
 

 

UMERC+METS 
2024 Conference 

7-9 August | Duluth, MN, USA 

 

A Robust Optimal Control for Docking and Charging Unmanned 

Underwater Vehicles Powered by Wave Energy  

Abishek Subramaniana, Kai Zhoub, Shangyan Zoua, 

aDepartment of Mechanical Engineering – Engineering Mechanics, Michigan Technological University, 1400 Townsend Dr, Houghton, MI 

49931, USA 
bDepartment of Civil and Environmental Engineering, Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong, China 

Abstract 

This paper introduces a simulation framework and a corresponding Robust Optimal Control (ROC) for docking 

Unmanned Underwater Vehicles (UUVs) that leverages Marine Renewable Energy (MRE) for improved autonomy in 

docking and charging operations. The proposed simulation framework integrates the dynamics of the Wave Energy 

Converter (WEC), docking station, and UUV within a unified system. Utilizing the WEC-Sim for the hydrodynamic 

modeling and MoorDyn for mooring dynamics, and in-house UUV dynamics in Simulink, the simulation effectively 

accounts for complex interactions under dynamic ocean conditions. The ROC docking controller, consisting of a 

Linear Quadratic Regulator (LQR) and a Sliding Mode Control (SMC), is designed to enhance robustness against 

environmental disturbances and system uncertainties. This controller utilizes input-output linearization to transform 

the nonlinear dynamics into a manageable linear form, optimizing docking performance while compensating for 

disturbances and uncertainties. The combined simulation and control approach is validated under various ocean 

conditions, demonstrating effective docking precision and energy efficiency. This work lays a foundational platform 

for future advancements in autonomous marine operations for UUV docking systems integrated with WEC. In 

addition, this work also demonstrates the feasibility of using MRE to significantly extend the operational duration of 

UUVs; such a platform will be leveraged for further development of structural health monitoring and fault diagnosis 

techniques for offshore structures such as WECs and Floating Offshore Wind Turbines. 
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1. Introduction 

In recent years, UUVs have been increasingly used to replace human operators to conduct dangerous and remote 

missions such as ocean mapping, offshore structure health monitoring, fault diagnosis, and maintenance, detecting 

and clearing mines, long-range reconnaissance, maritime security, water sample collection, lost equipment recovery, 

and so forth [1-3].  Despite their advantages, UUVs encounter significant operational challenges, including the need 

for manual retrieval, recharging, and redeployment. These processes not only introduce substantial costs but also pose 

 
 Corresponding author 

   E-mail address: shangyan@mtu.edu 



Subramanian et al. | Proceedings of UMERC+METS 2024  

 

2 

considerable risks and safety concerns [4]. Utilizing Marine Renewable Energy (MRE) from environmental sources, 

especially wave power (abundant, consistent, and high-power density [5]), offers a new solution [6]. These MRE-

powered docking and charging stations could continuously harvest wave power, typically paired with energy storage 

units such as battery banks, to enable on-demand, at-sea, and autonomous recharging and surface communication for 

UUV [7]. Despite the promising opportunity presented, the investigation of using wave power for UUVs charging is 

still at an early stage. On the one hand, the docking and charging technology are still under development by the U.S. 

military and its industrial partners [8]. On the other hand, the autonomous control of UUV coupled with WEC system 

is also insufficiently studied [9]. Significant knowledge gaps are holding back the improved autonomy of UUVs that 

take advantage of wave-powered recharging capabilities. More specifically: (1) there is a lack of an accurate and 

efficient integrated simulation framework to describe WEC-UUV behavior; (2) there is a lack of UUV control that is 

optimal, robust, and adaptive, subject to the highly nonlinear dynamics and uncertain ocean environment. Therefore, 

in this paper, to address these challenges, we will (1) develop a detailed simulation framework that integrates the 

WEC, docking station, and UUV, which can simulate the UUV docking and charging performance efficiently and 

accurately; (2) develop a robust optimal control to optimize the UUV docking performance subject to dynamic ocean 

environments and uncertainties; (3) validate the control performance in varied ocean conditions.   

As far as hydrodynamics is concerned, a wide variety of models exist for WECs, ranging from linear models to fully 

nonlinear CFD-based models [10]. Among these, the linear hydrodynamic model is widely applied in control 

development and in predicting the dynamic responses of WECs [11-13]. Although higher fidelity models, such as 

nonlinear potential flow or CFD-based models, can provide better accuracy, their high computational cost limits their 

applications (particularly in control development and system design). In fact, the linear model is considered as the 

most optimal approach to balance accuracy and efficiency [14], which is well-suited to be applied in the proposed 

simulation framework that considers the WEC-Dock-UUV as a whole. Although some highly nonlinear physical 

phenomena, such as wave breaking and turbulence, are not well captured by linear models, these models can 

incorporate nonlinear terms resulting from mooring forces, viscous drag, and PTO forces [15]. This significantly 

improves accuracy, especially when considering the complete WEC system from wave to wire. In this context, a linear 

wave theory-based hydrodynamic simulator, WEC-Sim, is thus applied in the proposed simulation framework to 

predict the dynamic behavior of both the WEC and the docking station. It is noted that the mooring forces will be 

simulated by MoorDyn which is a lumped-mass mooring model that is coupled with WEC-Sim. Further, the subsea 

docking station is assumed to be connected with the WEC via a cable and is modeled as a non-hydro body (while 

considering the viscous drag, hydrostatic, and cable reaction forces), given that it is deeply submerged which 

represents negligible hydrodynamics. With regard to the UUV, BlueROV2 is applied in this research as the case study, 

given that it is affordable, widely popular, and combines open-source software and hardware which allows fast 

development, modification, and improvements. Recently, a dynamic model of BlueROV2 has been proposed in [16] 

(rigid body dynamics subject to viscous drag and added mass) with model parameters calibrated via experimental 

tests, which is adopted in the simulation framework. 

Mobile docking stations although are expected to significantly improve the mission duration and automation of UUVs, 

it naturally poses challenges for UUV control especially when the docking station/WEC experiences energetic ocean 

waves and currents. The development of control algorithms relies on the understanding of the dynamics of WEC-dock 

system subject to varying ocean environments. However, to date, the study of the coordination and autonomous control 

of UUVs for underwater docking with wave-powered docking stations is very limited. Study [17] proposed a hybrid 

docking approach which is composed of a path planner and two guidance laws which enables an underactuated UUV 

to reach the docking station with a heading that is parallel to its entrance in the presence of cross currents. The two 

guidance laws include an Integral Line of Sight (ILOS) guidance and a Speed Regulated Guidance (SRG) which is 

used to follow a straight in the phase of approach and adjust the docking angle when the vehicle is in close proximity. 

However, the docking station considered in this study is static and only ocean current effect is considered. Study [9] 

proposed a finite horizon Model Predictive Control (MPC) for the UUV to demonstrate the feasibility of rendezvous-

style docking (achieved through zero relative position and velocity), wherein the WEC is assumed to undergo ideal 

sinusoidal motion. This pioneering work successfully showed the viability of the proposed concept, albeit in a highly 

idealized scenario (e.g., lacking a detailed WEC model). Recently, study [18,19] proposed the integration of a flow 

state estimator into the design of MPC aims at estimating unknown disturbances under varied ocean current conditions 

and adjusting docking maneuver correspondingly.  

It is worth noting that in order to accomplish the final attachment to the target in the proposed docking problem, the 

UUV needs to not only approach to but also synchronize with it, which is challenging especially considering the 

docking station is uncontrollable and the disturbances and uncertainties arise from the complex interaction between 



Subramanian et al. | Proceedings of UMERC+METS 2024  

 

3 

the dynamic ocean environment and the system. Therefore, in this paper, we propose a robust control for docking with 

the uncontrolled target subject to uncertainties and disturbances. More specifically, the nonlinear relative motion 

dynamics (in which the docking station motion is considered as a reference signal and assumed to be available) is first 

linearized by using an input-output linearization technique (with disturbances and uncertainties) such that 

transforming the original nonlinear problem to a linear one with fully decoupled inputs and outputs, so that linear 

control strategies can be applied. In this scenario, we developed a Linear Quadratic Regulator (LQR) optimal control 

to optimize the docking performance (e.g., minimize the docking time and fuel consumption). Moreover, to 

compensate for the disturbances and uncertainties in the system, a Sliding Mode Control (SMC) is also developed in 

addition to the LQR such that the resulting Robust Optimal Control (ROC) is both optimal and robust. It is noted that 

to further improve the robustness of the SMC, the sliding surface is designed in an integral manner. 

The rest of the paper is organized as follows. Section 2 introduces the proposed integrated simulation framework 

which includes the WEC, docking station, and the UUV. The mathematical derivations of the ROC are presented in 

Section 3.  Numerical simulation results are presented in Section 4 which compares the performance of ROC to LQR, 

with discussions of the results and current limitations. Finally, the conclusion is drawn in Section 5.  

2. Numerical Modelling 

This section introduces the proposed WEC-UUV simulation framework which is composed of three main parts (1) 

WEC/docking station hydrodynamics and mooring dynamics simulated by using WEC-Sim; (2) In-house UUV 

dynamics package developed in Simulink; (3) WEC-UUV docking control module developed in Simulink. The 

complete simulation framework is developed in MATLAB/Simulink and the proposed WEC-UUV docking 

configuration is presented in Fig. 1.  

2.1. WEC and Dock model 

The hydrodynamics of the WEC can be expressed by using the Cummins equation [20]: 

 (𝑴𝑟 + 𝑴∞)𝑥̈⃗ =  𝐹⃗𝑒 + 𝐹⃗𝑃𝑇𝑂 + 𝐹⃗𝑟 +  𝐹⃗𝑠 +  𝐹⃗𝑚 +  𝐹⃗𝑣 + 𝐹⃗𝑐 (1) 

where 𝑥⃗ = [𝑥, 𝑦, 𝑧, 𝜙, 𝜃, 𝜓] is the state vector which represents the 6 degrees of freedom (DoF) displacement (surge, 

sway, heave, roll, pitch, yaw) expressed in the body-fixed frame. The matrix 𝑀𝑟 is the rigid body mass and matrix 𝑀∞ 

is the added mass at infinite frequency. Moreover, 𝐹⃗𝑃𝑇𝑂 represents the Power Take-Off (PTO) force, 𝐹⃗𝑚 denotes the 

mooring force vector which is calculated by MoorDyn in WEC-Sim which applies a lumped-mass based finite element 

model to model the mooring dynamics, and 𝐹⃗𝑠 denotes the linear hydrostatic restoring force. Further, 𝐹⃗𝑟 represents the 

radiation force vector which can be expressed by a convolutional integral to account for the fluid memory effect: 

 
𝐹⃗𝑟 =  −𝑴∞𝑥̈⃗ − ∫ 𝑲𝑟(𝑡 − 𝜏)𝑥̇⃗(𝜏)𝑑𝜏

𝑡

0

 
(2) 

In this equation 𝑲𝑟 is the radiation impulse response function matrix which can be obtained from the radiation damping 

and added mass calculated from Boundary Element Method (BEM) software such as WAMIT [21]. The excitation 

force subject to irregular ocean waves can be computed as the summation of regular wave components: 

 

𝐹⃗𝑒 = ℜ[𝑅𝑓(𝑡) ∑ 𝐹⃗̃𝑒(𝜔𝑖)𝜂(𝜔𝑖)𝑒𝑖(𝜔𝑖𝑡+ 𝜙𝑖)

𝑁

𝑖=1

] 
(3) 

where 𝑅𝑓(𝑡) is the ramp function, 𝜔𝑖 and 𝜙𝑖 denotes the wave frequency and random phase shift of the 𝑖th ocean 

wave. Moreover, 𝜂(𝜔) denotes the frequency-dependent wave elevation which can be computed from specific wave 

spectrums and 𝐹⃗̃𝑒(𝜔) is the complex excitation force coefficient which can also be obtained from BEM software 

WAMIT. Quadratic drag is applied in WEC dynamics: 

 𝐹⃗𝑣 =  −𝐶𝐷 𝑥̇⃗|𝑥̇⃗| (4) 

where 𝐶𝐷 is the quadratic drag coefficient. Finally, 𝐹⃗𝑐 denotes the cable force vector, which is composed of a quadratic 

drag component and a discontinuous part that applies linear damping and stiffness only when the cable is stretched: 

 
𝐹⃗𝑐,𝑑 = {

0⃗⃗, 𝐿 < 𝐿0

−𝐾𝑐(𝑥⃗𝐹 − 𝑥⃗𝐵) − 𝐶𝑐(𝑥̇⃗𝐹 − 𝑥̇⃗𝐵), 𝐿 ≥ 𝐿0

 
(5) 

In this equation, 𝐾𝑐 and 𝐶𝑐 represent the damping and stiffness coefficients, respectively, and 𝑥⃗𝐹  and 𝑥⃗𝐵 denote the 

position of the follower and base (which are the docking station and the WEC), respectively. 
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As far as the docking station is concerned, it is modelled as a drag body in WEC-Sim. More specifically, the 

hydrostatic force, cable reaction forces, and quadratic drag force are considered in simulating the dynamic behavior 

of the docking station. The hydrodynamic forces are neglected given that they are deeply submerged in the water. 

In this study, a generic point absorber WEC, Reference Model 3 (RM3), is used as the representative WEC [22]. The 

configuration of RM3 is presented in Fig. 1. The device consists of two bodies: a floating body and a spar-plate. The 

relative motion between the two bodies, driven by the ocean waves, will be utilized to generate useful electricity. It is 

noted that in research, a passive PTO is applied for wave power production. Developing more sophisticated PTO 

control is beyond the scope of this paper, and interested readers can refer to [23-25]. Additionally, three mooring lines 

are connected to the WEC to maintain its position, which are composed of upper lines (between the WEC and point 

masses) and lower lines (between point masses and the seabed). The key parameters of RM3 are presented in Table 

1. Moreover, the docking station is also presented in Fig. 1, which has a box shape with a total height of 1.5m. It is 

connected to the bottom of the spar-plate of RM3 via a cable with an unstretched length of 20m. The key parameters 

of the docking station and the cable are summarized in Table 2a and Table 2b respectively. 
Table 1: RM3 key parameters 

RM3 Float RM3 Spar PTO and Mooring 

Mass (kg) 749110 Mass (kg) 876420 PTO damping 

(Ns/m) 

1.2
× 106 

Moment of Inertia (x) 

(kg.m2) 

20907301 Moment of Inertia (x) 

(kg.m2) 

94419614.57 Mooring material 

density (kg/m3) 

7736.7 

 

Moment of Inertia (y) 

(kg.m2) 

21306090.66 

 

Moment of Inertia (y) 

(kg.m2) 

94407091.24 

 

Mooring line 

diameter (m) 

0.144 

Moment of Inertia (z) 

(kg.m2) 

37085481.11 

 

Moment of Inertia (z) 

(kg.m2) 
28542224.82 

 

  

Quadratic Drag 

Coefficient (Cd) 

[1, 1, 1] Quadratic Drag 

Coefficient (Cd) 

[3.5,3.5,3.5]   

Center of Gravity (m) 

in global frame 

[0, 0, -0.72] Center of Gravity (m) 

in global frame 

[0, 0, -21.29]   

 
Table 2: Docking station and cable key parameters 

Docking Station Suspending cable 

Mass (kg) 2228.17 Stiffness (N/m) 1000000 

Volume (𝑚3) 0.825 Damping (Ns/m) 100 

Moment of Inertia (x) (kg.m2) 1185.218 Quadratic Drag Coefficient (Cd) [1.4, 1.4, 1.4] 

Moment of Inertia (y) (kg.m2) 1356.937 Cable top in global frame (m) [0, 0, -30] 

Moment of Inertia (z) (kg.m2) 1185.218 Cable bottom in global frame (m) [0, 0, -49.25] 

Quadratic Drag Coefficient (Cd) [1.2,1.2,1.2]   

Center of Gravity (m) in global frame [0, 0, -50]   

 

 
Figure 1: Layout of the proposed WEC-UUV simulation framework. 
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2.2. UUV Dynamics 

In this research, the BlueUUV2 is applied as the representative UUV (as presented in Fig. 2). The dynamics of this 

UUV is developed and calibrated by experimental data in a recent publication [13] which will also be adopted in this 

paper and be briefly introduced in the following. The dynamics is expressed in a 𝜂 − 𝑣⃗ Fossen notation as: 

 𝜂̇ = 𝑱(𝜂)𝜈  

 𝑴𝑣̇⃗ + 𝑪(𝑣⃗) + 𝑫(𝜈)𝜈 + 𝒈(𝜂) =  𝜏 (6) 

where 𝜂 = [𝑥, 𝑦, 𝑧, 𝜙, 𝜃, 𝜓]𝑇 represents the 6 DoF position of the UUV in the global frame (which is assumed to be 

North-East-Down (NED)) and 𝜈 = [𝑢, 𝑣, 𝑤, 𝑝, 𝑞, 𝑟]𝑇 denotes the velocity of the vehicle expressed in the body-fixed 

frame. Further, the matrix 𝑴 = 𝑴𝑅𝐵 + 𝑴𝐴 is a constant, symmetric and strictly positive definite inertia matrix 

combining the rigid-body inertia matrix 𝑴𝑅𝐵  and the 

added-mass inertia matrix 𝑴𝐴. The matrix 𝑪(𝜈) =
 𝑪𝑅𝐵(𝑣⃗) + 𝑪𝐴(𝑣⃗) is a skew-symmetric Coriolis 

matrix combining the rigid-body Coriolis-centripetal 

matrix 𝐶𝑅𝐵 and added-mass Coriolis-centripetal 

matrix 𝑪𝐴. The matrix 𝑫(𝜈) = 𝑫 + 𝑫𝑛(𝜈) is the 

hydrodynamic damping matrix combining the 

diagonal matrix 𝑫 containing the linear damping 

coefficients and the diagonal matrix 𝑫𝑛 containing 

the quadratic damping coefficients. The matrix 

𝒈(𝜂) contains the vector of restoring forces 

(gravitational and buoyancy forces) acting along all 

the six degrees of freedom at the origin of the b-frame 

which is taken as the center of mass of the vehicle. 

The detailed elements of each matrix can be found in 

[13] and will not be redundant in this paper. Finally, 

𝜏 represents the thrust force of the UUV, which is the 

control force; the details of its design are provided in 

the next section. 

3. Robust Optimal Control development 

This section will introduce the development of the ROC with detailed mathematical derivations. The control is 

composed of an LQR for optimizing the docking performance and an SMC to regulate disturbances and uncertainties. 

Moreover, an input-output linearization technique is also applied to transform the original system so that linear optimal 

controls can be applied. 

3.1. Control problem statement and input-output linearization. 

The objective of the control is to drive the UUV dock with the docking station in an optimal manner subject to 

uncertainties and disturbances. In this context, we first formulate the error vector as: 

 𝑒 = 𝜂 − 𝑥⃗ (7) 

where 𝜂 and 𝑥⃗ denote the position of the UUV and the position of the docking station respectively. It is noted that the 

WEC/Dock system is an uncontrollable target, and we assume the trajectory of the docking station (and its derivations 

such as velocity and acceleration) is measurable and can be communicated with the UUV. Therefore, in the control 

problem, the motion of the docking station is considered as a reference signal. Moreover, in formulating the control 

problem, we will take uncertainties and disturbances into consideration (in addition to the nominal dynamics presented 

in Eq (1) for the WEC and Eq (6) for the UUV). Given that the motion of the docking station is directly measured 

which reflects the uncertainties and disturbances to some extent, we will mainly consider the uncertainties in UUV 

dynamics which can be formulated when the UUV dynamics is expressed in a state-space format: 

 𝑥̇⃗1 = 𝑱(𝑥⃗1)𝑥⃗2 

𝑥̇⃗2 = −𝑴−1( 𝑪(𝑥⃗2) + 𝑫(𝑥⃗2)𝑥⃗𝟐 + 𝒈(𝑥⃗1)) + Δ𝑓(𝑥⃗1, 𝑥⃗2) + 𝑴−1(𝜏 + 𝛿(𝑡, 𝑥⃗1, 𝑥⃗2, 𝜏)) 

 

(8) 

Figure 2: BlueRov2 hardware configuration. 
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where the states 𝑥⃗1 =  𝜂 and 𝑥⃗2 = 𝑣⃗. Furthermore, Δ𝑓(𝑥⃗1, 𝑥⃗2) and 𝛿(𝑡, 𝑥⃗1, 𝑥⃗2, 𝜏) represent system uncertainties and 

disturbances including unmodelled dynamics, parameter variations, and external disturbances. To formulate the 

tracking problem, we are interested in knowing the position vector of the UUV (e.g., Eq. (7) the tracking error), so the 

output is expressed as: 

 𝑦⃗ = 𝑥⃗1 (9) 

One can tell from Eq (8) that it is difficult to design a linear control according to Eq. (8) to minimize the tracking 

error. Therefore, an input-output linearization technique will be presented to linearize the UUV dynamics such that 

linear optimal controls can be applied. We will first perform the nonlinear state transformation (instead of defining 

states as 𝑥⃗1 and 𝑥⃗2) which requires the continuous differentiation of the system output under the control shows up: 

 𝑦̇⃗ = 𝑱(𝑥⃗1)𝑥⃗2 

𝑦̈⃗ =
𝑑

𝑑𝑡
(𝑱(𝑥⃗1)𝑥⃗2) 

=
𝜕(𝑱(𝑥⃗1)𝑥⃗2)

𝜕 𝑥⃗1

𝑥̇⃗1 +
𝜕(𝑱(𝑥⃗1)𝑥⃗2)

𝜕𝑥⃗2 
𝑥̇⃗2  

= (
𝜕𝑱(𝑥⃗1)

𝜕𝑥⃗1

(𝑥⃗2  𝐼𝑛) + 𝑱(𝑥⃗1)
𝜕𝑥⃗2

𝜕𝑥⃗1

) 𝑱(𝑥⃗1)𝑥⃗2

+ (
𝜕𝑱(𝑥⃗1)

𝜕𝑥⃗2

(𝑥⃗2  𝐼𝑛) + 𝑱(𝑥⃗1)
𝜕𝑥⃗2

𝜕𝑥⃗2

) (−𝑴−1( 𝑪(𝑥⃗2) + 𝑫(𝑥⃗2)𝑥⃗𝟐 + 𝒈(𝑥⃗1))

+ Δ𝑓(𝑥⃗1, 𝑥⃗2) + 𝑴−1(𝜏 + 𝛿(𝑡, 𝑥⃗1, 𝑥⃗2, 𝜏)))  

 

 

 

 

 

 

 

 

 

 

 (10) 

where  denotes the Kronecker product and 𝑛 represents the dimension of vector in the dominator of the partial 

derivative. More details of the partial derivatives of the coordinate transformation matrix subject to the position and 

velocity vector can be found in the appendix. We will stop the differentiation since the control already appears. This 

also indicates the relative degree of each decoupled subsystem of this multi-input-multi-output (MIMO) system is 

two. To simplify the rest of the derivations we denote: 

 
𝑺1 =

𝜕𝑱(𝑥⃗1)

𝜕𝑥⃗1

(𝑥⃗2  𝐼𝑛) + 𝑱(𝑥⃗1)
𝜕𝑥⃗2

𝜕𝑥⃗1

 

𝑺2  =  
𝜕𝑱(𝑥⃗1)

𝜕𝑥⃗2

(𝑥⃗2  𝐼𝑛) + 𝑱(𝑥⃗1)
𝜕𝑥⃗2

𝜕𝑥⃗2

 

 

 

 

(11) 

Now, apply the nonlinear state transformation we define 𝜁1 = 𝑦⃗ and 𝜁2 =  𝑦̇⃗, and we have 

 𝜁̇
1 =  𝜁2 

𝜁̇
2 =  𝑺1𝑱(𝑥⃗1)𝑥⃗2 + 𝑺2 (−𝑴−1( 𝑪(𝑥⃗2) + 𝑫(𝑥⃗2)𝑥⃗𝟐 + 𝒈(𝑥⃗1)) + Δ𝑓(𝑥⃗1, 𝑥⃗2)   

+ 𝑴−1(𝜏 + 𝛿(𝑡, 𝑥⃗1, 𝑥⃗2, 𝜏))) 

 

 

 

(12) 

According to this, we can next define the error states 𝑒1 = 𝜁1 − 𝑥⃗ and 𝑒2 = 𝜁2 − 𝑥̇⃗, and further express the tracking 

error dynamics as: 

 𝑒̇1 = 𝑒2 

𝑒̇2 =  𝑺1𝑱(𝑥⃗1)𝑥⃗2 + 𝑺2 (−𝑴−1( 𝑪(𝑥⃗2) + 𝑫(𝑥⃗2)𝑥⃗𝟐 + 𝒈(𝑥⃗1)) + Δ𝑓(𝑥⃗1, 𝑥⃗2)

+ 𝑴−1(𝜏 + 𝛿(𝑡, 𝑥⃗1, 𝑥⃗2, 𝜏))) − 𝑥̈⃗ 

 

 

 

(13) 

Now choose the control according to input-output linearization law as: 

 𝜏 = (𝑺𝟐 𝑴−1)−1(− 𝑺𝟏𝑱(𝑥⃗1)𝑥⃗2  +  𝑺𝟐 𝑴−1(𝑪(𝑥⃗2 ) + 𝑫(𝑥⃗2)𝑥⃗𝟐 + 𝒈(𝑥⃗1)) + 𝑥̈⃗ + 𝑢⃗⃗) (14) 

In this equation, 𝑢⃗⃗ is an equivalent input which will be designed later. The resulting dynamics of the tracking error is: 

 𝑒̇1 = 𝑒2 

𝑒̇2 =  𝑢⃗⃗ +  𝑺2Δ𝑓(𝑥⃗1, 𝑥⃗2) +  𝑺𝟐 𝑴−1𝛿(𝑡, 𝑥⃗1, 𝑥⃗2, 𝜏) 

 

(15) 

which can be written in a matrix format as: 

 𝑒̇ =  𝑨𝑒 + Δ𝑨 + 𝑩𝑢⃗⃗ + Δ𝜹 (16) 

where 𝑒 = [𝑒1, 𝑒2]𝑇 and 

 
𝑨 =  [

06×6 𝐼6

06×6 06×6
]  and 𝑩 =  [

06×6

𝐼6
] 

Δ𝑨 =  [
06×1

𝑺2Δ𝑓(𝑥⃗1, 𝑥⃗2)
] and Δ𝜹 =  [

06×1

𝑺𝟐 𝑴−1𝛿(𝑡, 𝑥⃗1, 𝑥⃗2, 𝜏)
] 

 

 

 

(17) 
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The uncertainties Δ𝑨 and Δ𝜹 satisfy the matching condition [26]: 

 Δ𝑨 = 𝑩Δ𝒂 and Δ𝜹 = 𝑩Δ𝒃 (18) 

In this equation Δ𝒂 and Δ𝒃 denote unknown continuous function vectors that are bounded by: 

Assumption 1: There exist known constants 𝛼 and 𝛽 such that: 

 ‖Δ𝒂‖1 ≤ 𝛼 and ‖Δ𝒃‖1 ≤ 𝛽 (19) 

where ‖⋅‖1 represents the 1-norm. The control problem now has been formulated as a tracking problem with linearized 

dynamics subject to uncertainties and disturbances, we shall next present the design of the ROC.  

3.2. Robust Optimal Control development 

We will first design the optimal control subject to the nominal error dynamics: 

 𝑒̇𝑛 =  𝑨𝑒𝑛 + 𝑩𝑢⃗⃗𝑙 (20) 

To optimize the performance of docking (e.g., minimum time and fuel consumption), we can define a cost function 

as: 

 
𝐽 =  

1

2
∫ [𝑒𝑛(𝑡)𝑸𝑒𝑛(𝑡)𝑇 + 𝑢⃗⃗𝑙(𝑡)𝑇𝑹𝑢⃗⃗𝑙(𝑡)]𝑑𝑡

𝑇

0

 
 

    (21) 

where 𝑸 ∈ 𝑹12×12 and 𝑹 ∈  𝑹6×6 are symmetric positive semi definite matrix. According to the optimal control theory 

the solution to the control input is: 

 𝑢⃗⃗𝑙(𝑡) =  −𝑹−1𝑩𝑇𝑷𝑒𝑛(𝑡)                                                                                                                 (22) 

The 𝑷 represent the covariance matrix which is the solution of the algebraic Riccati equation (ARE): 

 𝑷𝑨 + 𝑨𝑇𝑷 − 𝑷𝑩𝑹−1𝑩𝑇𝑷 + 𝑸 = 0 (23) 

Substituting Eq. (22) back into Eq. (20) give us the closed-loop performance of the nominal error: 

 𝑒̇𝑛 = (𝑨 − 𝑩𝑹−1𝑩𝑇𝑷 )𝑒𝑛(𝑡)   (24)  

According to the optimal control theory, the resulting system in Eq. (24) will be asymptotically stable which represents 

the nominal error (physically is the relative position between the docking station and the UUV without uncertainties) 

will converge to zero in an optimal manner. This optimal tracking performance can be achieved by balancing the 

penalty on the tracking error and the control effort (say 𝑸 and 𝑹 matrices). Next, we will design a control to enhance 

the robustness of the nominal system against uncertainties. The sliding surface is designed in an integral manner to 

maximize the robustness: 

 
𝑠(𝑡, 𝑒) = 𝑮𝑒(𝑡) − 𝑮𝑒(0) − 𝑮 ∫ (𝑨 − 𝑩𝑹−1𝑩𝑇𝑷 )𝑒(𝜏)𝑑𝜏

𝑡

0

 
        

(25) 

where 𝑮 ∈  𝑹6×12 is a constant matrix which is designed such that 𝑮𝑩 is nonsingular. We propose the following ROC 

control law such that the sliding surface is asymptotically stable, and the nominal system can be optimized: 

 𝑢⃗⃗(𝑡) = 𝑢⃗⃗𝑙(𝑡) + 𝑢⃗⃗𝑠(𝑡)  (26) 

where, 

 𝑢⃗⃗𝑙(𝑡) =  −𝑹−1𝑩𝑇𝑷𝑒(𝑡) 

𝑢⃗⃗𝑠(𝑡) =  −(𝑮𝑩)−1𝛾 sign(𝑠) 

 

(27) 

In this equation 𝑢⃗⃗𝑙(𝑡) is the continuous part which is used to optimize the performance of the nominal error system, 

while 𝑢⃗⃗𝑠(𝑡) is the discontinuous part which guarantees the full robustness subject to uncertainties and disturbances. 

We shall now prove the convergence of the sliding surface. 

Theorem 1. Consider the dynamics of the error in Eq. (16) and Assumption 1. Given the sliding surface defined in 

Eq. (25), we can apply the ROC designed in Eq. (26) such that the system can reach the sliding surface in finite time 

and maintain on it if  𝛾 ≥ (𝛼 + 𝛽)‖𝑮𝑩‖. 

Proof: Define a positive definite Lyapunov candidate function as: 

 
𝑉 =

1

2
𝑠𝑇𝑠 

(28) 

The derivative can be computed as: 

 𝑉̇ = 𝑠𝑇𝑠̇ 

= 𝑠𝑇(𝑮𝑒̇(𝑡) − 𝑮(𝑨 − 𝑩𝑹−1𝑩𝑇𝑷 )𝑒(𝑡)) 
= 𝑠𝑇(𝑮(𝑨𝑒 + Δ𝑨 + 𝑩𝑢⃗⃗ + Δ𝜹) − 𝑮(𝑨 − 𝑩𝑹−1𝑩𝑇𝑷 )𝑒(𝑡)) 

 

 

(29) 

Now plug in the control: 
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 𝑉̇ = 𝑠𝑇(𝑮( 𝑨𝑒 + Δ𝑨 + 𝑩(−𝑹−1𝑩𝑇𝑷𝑒(𝑡)−(𝑮𝑩)−1𝛾 sign(𝑠)) + Δ𝜹)

− 𝑮(𝑨 − 𝑩𝑹−1𝑩𝑇𝑷 )𝑒(𝑡)) 

= 𝑠𝑇(𝑮Δ𝑨 − 𝛾 sign(𝑠) + 𝑮Δ𝜹) 

≤  −𝛾‖𝑠‖1 + 𝑠𝑇𝑮(Δ𝑨 +  Δ𝜹) 

≤  −𝛾‖𝑠‖1 + ‖𝑠𝑇𝑮(Δ𝑨 +  Δ𝜹)‖1 

=  −𝛾‖𝑠‖1 + ‖𝑠𝑇𝑮𝑩(Δ𝐚 +  Δ𝐛)‖1 

≤  −𝛾‖𝑠‖1 + ‖𝑠‖1‖𝑮𝑩‖1(‖Δ𝐚‖1 + ‖Δ𝐛‖1) 

≤  −𝛾‖𝑠‖1 + ‖𝑠‖1‖𝑮𝑩‖1(𝛼 + 𝛽) 

 

 

 

 

 

 

 

 

          (30) 

So eventually we have: 

 𝑉̇ ≤  −(𝛾 − (𝛼 + 𝛽)‖𝑮𝑩‖1)‖𝑠‖1 (31) 

It is apparent that if: 

 𝛾 >  (𝛼 + 𝛽)‖𝑮𝑩‖1 (32) 

The derivative of the Lyapunov function is negative definite. Therefore, the sliding manifold is asymptotically stable 

and that completes the proof. 

Finally, we need to transform the derived control back into the dynamic system, and the resulting complete ROC 

control law is: 

 𝜏 = (𝑺𝟐 𝑴−1)−1(− 𝑺𝟏𝑱(𝑥⃗1)𝑥⃗2  +  𝑺𝟐 𝑴−1(𝑪(𝑥⃗2 ) + 𝑫(𝑥⃗2)𝑥⃗𝟐 + 𝒈(𝑥⃗1)) + 𝑥̈⃗

− 𝑹−1𝑩𝑇𝑷𝑒(𝑡)−(𝑮𝑩)−1𝛾 sign(𝑠)) 

 

(33) 

It is noted that to reduce the chattering of the SMC control, the discontinuous function sign(𝑠) will be replaced by a 

smooth function tanh(𝛼𝑠) in the implementation and 𝛼 is the smoothing factor. 

4.   Results and Discussions 

Numerical simulation results are presented in this section, in which we will present the hydrodynamic performance of 

the WEC/Dock system under varied wave conditions and the docking performance in terms of both optimality and 

robustness. 

4.1. WEC and Dock hydrodynamics 

The integrated simulation framework of the WEC and the suspended docking station as presented in Section 2.1 is 

tested with different wave conditions to first evaluate the wave elevation. To mimic the real-world scenario, we have 

used four representative sea states adopted from [27]. The significant wave height (Hs) and the peak period (Tp) are 

summarized in Table 3.  Fig. 3 shows the wave elevation for one wave condition.  
Table 3: Wave Conditions 

Wave Condition Significant Wave Height (Hs) (m) Peak Period (Tp) (s) 

Case 1 4.33 13.97 

Case 2 1.65 8.81 

Case 3 1.96 16.42 

Case 4 2.19 11.92 

 
Figure 3: Wave Elevation for Sea State 1 that has a significant wave height of 4.33m and a peak period of 13.97s.  
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Fig. 4 compares the motion of the float and spar plate of the WEC before and after the addition of the docking station 

under the most powerful sea state (Case 1 with Hs = 4.33m, Tp = 13.97s). It is noted that all the motion plots are made 

with respect to the displacement (meaning the initial offset is subtracted) rather than the position. We can tell from the 

figure that the displacement of the docking station is between [1.73m, -1.98m], [1.02m, -1.75m], and [0.0712rad, -

0.773rad] in surge, heave, and pitch, respectively. It is also clearly visible in the figure that the addition of the docking 

station has a negligible impact on the dynamic response of the WEC. This observation can be further evidenced by 

the wave power produced by RM3 under four different wave conditions which is summarized in Table 4. The mean 

wave power productions are nearly the same for the cases with and without the docking station. 
Table 4: Mean Power Generation 

Wave Condition Mean Wave Power Production 

without Dock (kW) 

Mean Wave Power Production 

with Dock (kW) 

Case 1 199.73 199.65 

Case 2 46.409 46.411 

Case 3 30.565 30.456 

Case 4 63.823 63.892 

 

 
Figure 4: Comparison of WEC and Docking Station motion before and after suspending the docking station 

Next, Fig. 5 and 6 further presents the motion of the WEC and the docking station in different sea states. The maximum 

displacement of the docking station are [0.26m, -0.27m], [1.51m, -1.32m], and [0.59m, -0.83] under sea state 2 (Hs = 

1.65m, Tp = 8.91s), sea state 3 (Hs = 1.96m, Tp = 16.42s), and sea state 4 (Hs = 2.19m, Tp = 9.89s), in surge; [0, -

0.58], [0.4m, -1.18m], and [0.06m, -0.74] under sea state 2, 3, and 4 in heave; and [0.0189rad, -0.176rad], [0.0641rad, 

-0.0699rad], and [0.0313rad, -0.0329rad] under sea state 2, 3, and 4 in pitch. In general, the motion of the docking 

station when it is designed in a mobile manner is significant which requires the control to drive the UUV not only 

approach the docking station but also synchronize the motion with respect to the dock in a robust manner. Moreover, 

it is also visible in the figures that the heave motion of the docking station is very close to the heave motion of the 

spar plate of RM3. This is because the heave dynamic response of the docking station is dominated by the cable 

tension force and the cable has a relatively large stiffness. 
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Figure 5: WEC and Docking Station Motion for Case 2 

 
Figure 6: WEC and Docking Station Motion for Case 

4.2. Performance of the ROC control 

We first consider the ideal scenario where the uncertainties due to unmodelled dynamics and external disturbances 

are absent, which forms the nominal system, and use the standalone LQR controller to track the trajectory. The wave 

conditions defined for Case 1 (significant wave height of 4.33m and peak period of 13.97s) presented in Table 4 are 

used to evaluate the controller's performance henceforth. It is noted that this is the most energetic wave condition 

which represents a large motion of the docking station. The intention of choosing this wave condition as the case study 

is to present the control performance subject to a challenging ocean environment. The LQR controller is tuned for 

optimal performance with: Q = 𝑰12×12 and R =100𝑰6×6. It is noted that a relatively high penalty is applied to the 

control effort to guarantee the resulting control is within the limited thrust force of 85N, 85N, 120N, 26N, 14N, 22N 

for surge, sway heave, roll, pitch and yaw respectively.  

 
Figure 7: Positional Displacement of WEC and UUV for Ideal Scenario using Standalone LQR Controller 
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Figure 8: Tracking Error States for Ideal Scenario with Standalone LQR Controller 

 
Figure 9: Thruster Actuator Signals for Ideal LQR Controller. 

Fig. 7 shows the tracking performance of the UUV with respect to the docking station suspended below the WEC 

along all six degrees of freedom. Initially, the UUV is positioned at [5, 0, 55, 0, 0, 0] m.  We can see that the UUV 

can successfully track the motion of the WEC, and the docking time is observed to be 24s. More details of the tracking 

performance are shown in Fig. 8 which presents the tracking error (between the UUV and the docking station) in terms 

of both the displacement [e11 e12, e13, e14, e15, e16]𝑇 and the velocity [e21 e22, e23, e24, e25, e26]𝑇. We can tell 

from the figure that all the tracking errors converge to zero in a finite time. The resulting thruster forces (transformed 

back from the input-output linearization) of the LQR control is presented in Fig. 9. It is visible in the figure that the 

thruster forces along all six DOFs are within the upper limit of the actuation forces the thrusters in BlueRov2 can 

deliver. The total energy the UUV consumes to dock is around 650.1 Joules. 
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Figure 10: Positional Displacement of WEC and UUV for Actual Scenario using Ideal LOR Controller. 

 
Figure 11: Tracking Error States for Actual Scenario using Ideal LOR Controller 

Next, we consider the actual scenario with uncertainties from unmodelled dynamics and external disturbances. We 

represent the uncertainties using sin waves with an amplitude of 1.5m in surge, sway and heave motion and an 

amplitude of 0.15 rad in roll, pitch and yaw motion. The initial position of the UUV is the same as in the previous 

scenario.  Fig. 10 shows the tracking performance of the standard LQR controller in the actual scenario with 

uncertainties. We can see that the UUV cannot track the docking station and the tracking errors presented in Fig. 11 

cannot converge to zero. There is a significant deviation in the trajectory along all six DOFs as well as the relatively 

velocity between the UUV and the docking station. This is expected since the LQR control can only optimize the 

nominal system without the capability to handle uncertainties and disturbances. 

 



Subramanian et al. | Proceedings of UMERC+METS 2024  

 

13 

 
Figure 12: Positional Displacement of UUV and WEC in Actual Scenario with Robust LQR Controller 

 
Figure 13: Tracking Error States for Actual Scenario using Robust LQR Controller. 

Fig. 12 shows the tracking performance of the ROC in the presence of uncertainties. The effort of the SMC control 

part is specified as: 𝛾 = diag([1,1,1,50,50,50]), the smoothing factor is selected as: 𝛼 = 100, and the weight matrix 

𝑮 = [diag([1,1.5,10,1,1,1]) 𝑰6×6 ]. The uncertainties are represented similarly to the previous scenario. We can see 

that using the ROC, the UUV can successfully track the docking trajectories in the presence of uncertainties, and all 

the tracking error states (in terms of both the position and velocity) can converge to zero in a finite time in contrast to 

the last case (as presented in Fig. 13). The docking time is observed to be 24.02s, which is slightly more than the ideal 

system by 0.04s. This shows that the addition of the SMC controller can mitigate the uncertainties caused by the 
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unmodeled dynamics and external disturbances and drive the actual system to follow the nominal one (which is 

optimized by the same LQR control component such that the docking time is similar to the ideal case presented first). 

This can be further evidenced by the convergence of the sliding surface presented in Fig. 14. In the proposed MIMO 

system, the sliding surface is a vector with six elements. Here, we present only one element since all elements have 

similar convergence performance. Fig 15 shows actuation signals from the ROC controller for all the six thrusters. 

The total energy consumed by the UUV to dock is 648.84 Joules, slightly less than the ideal case by 1.26 Joules. 

Finally, Fig. 16 shows the path of the trajectory followed by the UUV to dock.  

 
Figure 14: Convergence of Sliding Surface 

 
Figure 15: Thruster force for Robust Optimal Controller. 

 
Figure 16: Docking Trajectory of the UUV under uncertainties using ROC 

5.   Conclusion 

In this research we have developed a detailed simulation framework that integrates the WEC, docking station, and 

UUV accounting for the hydrodynamics of each of this body considering their weight, buoyancy and quadratic drag. 

The simulation framework can simulate the UUV docking and charging performance efficiently and accurately. The 

simulation framework is evaluated with different wave conditions to accurately track the hydrodynamics of the 

integrated WEC and suspended docking station below. Using the simulation framework, we have developed a Robust 

Optimal Controller to optimize the UUV docking performance subject to dynamic ocean environments and 

uncertainties. The simulation framework developed for this study not only facilitated precise experiments but also laid 

a foundational platform for future research in this domain. 

The study has successfully demonstrated the efficacy of the ROC in its ability to manage the complex dynamics 

between a UUV and WEC for docking. In a real-world scenario, the uncertainties caused by unmodelled dynamics of 

the WEC and UUV along with external disturbances needs to be accounted for as they significantly affect the relative 

UUV tracking towards the docking stations placed beneath the WEC.  The integration of the SMC controller with 
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LQR was able to significantly mitigate the uncertainties present in a real-world scenario and drive the system towards 

following the nominal dynamics. The ROC was able to achieve a docking time of 42.16s with uncertainties present 

and on-par with the ideal system’s docking time. 

In the future, we plan to account for the tether forces acting on the UUV and the ocean currents acting on both the 

UUV and WEC, which will realize a system for practical deployment in ocean-based research. We also plan to 

improve the control design such that the control can explicitly incorporate hard constraints (e.g., the thrust force 

limitations). Moreover, in this study, we have demonstrated the feasibility of significantly improving the UUV’s 

autonomy for varied ocean missions. In future work, we will also leverage the developed autonomous platform for 

offshore structure health monitoring and fault diagnosis (e.g., mooring systems of WECs and Floating Offshore Wind 

Turbines [28]) by further developing computer vision and machine learning techniques. 
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