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Introduction

e Unmanned Underwater Vehicles
(UUV)

* Increasingly used to conduct dangerous and
remote missions such as ocean mapping,
offshore structure maintenance, detecting and
clearing mines, maritime security, recovery, and
so forth.

* Encounter significant operational challenges,
including the need for manual retrieval,
recharging, and redeployment.




Introduction

* Wave Energy Converters can be used to charge the UUVs
* Wave Energy is abundant, consistent, and offers high-power density.
e WEC can be coupled with a docking/charging station beneath to continuously supply wave power to UUVs.
* This can enable on-demand, at-sea, and autonomous recharging and surface communication for UUV.

WEC and Dock
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Introduction

* Motivation

e Autonomous control of UUV coupled with WEC system is insufficiently studied.
* Lack of an accurate and efficient integrated simulation framework to describe WEC-UUV behavior.

* Lack of an effective and robust control system that can guide the UUV to dock with the docking station with minimal fuel
consumption and time, subject to uncertainties and disturbances.

 Research Focus

* Develop a detailed simulation framework that integrates the WEC, docking station, and UUV, which can simulate the
UUV docking performance efficiently and accurately.

e Develop a robust optimal control to optimize the UUV docking performance subject to dynamic ocean environments and
uncertainties.




Methodology: WEC modeling
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* The mooring force is simulated by using MoorDyn. o ; 1 2
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: . Docking Station Suspending cable
* Docking station is modelled as a drag _
bodv in WecsS: Mass (kg) 1064.621 Stiffness 1000000
ody In Yvecsim Volume (m?) 0.394 Damping 100
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Methodology: UUV modeling

Nonlinear Dynamics of UUV

| i = J()V
Mv+Cw)+DWV)v+g(n) =17

 n =[x,z ¢, 0, ] represents position of the UUV
in the global frame

 v_ =[u,v,w,p, q, r] denotes the velocity of the
vehicle expressed in the body-fixed frame.

0.58m

Pictures taken from bluerobotics,ce

_ _ Mass (kg) 13.5
* The model parameters are calibrated with :
experiments in [1] Direction Max Thrust Moment of Inertia (kg (0.26, 0.23, 0.37)

m”2)

Surge 85N
Damping Coefficients (137.7,0, 33,0,0.8, 0)

Sway 85N (Nsm~(-1))

Heave 120 N Quadratic Damping (141, 217, 190, 1.19, 0.47,
Coefficients (Ns"2 m~(-2)) 1.5)

Roll 26 Nm
Added Mass (kg) (6.36, 7.12, 18,68)

Pitch 14 Nm

Yaw

22 Nm

Added Mass Moment (kg (0.189, 0.135, 0.222) S
mA/2)
"An open-source benchmark simulator: Control of a bluerov2 Do ‘

Science and Engineering 10.12 (2022): 1898
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* The control problem can be formulated as:

Control that needs
to be designed

Subject to:
- Model Uncertain/tiex/v

Actuation
\ M ‘ ) disturbances



Methodology: Input-Output Linearization ~ Obtainedaclean and neat

linearized system
Nonlinear state transformation

* Define state: e = Aé+ AA + BU + A8 ‘
e, =1n—x
8, =1 —X 4= [Oexe s ] and B = -06><6]
Osxs  Oexs Ig
e According to the UUV dynamics before, we have: i 7
LOR 0
€1 = € e 6x1
. — - -
e, = SJ(x)x; + S, (—M_l( C(Xy) + D(x)x, + 9(551)) + S,Af (xl,xz)
Af (%1, %;) + MY (7 + 8(t, %, %5, 7)) ) — X L 1.
where O6x1
0] (%1) X S oo o
Sl axl ( 2®I’n)+l( xz SZ M_16 (t,xl,xZ,T)
_ () 6xz - Transformed control,

9%, ( X2 ® In) +]( . . .
which we will design next

Apply the Input-Output Linearization control law:

- — -1 - - — - - - - 5 -
T=(S; M) (—SJ@E)%; + S MY (C(HE,) + D)%+ g(#y)) + %
Thrust force (physically)




Methodology: Robust LQR ] =

Now we need to design the u

0,
E

Minimize the Minimize the fuel
Ae + AA+ Bu + AS | docking time consumption

: According to the optimal control theory:
Proposed control algorithm: 8 P y

W(0) = () + s (0 Li.() = —R'B"PE,(0) |
U, (t) = =R 'BTP&(t) e The P represent the covariance matrix which is the
> 1 . solution of the algebraic Riccati equation (ARE).
us(t) = —(GB) 'y sign(s)

- Uy(t) is the continuous part which is used to
optimize the performance of the nominal
error system

» Sliding Mode Control is applied to regular the
uncertainties and disturbances:

| iis(t) = —(6B) 'y sign(®) |

» where the sliding surface is designed as:

.+ Us(t) is the discontinuous part which
guarantees the robustness.

s(t,e)

Need to transform back to the actual thrust! t
= Ge(t) — Ge(0) — G j (A—BR BTP)e(r)dr
0

where G € R®*12 s a constant matrix whichis
designed such that GB is nonsingular.




Simulation results: Dock motion a
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Simulation results: Docking in ideal scenario

Docking trajectory of the UUV
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Simulation results: Docking with disturbances (LQR only)

Disturbance signals are added to the dynamics (all 6DoF) which are unaware to the control:
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Simulation results: Docking with disturbances (RLQR)

Same disturbances are still applied in this case, but the RLQR control is applied

Docking trajectory of the UUV
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Conclusion

* Docking station motion is significant when it is hanged with the WEC which poses challenges for
docking.

* |tis critical to consider both the optimality and robustness in designing the docking control.

* ROC effectively controls the UUV to achieve an optimal docking performance in the presence of
uncertainties and disturbances.

Future work

e The hydrodynamic model will be improved by incorporating the tether force and ocean current
force.

* Experimentally validate the docking control in wave lab at MTU

* Apply UUV for mooring line inspections/fault diagnosis (camera vision-based)
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