(−mx) + (1−ω)
a
b

( x
a

)a−1
e−(

x
b )

a
, (A13)
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where m > 0, a > 0, b > 0.
(4) Exponential–lognormal mixture:

f (x; ω, m1; s, m) = ωm1 exp(−m1x) + (1−ω)

exp
(
− 1

2

(
ln(x)−m

s

)2
)

sx
√

2π
, (A14)

where m1 > 0, s > 0.
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