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Introduction
• Unmanned Underwater Vehicles 

(UUV)
• Increasingly used to conduct dangerous and 

remote missions such as ocean mapping, 
offshore structure maintenance, detecting and 
clearing mines, maritime security, recovery, and 
so forth.

• Encounter significant operational challenges, 
including the need for manual retrieval, 
recharging, and redeployment. 

Mooring line vision-based 
fault diagnosis (one of the 
focus applications)



Introduction
• Wave Energy Converters can be used to charge the UUVs

• Wave Energy is abundant, consistent, and offers high-power density. 
• WEC can be coupled with a docking/charging station beneath to continuously supply wave power to UUVs.
• This can enable on-demand, at-sea, and autonomous recharging and surface communication for UUV. 



Introduction
• Motivation

• Autonomous control of UUV coupled with WEC system is insufficiently studied.
• Lack of an accurate and efficient integrated simulation framework to describe WEC-UUV behavior.
• Lack of an effective and robust control system that can guide the UUV to dock with the docking station with minimal fuel 

consumption and time, subject to uncertainties and disturbances.

• Research Focus
• Develop a detailed simulation framework that integrates the WEC, docking station, and UUV, which can simulate the 

UUV docking performance efficiently and accurately. 
• Develop a robust optimal control to optimize the UUV docking performance subject to dynamic ocean environments and 

uncertainties. 



Introduction Modelling Control Results

Methodology: WEC modeling
• A generic point absorber WEC, Reference Model 3 (RM3), is used 

to represent the WEC. 

• 𝑥⃗𝑥 = [𝑥𝑥, 𝑦𝑦, 𝑧𝑧,𝜙𝜙,𝜃𝜃,𝜓𝜓] is the state vector which represents the 6 DoF 
displacement in the body-fixed frame.

• The mooring force is simulated by using MoorDyn.

Cummins Equation (Newtons 2nd Law)

𝑴𝑴𝑟𝑟 + 𝑴𝑴∞
̈⃗𝑥𝑥 =  𝐹⃗𝐹𝑒𝑒 + 𝐹⃗𝐹𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐹⃗𝐹𝑟𝑟 +  𝐹⃗𝐹𝑠𝑠 + 𝐹⃗𝐹𝑚𝑚 + 𝐹⃗𝐹𝑣𝑣 + 𝐹⃗𝐹𝑐𝑐

RM3 Float
Mass (kg) 749110
Inertia [Ix, Iy, Iz]  (𝑘𝑘𝑘𝑘 𝑚𝑚2) [20907301,213060

90.66, 
37085481.11]

Quadratic Drag Area (𝑚𝑚2) [100, 100, 286, 0, 0, 
0]

Quadratic Drag Coefficient (Cd) [1, 1, 1, 0, 0, 0]

Center of Gravity (m) in global 
frame

[0, 0, 0]

Center of Buoyancy (m) in body 
fixed frame

[0, 0, 0]

RM3 Spar
Mass (kg) 876420
Inertia [Ix, Iy, Iz]  (𝑘𝑘𝑘𝑘 𝑚𝑚2) [20907301, 

21306090.66,37085481
.11]

Quadratic Drag Area (𝑚𝑚2) [100, 100, 286, 0, 0, 0]
Quadratic Drag Coefficient 
(Cd)

[1, 1, 1, 0, 0, 0]

Center of Gravity (m) in 
global frame

[0, 0, -30]

Center of Buoyancy (m) in 
body fixed frame

[0, 0, 0]

PTO and Mooring
PTO damping
(Ns/m)

1200000

Mooring material
density (kg/m3)

7736.7

Mooring line
diameter (m)

0.144

• Docking station is modelled as a drag 
body in WecSim

• The hydrostatic force, cable reaction 
forces, and quadratic drag force are 
considered.

• The hydrodynamic forces are 
neglected given that they are deeply 
submerged in the water

Docking Station
Mass (kg) 1064.621 
Volume (𝑚𝑚3) 0.394
Inertia [Ix, Iy, Iz]  (𝑘𝑘𝑘𝑘 𝑚𝑚2) [733.352, 733.352, 

457.979]
Quadratic Drag Area (𝑚𝑚2) [2.25, 2.25, 2.25, 0, 0, 

0]
Quadratic Drag Coefficient 
(Cd)

[1.2, 1.2, 1.2, 0, 0, 0]

Center of Gravity (m) in 
global frame

[0,0, -50]

Center of Buoyancy (m) in 
body fixed frame

[0, 0, 0]

Suspending cable

Stiffness 1000000

Damping 100

Quadratic Drag Area 
(𝑚𝑚2)

[10, 10, 10, 0, 0, 
0]

Quadratic Drag 
Coefficient (Cd)

[1.4, 1.4, 1.4, 0, 0, 
0]

Cable top coordinates 
in global frame (m)

[0, 0, -30]

Cable bottom 
coordinates in global 
frame (m)

[0, 0, -49.25]

Force between 
the WEC and the 
cocking station



Methodology: UUV modeling

• 𝜂𝜂⃗ = [𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝜙𝜙, 𝜃𝜃, 𝜓𝜓] represents position of the UUV 
in the global frame 

• 𝜈𝜈⃗ = [𝑢𝑢, 𝑣𝑣, 𝑤𝑤, 𝑝𝑝, 𝑞𝑞, 𝑟𝑟] denotes the velocity of the 
vehicle expressed in the body-fixed frame.

• The model parameters are calibrated with 
experiments in [1].

̇⃗𝜂𝜂 = 𝑱𝑱 𝜂⃗𝜂 𝜈𝜈
𝑴𝑴 ̇⃗𝑣𝑣 + 𝑪𝑪 𝑣⃗𝑣 + 𝑫𝑫 𝜈𝜈 𝜈𝜈 + 𝒈𝒈 𝜂⃗𝜂 =  𝜏𝜏

Nonlinear Dynamics of UUV

Direction Max Thrust 

Surge 85 N

Sway 85 N

Heave 120 N

Roll 26 Nm

Pitch 14 Nm

Yaw 22 Nm

[1] von Benzon, Malte, et al. "An open-source benchmark simulator: Control of a bluerov2 
underwater robot." Journal of Marine Science and Engineering 10.12 (2022): 1898

Mass (kg) 13.5 

Moment of Inertia (kg 
m^2)

(0.26, 0.23, 0.37)

Damping Coefficients 
(Nsm^(-1))

(137.7, 0, 33, 0, 0.8, 0)

Quadratic Damping 
Coefficients (Ns^2 m^(-2))

(141, 217, 190, 1.19, 0.47, 
1.5)

Added Mass (kg) (6.36, 7.12, 18,68)

Added Mass Moment (kg 
m^2)

(0.189, 0.135, 0.222)

0.46m

0.38m

0.58m

Pictures taken from bluerobotics.com



Methodology: Docking control

• The control problem can be formulated as:

 Min:  𝒆𝒆 = 𝜼𝜼 − 𝒙𝒙
                                      Subject to:   

 𝑥̇𝑥1 = 𝑱𝑱 𝑥𝑥1 𝑥𝑥2
 𝑥̇𝑥2 = −𝑴𝑴−1  𝑪𝑪 𝑥𝑥2 + 𝑫𝑫 𝑥𝑥2 𝑥𝑥𝟐𝟐 + 𝒈𝒈 𝑥𝑥1 + Δ𝑓𝑓 𝑥𝑥1, 𝑥𝑥2 + 𝑴𝑴−1 𝜏𝜏+ 𝛿𝛿 𝑡𝑡, 𝑥𝑥1, 𝑥𝑥2, 𝜏𝜏

• It is difficult to design a linear control subject to this complex dynamics, which also cannot regulate the uncertainties and 
disturbances.  An input-output linearization technique is therefore applied.

Position/Orientation of the UUV
Position/Orientation of the Dock

𝒙𝒙 𝜼𝜼
Uncontrollable 
target/Assumed 
Measurable

Controllable

Model Uncertainties
Actuation 
disturbances

Control that needs 
to be designed



Methodology: Input-Output Linearization

𝑨𝑨 = 06×6 𝐼𝐼6
06×6 06×6

  and 𝑩𝑩 = 06×6
𝐼𝐼6

Δ𝑨𝑨 =
06×1

𝑺𝑺2Δ𝑓𝑓 𝑥𝑥1, 𝑥𝑥2
 

Δ𝜹𝜹 =
06×1

𝑺𝑺𝟐𝟐 𝑴𝑴−1𝛿𝛿 𝑡𝑡, 𝑥𝑥1, 𝑥𝑥2, 𝜏𝜏

̇⃗𝑒𝑒 =  𝑨𝑨𝑒𝑒 + Δ𝑨𝑨 + 𝑩𝑩𝑢𝑢 + Δ𝜹𝜹• Define state:

      𝑒𝑒1 = 𝜂𝜂 − 𝑥⃗𝑥

      𝑒𝑒2 =  ̇⃗𝜂𝜂 − ̇⃗𝑥𝑥
• According to the UUV dynamics before, we have:

      ̇⃗𝑒𝑒1 = 𝑒𝑒2

      ̇⃗𝑒𝑒2 =  𝑺𝑺1𝑱𝑱 𝑥⃗𝑥1 𝑥⃗𝑥2 + 𝑺𝑺2 �
�

−𝑴𝑴−1  𝑪𝑪 𝑥⃗𝑥2 + 𝑫𝑫 𝑥⃗𝑥2 𝑥⃗𝑥𝟐𝟐 + 𝒈𝒈 𝑥⃗𝑥1 +
Δ𝑓𝑓 𝑥⃗𝑥1, 𝑥⃗𝑥2 + 𝑴𝑴−1 𝜏𝜏 + 𝛿𝛿 𝑡𝑡, 𝑥⃗𝑥1, 𝑥⃗𝑥2, 𝜏𝜏 − ̈⃗𝑥𝑥

     where

      𝑺𝑺1 = 𝜕𝜕𝑱𝑱 𝑥⃗𝑥1
𝜕𝜕𝑥⃗𝑥1

𝑥⃗𝑥2 ⊗ 𝐼𝐼𝑛𝑛 + 𝑱𝑱 𝑥⃗𝑥1
𝜕𝜕𝑥⃗𝑥2
𝜕𝜕𝑥⃗𝑥1

      𝑺𝑺2  = 𝜕𝜕𝑱𝑱 𝑥⃗𝑥1
𝜕𝜕𝑥⃗𝑥2

𝑥⃗𝑥2 ⊗ 𝐼𝐼𝑛𝑛 + 𝑱𝑱 𝑥⃗𝑥1
𝜕𝜕𝑥⃗𝑥2
𝜕𝜕𝑥⃗𝑥2

Obtained a clean and neat 
linearized system

𝜏𝜏 = 𝑺𝑺𝟐𝟐 𝑴𝑴−1 −1(− 𝑺𝑺𝟏𝟏𝑱𝑱 𝑥⃗𝑥1 𝑥⃗𝑥2  +  𝑺𝑺𝟐𝟐 𝑴𝑴−1 𝑪𝑪 𝑥⃗𝑥2 + 𝑫𝑫 𝑥⃗𝑥2 𝑥⃗𝑥𝟐𝟐 + 𝒈𝒈 𝑥⃗𝑥1 + ̈⃗𝑥𝑥 + 𝑢𝑢)
Apply the Input-Output Linearization control law:

Thrust force (physically)

Transformed control, 
which we will design next

Nonlinear state transformation



Methodology: Robust LQR 𝐽𝐽 =
1
2�0

𝑇𝑇

𝑒𝑒𝑛𝑛 𝑡𝑡 𝑸𝑸𝑒𝑒𝑛𝑛(𝑡𝑡)𝑇𝑇 + 𝑢𝑢𝑙𝑙 𝑡𝑡 𝑇𝑇𝑹𝑹𝑢𝑢𝑙𝑙(𝑡𝑡) 𝑑𝑑𝑑𝑑

According to the optimal control theory:

• The 𝑷𝑷 represent the covariance matrix which is the 
solution of the algebraic Riccati equation (ARE).

Proposed control algorithm:

• 𝑢𝑢𝑙𝑙 𝑡𝑡  is the continuous part which is used to 
optimize the performance of the nominal 
error system

• 𝑢𝑢𝑠𝑠 𝑡𝑡  is the discontinuous part which 
guarantees the robustness.

Minimize the 
docking time

Minimize the fuel 
consumption

𝑢⃗𝑢𝑙𝑙 𝑡𝑡 =  −𝑹𝑹−1𝑩𝑩𝑇𝑇𝑷𝑷𝑒𝑒𝑛𝑛 𝑡𝑡𝑢𝑢 𝑡𝑡 = 𝑢𝑢𝑙𝑙 𝑡𝑡 + 𝑢𝑢𝑠𝑠(𝑡𝑡)
𝑢𝑢𝑙𝑙 𝑡𝑡 = −𝑹𝑹−1𝑩𝑩𝑇𝑇𝑷𝑷𝑒𝑒 𝑡𝑡

𝑢⃗𝑢𝑠𝑠 𝑡𝑡 = − 𝑮𝑮𝑮𝑮 −1𝛾𝛾 sign 𝑠𝑠

̇⃗𝑒𝑒 =  𝑨𝑨𝑒𝑒 + Δ𝑨𝑨 + 𝑩𝑩𝑢𝑢 + Δ𝜹𝜹

𝑢⃗𝑢𝑠𝑠 𝑡𝑡 = − 𝑮𝑮𝑮𝑮 −1𝛾𝛾 sign 𝑠𝑠

• Sliding Mode Control is applied to regular the 
uncertainties and disturbances:

𝑠𝑠 𝑡𝑡, 𝑒𝑒

= 𝑮𝑮𝑒𝑒 𝑡𝑡 − 𝑮𝑮𝑒𝑒 0 − 𝑮𝑮�
0

𝑡𝑡

𝑨𝑨 − 𝑩𝑩𝑹𝑹−1𝑩𝑩𝑇𝑇𝑷𝑷 𝑒𝑒 𝜏𝜏 𝑑𝑑𝜏𝜏

where 𝑮𝑮 ∈  𝑹𝑹6×12 is a constant matrix which is 
designed such that 𝑮𝑮𝑮𝑮 is nonsingular.

Now we need to design the 𝑢𝑢 

• where the sliding surface is designed as:

Need to transform back to the actual thrust!



Simulation results: Dock motion analysis
Wave Condition Mean Mechanical Power of 

WEC before suspending the 
docking station (kW)

Mean Mechanical power of 
WEC after suspending the 
docking station (kW)

Case 1 199.73 199.65
Case 2 46.409 46.411
Case 3 30.565 30.456
Case 4 63.823 63.892

Hs = 1.65 m, Tp = 
8.91s

Hs = 4.33 m, Tp = 
13.97s

Surge (m) [0.26, -0.27] [1.73, -1.98]

Heave (m) [0, -0.358] [1.02, -1.75]

Pitch (rad) [0.0189, -0.176] [0.0712, 0.773]

Hs = 4.33m, Tp = 13.97s
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WEC motion

WEC motion

WEC motion

Time(s)
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Dock suspended to WEC

Dock suspended to WEC

Dock suspended to WEC



Simulation results: Docking in ideal scenario 
All error states converge to zero

Docking Time 24s

Power Consumed 650.1 J

UUV is docked

Th
ru
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er

 F
or

ce
s 

– 
u(

t)
 (N

)

Time (s)

Thruster forces are within the limit
Docking trajectory of the UUV



Simulation results: Docking with disturbances (LQR only)

Introduction Modelling Control Results
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Time (s) Time (s)
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Time (s)

Time (s)

𝐞𝐞𝟏𝟏𝟏𝟏
𝐞𝐞𝟏𝟏𝟏𝟏

𝐞𝐞𝟏𝟏𝟏𝟏

𝐞𝐞𝟏𝟏𝟏𝟏 𝐞𝐞𝟏𝟏𝟏𝟏 𝐞𝐞𝟏𝟏𝟏𝟏

𝐞𝐞𝟐𝟐𝟐𝟐

𝐞𝐞𝟐𝟐𝟐𝟐𝐞𝐞𝟐𝟐𝟐𝟐𝐞𝐞𝟐𝟐𝟐𝟐

𝐞𝐞𝟐𝟐𝟐𝟐 𝐞𝐞𝟐𝟐𝟐𝟐

Time (s)

𝑑𝑑 𝑡𝑡 = [1.5 sin 0.5𝜋𝜋𝜋𝜋 ; 1.5 sin 0.5𝜋𝜋𝜋𝜋 ; 1.5 sin 0.25𝜋𝜋𝜋𝜋 ; 0.15 sin𝜋𝜋𝜋𝜋 ; 0.15 sin 0.5𝜋𝜋𝜋𝜋 ; 0.15 sin𝜋𝜋𝜋𝜋]

Disturbance signals are added to the dynamics (all 6DoF) which are unaware to the control:



Simulation results: Docking with disturbances (RLQR)

Docking Time 24.04s

Power Consumed 648.84 J

All error states converge to zero

Th
ru

st
er

 F
or

ce
s 

– 
u(

t)
 (N

)

Thruster forces are within the limit
Docking trajectory of the UUV

Same disturbances are still applied in this case, but the RLQR control is applied



Conclusion
• Docking station motion is significant when it is hanged with the WEC which poses challenges for 

docking.

• It is critical to consider both the optimality and robustness in designing the docking control.

• ROC effectively controls the UUV to achieve an optimal docking performance in the presence of 
uncertainties and disturbances.

Future work
• The hydrodynamic model will be improved by incorporating the tether force and ocean current 

force.

• Experimentally validate the docking control in wave lab at MTU

• Apply UUV for mooring line inspections/fault diagnosis (camera vision-based)
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