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EXECUTIVE SUMMARY 

Dehlsen Associates’ Centipod wave energy converter’s (WEC) main potential design limitation is the 
inherent theoretical capture limit of a single degree of freedom (DoF) heaving point absorber. This 
TEAMER project aimed to leverage the expertise of Oregon State University WESRF’s personnel to 
implement a second DoF in the existing model predictive control (MPC) optimization formulation, 
allowing Dehlsen Associates to pursue future exploration of multi-DoF WEC designs. 

The modeling and control work in this project began with integration of pitch kinematics and angular 
momentum into a single pod, state space plant model.  A second disturbance vector for pitch excitation 
was then introduced, allowing for heave-only MPC control with the new 2 DoF state space model. Direct 
pitch control was then added to the MPC formulation and used to evaluate the heave-pitch controller 
with linear and non-linear hydrodynamics using 2 DoF MPC and the WEC-Sim model. 

The power gain resulting from this project fell within the mean power improvement range anticipated. 
In moving from 1-DoF (heave) to 2-DoF (heave-pitch), the power gain for a single pod is 13.7% for both 
the linear and nonlinear hydro results, providing a justification for further pursuit of this line of research 
and continued work to integrate this DoF with the larger WEC 
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1 INTRODUCTION TO THE PROJECT 

The “Centipod” wave energy converter’s (WEC) main potential design limitation is the inherent 
theoretical capture limit of a single degree of freedom (DoF) heaving point absorber. As stated by Uaine 
Gorm and the European Marine Energy Center in a recent design assessment of Centipod: “It is well 
established that WECs with asymmetric radiation, which is inherent in WECs that resist in surge or pitch, 
have greater capture potential. Point absorber capture width limits for pure surge and pure pitch are 
both λ/π, whilst combined modes of heave/pitch or surge/pitch fare even better at 3λ/2π.”  

Dehlsen Associates has already developed a mechanical means of accomplishing this second, pitch DOF 
and already possess a functional, validated numerical model with coupled model predictive control 
(MPC). Therefore, the only missing component is the technical know-how to implement a second DOF in 
the MPC optimization formulation. This is well within the demonstrated technical capability of the OSU 
team and upon hand-off of the updated control formulation, the value of this work will be immediately 
evaluated as a quantitative impact with Dehlsen Associates’ in-house capabilities.  

2 ROLES AND RESPONSIBILITIES OF PROJECT PARTICIPANTS 
Oregon State University Wallace Energy Systems & Renewables Facility (OSU WESRF) will provide the 
main body of work in this project. Meanwhile, the applicant, Dehlsen Associates, will provide guidance 
and system integration with their WEC’s numerical model. 

2.1 APPLICANT RESPONSIBILITIES AND TASKS PERFORMED 
The applicant (Dehlsen Associates) will provide data to the Network Facility (OSU) relevant to the WEC, 
enabling initiation of their work scope. Near the end of the project, Dehlsen Associates will couple the 
resulting controller with their in-house WEC-Sim model for final testing. 

2.2 NETWORK FACILITY RESPONSIBILITIES AND TASKS PERFORMED 
The Network Facility (OSU) will undertake control formulation design and implementation incorporating 
the second degree of freedom described in Section 1. 

3 PROJECT OBJECTIVES 
Dehlsen Associates aims to extend its “Centipod” WEC model predictive control (MPC) algorithm from 
single degree of freedom (DoF) heave operation to a two degree of freedom heave-pitch control 
optimization. Dehlsen Associates is seeking support from OSU to expand the existing single DOF MPC 
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algorithm as they have played an integral role in the development of the existing single DOF MPC 
algorithm over the last several years1, leaving this scope as a natural extension of prior research. 

It is expected that this second DoF has the potential to provide a significant uplift in AEP just as the 
original single DoF MPC implementation accomplished, which resulted in a theoretical 500% 
improvement in AEP or a 160% improvement if conservative practical constraints were applied. Since 
MPC is already implemented, and will serve as the new baseline, an expected AEP increase of 10-40% is 
seen to be possible without constraints. 

4 TEST FACILITY, EQUIPMENT, SOFTWARE, AND TECHNICAL EXPERTISE 
The WESRF at OSU provides research, testing and consulting services related to motors, generators, 
adjustable speed drives, power electronics, power supplies, power quality, industrial process 
equipment, power systems and renewables. 

This project, however, is focused on controls development only and will not require any physical 
hardware, with the exception of computers and software licenses. The software required will be 
MathWorks’s MATLAB and Simulink2 in addition to the open source optimal control solver ACADO3. 

5 TEST OR ANALYSIS ARTICLE DESCRIPTION 
This project is numerical only, and no test article will exist. The modeled WEC is therefore described 
here for context.  

The Centipod WEC is comprised of multiple 
point-absorber buoys which heave with passing 
waves. These point-absorber buoys, called 
“Pods”, react against a submerged, stable, 
common platform called the “Backbone”, 
allowing for power extraction through a power 
take-off system between the Pods and Backbone.  

The specific baseline design variant of the 
Centipod WEC used in this project consists of 
three axisymmetric Pods which have 1 degree of 
freedom in the heave direction. The Pods are 

 
1 M. Starrett, R. So, T. K. A. Brekken and A. McCall, "Increasing power capture from multibody wave energy conversion systems using model 
predictive control," 2015 IEEE Conference on Technologies for Sustainability (SusTech), Ogden, UT, 2015, pp. 20-26, doi: 
10.1109/SusTech.2015.7314316. 

2 “Simulink - Simulation and Model-Based Design - MATLAB & Simulink.” https://www.mathworks.com/products/simulink.html (accessed Oct. 
10, 2020). 

3 “ACADO Toolkit.” https://acado.github.io/ (accessed Oct. 10, 2020). 

Figure a.  Centipod WEC 
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connected, via a spar which also houses the power take-off unit, to a tension leg moored common 
Backbone that provides pre-tension to the mooring lines. 

6 WORK PLAN 
The workplan will be comprised of a kick-off where WEC parameters are established between Dehlsen 
Associates and OSU, the main body of controls development work, and finally a hand-off and AEP impact 
assessment.  

6.1 EXPERIMENTAL SETUP, DATA ACQUISITION SYSTEM, AND INSTRUMENTATION  
Numerical Project Only – Section Not Applicable. 

6.2 NUMERICAL MODEL DESCRIPTION  
The primary model used in the execution of this project will be a state-space model of the Centipod WEC 
to be used as a plant model and a simple model for the purposes of controller development. This state-
space model was originally developed by Dehlsen Associates and OSU for the original MPC 
development4 and improved over the last several years. 

Once the controller is re-formulated and deemed to be complete, it will be coupled with the exiting WEC 
numerical model for impact assessment. The Dehlsen Associates team worked with NREL and Sandia to 
produce a numerical model of Centipod in WEC-Sim. The WEC-Sim model employed by the Centipod 
development program has subsequently been validated against CFD models and wave basin 
experimental data by NREL, with their conclusion being: 

“The differences between the experimental and WEC-Sim derived power and loads are well within the 
expected limitations of linear-based modeling and experimental error. Given these results, the Centipod 
WEC-Sim model has been validated, and could foreseeably be used, along with standard safety factors, 
to design and simulate the Centipod’s power production, operational design loads, and fatigue life.” 

6.3 TEST AND ANALYSIS MATRIX AND SCHEDULE 
The modeling and control work in this project will take place over approximately two weeks. 

Week 1: 

1) Integrate pitch kinematics and angular momentum into a single pod, state space plant model.  
The model will then be 2 DOF: heave and pitch. 

2) Introduce second disturbance vector for pitch excitation. 

3) Evaluate heave-only MPC controller with new 2 DOF state space model. 

 
4 M. Starrett, R. So, T. K. A. Brekken, and A. McCall, “Development of a state space model for wave energy conversion systems,” in IEEE Power 
and Energy Society General Meeting, 2015, vol. 2015-Septe, doi: 10.1109/PESGM.2015.7285998. 
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Week 2: 

4) Add direct pitch control to MPC formulation.  The MPC formulation will now be two control 
inputs: PTO force in heave and PTO force (torque) in pitch. 

5) Evaluate the heave-pitch controller with linear hydrodynamics using 2 DOF MPC and the state 
space model. 

Week 3: 

6) Couple controller with WEC-Sim model. 

7) Evaluate controller with and without non-linear hydrodynamics enabled in WEC-Sim. 

6.4 SAFETY 
Numerical Project Only – Section Not Applicable. 

6.5 CONTINGENCY PLANS 
This is a relatively low-risk project, with the only risk being unsuccessful implementation of the control, 
which would likely be due to a lack of convergence in the optimal control solver. However, results 
indicating non-viable control will also be a valuable outcome to this project, as they will highlight needs 
for future research in the field of wave energy converter control. 

6.6 DATA MANAGEMENT, PROCESSING, AND ANALYSIS 

6.6.1 Data Management 
Data will be stored where it is generated, whether at OSU WESRF or Dehlsen Associates, with the 
exception of data that is required for inter-entity exploitation of the project, which will be stored with 
both entities. Raw data output from MATLAB will generally be discarded, as it may be repeatably 
generated with the output control formulation and numerical tools. Processed outputs relevant to the 
evaluation of the research conducted will be saved and made available for usage in reports and direct 
data submissions to MHK DR. 

The following will be uploaded to MHK DR: 

Example Time Series (baseline 1DOF) - normalized MATLAB data structure (.m) 

Example Time Series (resultant 2DOF) - normalized MATLAB data structure (.m) 

 

6.6.2 Data Processing 
This control formulation and numerical modeling project will not require intensive data processing as 
may be required for a project based on physical testing and sensor data. Some data processing will be 
required however to package data for useful dissemination. If the native controller and/or simulation 
variable names are non-intuitive for persons not involved with the project they may be renamed and 
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combined into a structure. For example, a variable named ‘dz’ in the simulation may be packed into a 
test case specific structure with an intuitive name such as ‘testCase01.heaveVelocity’. If the variable or 
field names are non-intuitive, an explanatory memo will accompany the uploaded data. 

6.6.3 Data Analysis 
Data will be directly generated from the MATLAB simulations. No scaling will be required. No statistical 
processing will be required, unless useful for enhanced understanding of a time-series dataset. Plots will 
be generated where an understanding of forces or kinematics would be ideally communicated through 
visual means for reporting purposes. 

7 PROJECT OUTCOMES  

7.1 RESULTS 

7.1.1. Nomenclature 
𝑣!   Velocity (linear or angular) in 𝑖"# DoF. 

𝑥!   Displacement (linear or angular) in 𝑖"# DoF. 

𝜉!    𝑖"# state variable for radiation force state-space approximation. 

𝐹$,&'  Radiation force in 𝑝"# DoF due to velocity in 𝑞"# DoF. 

𝐹#(,!   Hydrostatic force in 𝑖"# DoF. 

𝐹),!   Viscous drag force in 𝑖"#DoF. 

𝐹*,!   Wave excitation force in 𝑖"#DoF. 

𝐹&,!   PTO force in	𝑖"#DoF. 

m  Mass of the float. 

𝐴&',+  Added mass at infinite frequency in 𝑝"#	DoF due to acceleration in 𝑞"#	DoF. 

𝐶!   The hydrostatic restoring coefficient in 𝑖"#	DoF. 

𝐶),,!   Viscous drag coefficient in 𝑖"#	DoF. 

𝐴'&  Frequency-dependent added mass in 𝑝"#	DoF due to acceleration in 𝑞"#	DoF. 

𝐵'&  Frequency-dependent damping in 𝑝"#	DoF due to velocity in 𝑞"#	DoF. 

𝐾&'  Radiation force impulse response without infinite frequency added mass. 

𝑍'&  WEC intrinsic impedance response in 𝑝"#	DoF due to velocity in 𝑞"#	DoF. 

𝑎!    Polynomial coefficients. 
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𝑐!,-   Polynomial coefficients for cost functional. 

𝐰  Set of design variables. 

𝑁  Prediction horizon. 

	𝜌.,!   Finite horizon terminal cost penalty. 

𝑃!   Polynomial of design variables. 

𝚿𝐢  Constant matrices. 

𝐁𝐢  Constant column vectors. 

ϒ𝐢  Column vectors of non-linear functions. 

𝐪  Column vectors of non-linear functions. 

𝐩  Column vectors of non-linear functions. 

𝐮	  Control input vector, 𝐅𝐩(𝑁). 

𝐝  Excitation force disturbance vector, 𝐅𝐞	(𝑁). 

𝑅!   Some real number 

𝐗 ⊆ 𝐰  State vector. 

𝐮 ⊆ 𝐰  Manipulated variable. 

7.1.2. Time Domain Model of a Multiple Degree of Freedom WEC 
We will follow the subscript notation of WEC-Sim Toolbox [1] for the degrees of freedom for WEC, in 
which the integers from 1,2,.. 6 correspond to surge, sway, heave, roll, pitch, and yaw, respectively. The 
WEC device is a full-scale version of the Dehlsen Associates, LLC multi-pod CENTIPOD [2]. A 1:35-scale 
version of the device is shown in Figure 1. This CENTIPOD device has three floating pods and three spars 
fixed to a backbone structure, and the backbone is anchored using mooring lines, as shown in Figure 2. 
In its 2-DoF version, each pod is attached to a PTO mechanism in the heave and pitch DoFs. Each pod in 
Figure 2 is modeling as a wave point absorber device. The Cummins equation for the coupled surge and 
pitch dynamics for a point absorber pod (assuming a local reference frame) is given by, 

The Cummins equation for the heave dynamics of a point absorber pod is given by, 

The hydrostatic, viscous damping, and radiation force terms in (1) and (2) are given by, 

 

!𝑚 + 𝐴!!(∞)(�̇�! + 𝐴!"(∞)�̇�" = −𝐹#,!!(𝑡) − 𝐹#,!"(𝑡) − 𝐹%,!(𝑡) + 𝐹&,!(𝑡), (1a) 

!𝑚 + 𝐴""(∞)(�̇�" + 𝐴"!(∞)�̇�! = −𝐹#,""(𝑡) − 𝐹#,"!(𝑡) − 𝐹%,"(𝑡) − 𝐹'(,"(𝑡) − 𝐹),"(𝑡) + 𝐹&,"(𝑡). (1b) 

!𝑚 + 𝐴**(∞)(�̇�*(𝑡) = −𝐹#,**(𝑡) − 𝐹'(,*(𝑡) − 𝐹%,*(𝑡) − 𝐹),*(𝑡) + 𝐹&,*(𝑡). (2) 
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Figure 1. Image of the Dehlsen Associates, LLC, 1:35-scale CENTIPOD WEC. 

 
(a) 

 
(b) 

Figure 2. Degrees of freedom for dynamic modeling of CENTIPOD WEC: (a) baseline configuration; (b) 
model with mooring lines. 
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𝐹#,!!(𝑡) = 1 𝐾!!(𝑡 − 𝜏)𝑣!𝑑𝜏
+

,-
, (3a) 

𝐹#,!"(𝑡) = 1 𝐾!"(𝑡 − 𝜏)𝑣"𝑑𝜏
+

,-
, (3b) 

𝐹#,""(𝑡) = ∫ 𝐾""(𝑡 − 𝜏)𝑣"𝑑𝜏
+
,- , (3c) 

𝐹#,"!(𝑡) = 1 𝐾"!(𝑡 − 𝜏)𝑣!𝑑𝜏
+

,-
, (3d) 

𝐹#,**(𝑡) = 1 𝐾**(𝑡 − 𝜏)𝑣*𝑑𝜏
+

,-
 (3e) 

𝐹'(,.(𝑡) = 𝐶.𝑥. , 𝑖 = 3,5. (3f) 

𝐹%,.(𝑡) = 𝐶/,.𝑣.|𝑣.|, 𝑖 = 1,3,5. (3g) 

7.1.2.1 State-Space Approximation of Radiation Force 
The convolution integral term in (3a) through (3d) can be approximated by a transfer function 
expression, 

𝐹#,)0(𝑡) = 1 𝐾)0(𝑡 − 𝜏)𝑣0𝑑𝜏
+

,-
⟺𝐹#,)0(𝑗𝜔) = 𝑍)0(𝑗𝜔)𝑉0(𝑗𝜔), (4) 

Using the device data from WAMIT [3], we can approximate the intrinsic impedance 𝑍&'(𝑗𝜔) in (4) by a 
second order transfer function using System Identification techniques,  

𝑍)0(𝑗𝜔) = B𝑗𝜔 C𝐴)0(𝑗𝜔) − 𝐴)0(∞)D + 𝐵0)(𝑗𝜔)F ≈
𝛼)0,!𝑠 + 𝛼)0,1

𝑠2 + 𝛽)0,!𝑠 + 𝛽)0,1
K
(345

, (5) 

Using (5) in (4) enables us to express the radiation force as a second-order transfer function, 

𝐹#,)0(𝑠) ≈
𝛼)0,!𝑠 + 𝛼)0,1

𝑠2 + 𝛽)0,!𝑠 + 𝛽)0,1
𝑉0(𝑠), (6) 

The transfer function expression in (6) can be converted to the State-Space expressions in the Observer-
Canonical forms for each of the radiation force term, 

L �̇�6
(𝑡)

�̇�67!(𝑡)
N = O 0 1

𝑎6 𝑎67!
R O 𝜉6

(𝑡)
𝜉67!(𝑡)

R + O 𝑏6𝑏67!
R 𝑣0(𝑡), (7a) 

𝑦)0(𝑡) = [1 0] O
𝜉6(𝑡)
𝜉67!(𝑡)

R ≈ 𝐹#,)0(𝑡). (7b) 

by the comparison of (6) and (7), we have, 𝛼&',2 = 𝑏3 , 	𝛽&',2 = −𝑎342, 𝛽&',5 = −𝑎3 , and 𝛼&',5 =
𝑏342 − 𝑏3𝑎342. 
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7.1.2.2 State-Space Description of Surge-Pitch Dynamics  
 Making a change of variables in (1), 

𝑀.. = !𝑚 + 𝐴..(∞)(, 𝑖 = 1,3,5 (8a) 

𝐹!,8&+ = −𝐹#,!!(𝑡) − 𝐹#,!"(𝑡) − 𝐹%,!(𝑡) + 𝐹&,!(𝑡), (8b) 

𝐹",8&+ = −𝐹#,""(𝑡) − 𝐹#,"!(𝑡) − 𝐶"𝑥" − 𝐹%,"(𝑡) − 𝐹),"(𝑡) + 𝐹&,"(𝑡). (8c) 

Using (8) in (1), we get the pitch-surge coupled model of a pod as, 

O 𝑀!! 𝐴!"(∞)
𝐴"!(∞) 𝑀""

R O�̇�!�̇�"
R = O

𝐹!,8&+
𝐹",8&+

R (9a) 

O�̇�!�̇�"
R = B

𝑚!! 𝑚!"
𝑚"! 𝑚""

F O
𝐹!,8&+
𝐹",8&+

R (9b) 

Using Equation (8) and Equation (9a), we can convert Equation (9b) into the state-space form, 

�̇�!(𝑡) = 𝑚!! C−𝐹#,!!(𝑡) − 𝐹#,!"(𝑡) − 𝐹%,!(𝑡) + 𝐹&,!(𝑡)D

+𝑚!" C−𝐹#,""(𝑡) − 𝐹#,"!(𝑡) − 𝐶"𝑥" − 𝐹%,"(𝑡) − 𝐹),"(𝑡) + 𝐹&,"(𝑡)D 
(10a) 

�̇�"(𝑡) = 𝑚"! C−𝐹#,!!(𝑡) − 𝐹#,!"(𝑡) − 𝐹%,!(𝑡) + 𝐹&,!(𝑡)D

+𝑚"" C−𝐹#,""(𝑡) − 𝐹#,"!(𝑡) − 𝐶"𝑥" − 𝐹%,"(𝑡) − 𝐹),"(𝑡) + 𝐹&,"(𝑡)D 
(10b) 

Where following the (7) for each radiation force term in (10), 

𝐹#,!!(𝑡) ≈ 𝜉*(𝑡) ⟺ L�̇�*
(𝑡)

�̇�9(𝑡)
N = O 0 1

𝑎* 𝑎9
R O𝜉*

(𝑡)
𝜉9(𝑡)

R + O𝑏*𝑏9
R 𝑣!(𝑡) (11a) 

𝐹#,!"(𝑡) ≈ 𝜉"(𝑡) ⟺ L𝜉"̇
(𝑡)

𝜉:̇(𝑡)
N = O 0 1

𝑎" 𝑎:
R O𝜉"

(𝑡)
𝜉:(𝑡)

R + O𝑏"𝑏:
R 𝑣"(𝑡) (11b) 

𝐹#,""(𝑡) ≈ 𝜉;(𝑡) ⟺ L𝜉;̇
(𝑡)

𝜉<̇(𝑡)
N = O 0 1

𝑎; 𝑎<
R O𝜉;

(𝑡)
𝜉<(𝑡)

R + O𝑏;𝑏<
R 𝑣"(𝑡) (11c) 

𝐹#,"!(𝑡) ≈ 𝜉=(𝑡) ⟺ L 𝜉=̇
(𝑡)

�̇�!1(𝑡)
N = O 0 1

𝑎= 𝑎!1
R O 𝜉=

(𝑡)
𝜉!1(𝑡)

R + O 𝑏=𝑏!1
R 𝑣!(𝑡) (11d) 

Using variables from (11) in (10), we get, 

�̇�!(𝑡) = 𝑚!! C−𝜉*(𝑡) − 𝜉"(𝑡) − 𝐹%,!(𝑡) + 𝐹&,!(𝑡)D

+𝑚!" C−𝜉;(𝑡) − 𝜉=(𝑡) − 𝐶"𝑥" − 𝐹%,"(𝑡) − 𝐹),"(𝑡) + 𝐹&,"(𝑡)D 
(12a) 

�̇�"(𝑡) = 𝑚"! C−𝜉*(𝑡) − 𝜉"(𝑡) − 𝐹%,!(𝑡) + 𝐹&,!(𝑡)D

+𝑚"" C−𝜉;(𝑡) − 𝜉=(𝑡) − 𝐶"𝑥" − 𝐹%,"(𝑡) − 𝐹),"(𝑡) + 𝐹&,"(𝑡)D 
(12b) 
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Expanding (12) we get, 

�̇�!(𝑡) = −𝑚!"𝐶"𝑥" −𝑚!!𝜉*(𝑡) − 𝑚!!𝜉"(𝑡) − 𝑚!"𝜉;(𝑡) − 𝑚!"𝜉=(𝑡) − 𝑚!!𝐹%,!(𝑡) − 𝑚!"𝐹%,"(𝑡)
− 𝑚!"𝐹),"(𝑡) + 𝑚!!𝐹&,!(𝑡) + 𝑚!"𝐹&,"(𝑡) 

(13a) 

�̇�"(𝑡) = −𝑚""𝐶"𝑥" −𝑚"!𝜉*(𝑡) − 𝑚"!𝜉"(𝑡) − 𝑚""𝜉;(𝑡) − 𝑚""𝜉=(𝑡) − 𝑚""𝐹%,"(𝑡) − 𝑚"!𝐹%,!(𝑡)
− 𝑚""𝐹),"(𝑡) + 𝑚"!𝐹&,!(𝑡) + 𝑚""𝐹&,"(𝑡) 

(13c) 

�̇�"(𝑡) = 𝑣"(𝑡) (13d) 

We can combine Equation (11) and Equation (13) to get a matrix form of the surge-pitch state-space 
model, 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
�̇�!
�̇�"
�̇�"
�̇�*
�̇�9
�̇�"
�̇�:
�̇�;
�̇�<
�̇�=
�̇�!1⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

!!×!

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 −𝑚!"𝐶" −𝑚!! 0 −𝑚!! 0 −𝑚!" 0 −𝑚!" 0
0 0 −𝑚""𝐶" −𝑚"! 0 −𝑚"! 0 −𝑚"" 0 −𝑚"" 0
0 1 0 0 0 0 0 0 0 0 0
𝑏* 0 0 0 1 0 0 0 0 0 0
𝑏9 0 0 𝑎* 𝑎9 0 0 0 0 0 0
0 𝑏" 0 0 0 0 1 0 0 0 0
0 𝑏: 0 0 0 𝑎" 𝑎: 0 0 0 0
0 𝑏; 0 0 0 0 0 0 1 0 0
0 𝑏< 0 0 0 0 0 𝑎; 𝑎< 0 0
𝑏= 0 0 0 0 0 0 0 0 0 1
𝑏!1 0 0 0 0 0 0 0 0 𝑎= 𝑎!1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑣!
𝑣"
𝑥"
𝜉*
𝜉9
𝜉"
𝜉:
𝜉;
𝜉<
𝜉=
𝜉!1⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
−𝑚!! −𝑚!"
−𝑚"! −𝑚""
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

O
𝐹%,!
𝐹%,"

R +

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
−𝑚!"
−𝑚""
0
0
0
0
0
0
0
0
0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝐹)," +

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑚!! 𝑚!"
𝑚"! 𝑚""
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

O
𝐹&,!
𝐹&,"

R 

(14) 

7.1.2.3. State-Space Description of Heave Dynamics  
The radiation force term in (3) for heave axis can be expressed by following state-space description by 
using (3e), (6), and (7), 

𝐹#,**(𝑡) ≈ 𝜉!(𝑡) ⟺ L𝜉!̇
(𝑡)

�̇�2(𝑡)
N = O 0 1

𝑎! 𝑎2
R O𝜉!

(𝑡)
𝜉2(𝑡)

R + O𝑏!𝑏2
R 𝑣*(𝑡) (15) 

Using (15) with 𝑀66 = 𝑚 + 𝐴66(∞), we can convert (1) into a state-space form as, 

�̇�*(𝑡) =
1
𝑀**

C−𝜉!(𝑡) − 𝐶*𝑥*(𝑡) − 𝐹%,*(𝑡) − 𝐹),*(𝑡) + 𝐹&,*(𝑡)D (16a) 



 

12 

�̇�*(𝑡) = 𝑣*(𝑡) (16b) 

Combining (15) and (16), we get the final expression for the heave dynamics in the state-space matrix 
form, 

⎣
⎢
⎢
⎡
𝑣*̇
𝑥*̇
𝜉!̇
𝜉2̇⎦
⎥
⎥
⎤
=

⎣
⎢
⎢
⎢
⎡ 0

−𝐶*
𝑀**

−1
𝑀**

0

1 0 0 0
𝑏! 0 0 1
𝑏2 0 𝑎! 𝑎2⎦

⎥
⎥
⎥
⎤

^

𝑣*
𝑥*
𝜉!
𝜉!

_ +

⎣
⎢
⎢
⎢
⎡
−1
𝑀**
0
0
0 ⎦
⎥
⎥
⎥
⎤
𝐹%,*(𝑡) +

⎣
⎢
⎢
⎢
⎡
−1
𝑀**
0
0
0 ⎦
⎥
⎥
⎥
⎤
𝐹),*(𝑡) +

⎣
⎢
⎢
⎢
⎡
1
𝑀**
0
0
0 ⎦
⎥
⎥
⎥
⎤
𝐹&,*(𝑡) (17) 

7.1.2.4. Combined Surge-Pitch-Heave State-Space Model  
We can combine the coupled surge-pitch dynamics in (14) with heave dynamics in (17) to get a 
combined Surge-Pitch-Heave model, 

�̇� = 𝐀𝐗 + 𝐁𝐯𝐅𝐯 + 𝐁𝐩𝐅𝐩 + 𝐁𝐞𝐅𝐞 (18) 

where 

𝐅𝐩 = [𝐹)," 𝐹),*]B (19a) 

𝐅𝐯 = [𝐹%,! 𝐹%," 𝐹%,*]B (19b) 

𝐅𝐞 = [𝐹&,! 𝐹&," 𝐹&,*]B (19c) 

𝐗 = [𝑣! 𝑣" 𝑥" 𝜉* 𝜉9 𝜉" 𝜉: 𝜉; 𝜉< 𝜉= 𝜉!1 𝑣* 𝑥* 𝜉! 𝜉2]B (19d) 

The radiation force terms are approximated by following state variables using (7), 

𝐹#,!! = 𝜉*, 	𝐹#,!" = 𝜉", 	𝐹#,"! = 𝜉;, 	𝐹#,"" = 𝜉=, 	𝐹#,** = 𝜉! (20) 

The state-space matrices in (18) are developed in (21). 

7.1.2.5. Polynomial Approximations of Quadratic Viscous Drag Force 
The quadratic viscous drag term 𝑣!|𝑣!| in (3g) makes the overall WEC dynamic problem numerically 
'stiff.' One solution is to approximate this term with a smooth higher-order polynomial. A third-order 
polynomial approximation for 𝑣!|𝑣!| is used in the surge and heave axis as shown in Figure 3(a), where 
the range of interest of velocity in 𝑚/𝑠𝑒𝑐 is 𝑣! ∈ (−1.5, 1.5), and a fifth-order polynomial 
approximation is used for the pitch axis as shown in Figure 3(b), where the range of interest of velocity 
in 𝑟𝑎𝑑/𝑠𝑒𝑐 is 𝑣! ∈ (−0.5, 0.5). So, with 𝑝!,-  being the 𝑗"# polynomial coefficient for 𝑖"# degree 
polynomial curve fit,  

𝐹%,. = 𝐶/,.𝑣.|𝑣.| ≈ 𝐶/,.!𝑝*,*𝑣.* + 𝑝*,!𝑣.(, 𝑖 = 1,3.		 (22a) 

𝐹%," = 𝐶/,"𝑣"|𝑣"| ≈ 𝐶/,"!𝑝","𝑣"" + 𝑝",*𝑣"* + 𝑝",!𝑣"( (22b) 
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A =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 −𝑚!"𝐶" −𝑚!! 0 −𝑚!! 0 −𝑚!" 0 −𝑚!" 0
0 0 −𝑚""𝐶" −𝑚"! 0 −𝑚"! 0 −𝑚"" 0 −𝑚"" 0
0 1 0 0 0 0 0 0 0 0 0
𝑏# 0 0 0 1 0 0 0 0 0 0
𝑏$ 0 0 𝑎# 𝑎$ 0 0 0 0 0 0
0 𝑏" 0 0 0 0 1 0 0 0 0
0 𝑏% 0 0 0 𝑎" 𝑎% 0 0 0 0
0 𝑏& 0 0 0 0 0 0 1 0 0
0 𝑏' 0 0 0 0 0 𝑎& 𝑎' 0 0
𝑏( 0 0 0 0 0 0 0 0 0 1
𝑏!) 0 0 0 0 0 0 0 0 𝑎( 𝑎!)

𝟎!!×$

𝟎$×!!

0
−𝐶#
𝑀##

−1
𝑀##

0

1 0 0 0
𝑏! 0 0 1
𝑏+ 0 𝑎! 𝑎+⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (21a) 

𝐁𝐩 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
−𝑚!" 0
−𝑚"" 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

0
−1
𝑀**

0 0
0 0
0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 𝐁𝐯 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
−𝑚!! −𝑚!" 0
−𝑚"! −𝑚"" 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0 0
−1
𝑀**

0 0 0
0 0 0
0 0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 𝐁𝐞 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑚!! 𝑚!" 0
𝑚"! 𝑚"" 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0 0
1
𝑀**

0 0 0
0 0 0
0 0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (21b) 

 

 
(a) 

 

 
(b) 

Figure 3. Polynomial approximations of the quadratic drag term 𝑣.|𝑣.|: (a) 3rd order curve fit for heave 
and surge axes; (b) 5th order curve fit for pitch axis. 
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(a) 

 
(b) 

 
(c) 

Figure 4. Polynomial approximations of the quadratic drag term 𝑣.|𝑣.|: (a) 3rd order curve fit for surge; 
(b) 3rd order curve fit for heave; (c) 5th order curve fit for pitch axis. 
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7.1.2.6. Nonlinear Plant Model for NMPC 
Putting (22) in (18) gives us a nonlinear 2-DoF (Heave and Pitch) WEC plant model, where the surge is 
coupled with the pitch and heave is a decoupled DoF. We can use this plant model as a prediction model 
in NMPC. We can also include the PTO currents, 𝐼&,!X𝐹&,!Y, as a state in (11) to incorporate the nonlinear 
PTO model in the WEC model (21). We can also use the model with a differential input form, which is 
more friendly for optimization. This can be achieved by expressing the control variables, PTO forces, as 
states and considering their derivatives as inputs to the model. The resulting model format in (21) is 
supported in ACADO toolbox in MATLAB. 

�̇�1 = 𝑚11"−𝜉3 − 𝜉5 − 𝐶𝑑,1"𝑝13,3𝑣13 + 𝑝13,1𝑣1# + 𝐹𝑒,1#
																							+𝑚15"−𝐶5𝑥5 − 𝜉7 − 𝜉9 − 𝐶𝑑,5"𝑝5,5𝑣55 + 𝑝5,3𝑣5

3 + 𝑝5,1𝑣5# − 𝐹𝑝,5 + 𝐹𝑒,5#
�̇�5 = 𝑚55"−𝐶5𝑥5 − 𝜉7 − 𝜉9 − 𝐶𝑑,5"𝑝5,5𝑣55 + 𝑝5,3𝑣5

3 + 𝑝5,1𝑣5# − 𝐹𝑝,5 + 𝐹𝑒,5#
																								+𝑚51"−𝜉3 − 𝜉5 − 𝐶𝑑,1"𝑝13,3𝑣1

3 + 𝑝13,1𝑣1# + 𝐹𝑒,1#
�̇�5 = 𝑣5
�̇�3 = 𝑏3𝑣1+𝜉4
�̇�4 = 𝑏4𝑣1+𝑎3𝜉3+𝑎4𝜉4
�̇�5 = 𝑏5𝑣5+𝜉6
�̇�6 = 𝑏6𝑣5+𝑎5𝜉5+𝑎6𝜉6
�̇�7 = 𝑏7𝑣5+𝜉8
�̇�8 = 𝑏8𝑣5+𝑎7𝜉7+𝑎8𝜉8
�̇�9 = 𝑏9𝑣1+𝜉10
�̇�10 = 𝑏10𝑣1+𝑎9𝜉9+𝑎10𝜉10

�̇�3 = (1 𝑀33⁄ ) '−𝜉1(𝑡) − 𝐶3𝑥3(𝑡) − 𝐶𝑑,3"𝑝13,3𝑣3
3 + 𝑝13,1𝑣3# − 𝐹𝑝,3(𝑡) + 𝐹𝑒,3(𝑡)(

�̇�3 = 𝑣3
�̇�1 = 𝑏1𝑣3+𝜉2
�̇�2 = 𝑏2𝑣3+𝑎1𝜉1+𝑎2𝜉2

�̇�𝑝,3 =
𝑑

𝑑𝑡
𝐹𝑝,3 = 𝑑𝐹𝑝,3

�̇�𝑝,5 =
𝑑

𝑑𝑡
𝐹𝑝,5 = 𝑑𝐹𝑝,5

𝐼�̇�,3 = '
𝑑𝐼𝑝,3

𝑑𝑡
( 𝑑

𝑑𝑡
𝐹𝑝,3 = '

𝑑𝐼𝑝,3

𝑑𝑡
( 𝑑𝐹𝑝,3

𝐼�̇�,5 = '
𝑑𝐼𝑝,5

𝑑𝑡
( 𝑑

𝑑
𝐹𝑝,5 = '

𝑑𝐼𝑝,5

𝑑𝑡
( 𝑑𝐹𝑝,5

 (22) 
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7.1.2.7. Matlab Implementation of WEC State-Space Model 

7.1.2.7.a Heave Model in MATLAB 
The heave model in (17) is implemented in MATLAB as shown below, 

 

7.1.2.7.b Surge-Pitch Model in Matlab 
The surge-pitch model in (14) is implemented in MATLAB as shown below, 

 

7.1.2.7.c Combined Surge-Heave-Pitch Model in MATLAB 
The combined surge-heave-pitch model in (21) is implemented in MATLAB as shown below, 
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7.1.2.7.d Surge-Pitch-Heave Augmented Nonlinear Model of WEC for Embedding in the NMPC 
The MATLAB implementation of (22) using ACADO toolkit is shown below. It has some extra states to 
include a variable number of PTO pickup coils of the linear generator. 

 

7.1.3. Identification of Radiation Force State-Space Parameters 
 The radiation force state-space model parameters, 𝑎!  and 𝑏!  in (11), (15), (21), and (22) are determined 
by fitting a transfer function model in the data from BEMIO. For this purpose, the System-Identification 
GUI in Matlab has been used, as shown in Figure 5. 
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Figure 5. System Identification GUI in MATLAB and example results for 𝐹$,66 System Identification. 

7.1.3.1. 𝑭𝒓,𝟏𝟏 Radiation Force State-Space Model Identification  
The system identification for the frequency response data object for 𝐹$,22 constructed from BEMIO data 
is shown in Figure 6. The corresponding identified state-space model in the observer-canonical form is 
shown in Figure 7. 

 
Figure 6. System Identification results, 𝐹$,22(blue), frequency response data from BEMIO (Brown). 
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Figure 7. Observer-canonical form of state-space description for 𝐹$,22. 

7.1.3.2. 𝑭𝒓,𝟏𝟓 Radiation Force State-Space Model Identification  
The system identification for the frequency response data object for 𝐹$,2J constructed from BEMIO data 
is shown in Figure 8. The corresponding identified state-space model in the observer-canonical form is 
shown in Figure 9. 

 
Figure 8. System Identification results, 𝐹$,2J(blue), frequency response data from BEMIO (Brown). 
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Figure 9. Observer-canonical form of state-space description for 𝐹$,2J. 

7.1.3.3. 𝑭𝒓,𝟓𝟓 Radiation Force State-Space Model Identification  
The system identification for the frequency response data object for 𝐹$,JJ constructed from BEMIO data 
is shown in Figure 10. The corresponding identified state-space model in the observer-canonical form is 
shown in Figure 11. 

 
Figure 10. System Identification results, 𝐹$,JJ(blue), frequency response data from BEMIO (Brown). 
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Figure 11. Observer-canonical form of state-space description for 𝐹$,JJ. 

7.1.3.4. 𝑭𝒓,𝟓𝟏 Radiation Force State-Space Model Identification  
The system identification for the frequency response data object for 𝐹$,J2 constructed from BEMIO data 
is shown in Figure 12. The corresponding identified state-space model in the observer-canonical form is 
shown in Figure 13. 

 
Figure 12. System Identification results, 𝐹$,J2(blue), frequency response data from BEMIO (brown). 
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Figure 13. Observer-canonical form of state-space description for 𝐹$,J2. 

7.1.3.5. 𝑭𝒓,𝟑𝟑 Radiation Force State-Space Model Identification  
The system identification for the frequency response data object for 𝐹$,66 constructed from BEMIO data 
is shown in Figure 14. The corresponding identified state-space model in the observer-canonical form is 
shown in Figure 15. 

 
Figure 14. System Identification results, 𝐹$,66(blue), frequency response data from BEMIO (brown). 
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Figure 15. Observer-canonical form of state-space description for 𝐹$,66. 

7.1.4. Nonquadratic WEC-PTO Model 
The electrical power output from the PTO mechanism of the WEC is the difference between the 
mechanical power input from the waves and the losses in the PTO system. For a given PTO generator 
with a converter efficiency 𝜂LMN), the copper loss constant 𝐾LO, and the winding resistance 𝑅P, and 
𝑖"#	PTO current 𝐼&,!, the electrical PTO power cost functional to be maximized, including the electrical 
losses, is given by,  

𝑚𝑎𝑥
C!,#

	𝑃D,. = 𝜂EF8% C𝐹),.𝑣. −𝐾EG𝐼),.!𝐹),.(
2𝑅HD, (23) 

This case study scenario is taken from an example linear PTO generator [4] with the PTO force-current 
characteristics given by Figure 16(a). This relation is described by a third-order curve fit between the 
PTO current and the PTO force, 

𝐼),.!𝐹),.( = 𝑎*,.𝐹),.* + 𝑎2,.𝐹),.2 + 𝑎!,.𝐹),. + 𝑎1,. , (24) 

Putting (24) in (23), we get, 

𝑃D,. = 𝑐1,.𝐹),.𝑣. − (𝑐!,.𝐹),.: + 𝑐2,.𝐹),." + 𝑐*,.𝐹),.9 + 𝑐9,.𝐹),.* + 𝑐",.𝐹),.2 + 𝑐:,.𝐹),. + 𝑐;,.), (25) 

The surface plot of PTO cost functional in (25) is plotted in the PTO velocity-force plane, as shown in 
Figure 16(b). 

7.1.5. NMPC Design for 2-DoF Heave-Pitch PTOs 
A given NMPC problem optimizes a manipulated variable u ⊆ w to maximize some cost functional P of a 
set of design variables w while respecting the given system constraints. A general class of NMPC 
problems has been formulated in [4], in which the cost functional takes on a nonlinear piecewise 
polynomial form. Considering the case of finite-horizon optimization, we can mathematically describe 
the NMPC problem of such a class as,  
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(a) 

 

 
(b) 

Figure 16. PTO current-force characteristics of PTO generator: (a) polynomial curve fitting for the 
experimental data; (b) electrical PTO power surface plot in PTO velocity-force plane. 

𝑚𝑎𝑥	
𝐮
𝐏(𝐰) =

⎩
⎨

⎧
𝐏𝟏(𝐰) + 𝜌K,!(𝐰), 𝑤6 < 𝑅!
𝐏𝟐(𝐰) + 𝜌K,2(𝐰), 𝑅! ≤ 𝑤6 ≤ 𝑅2

⋮
𝐏𝐣(𝐰) + 𝜌K,4(𝐰),

⋮
𝑅4,! ≤ 𝑤6 ≤ 𝑅4

, (26) 

subject to, 

Dynamic Constraints: �̇� = 𝐠(𝐰), (27a) 

Algebraic Constraints: 𝟎 = 𝐩(𝐰), (27b) 

Equality Constraints: ϒ𝟏 = 𝐁𝐞𝐪𝐮𝐚𝐥, (27c) 

Inequality Constraints: 𝐁𝐥𝐨𝐰𝐞𝐫 ≤ ϒ𝟐 ≤ 𝐁𝐮𝐩𝐩𝐞𝐫. (27d) 

where,	𝑤3 ∈ 𝐰 and	ϒ!  are algebraic expressions of the following forms, 

ϒ𝟏 = 𝚿𝟏𝐪, (28a) 

ϒ𝟐 = 𝚿𝟐𝐪. (28b) 

For the 2-DoF (heave-pitch) WEC problem, the objective function to be maximized in (25) will be the 
sum of electrical PTO power output in the heave and pitch DoFs for each pod,   

𝑃D = 𝑃D,* + 𝑃D,", (29) 

Using the technique developed in [4], we can put (29) into Pseudo-Quadratic form by defining a suitable 
𝐡𝐢 vector for heave and pitch as, 

𝐡𝒊 = {𝐹),.* 𝐹),.2 𝐹),. 𝑣. 1|B , 𝑖 = 3,5 (30) 
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with, 

𝐡 = O𝐡𝟑𝐡𝟓
R, (31) 

we can reformulate (29) as, 

𝑃D =
1
2𝐡

𝐓 ~2 O𝐖𝟑 𝟎
𝟎 𝐖𝟓

R� 𝐡 =
1
2𝐡

𝐓(2𝐖)𝐡, (32) 

By using (25) in (29), the weighting matrix 𝐖 can be obtained by polynomial decomposition of (32) by 
the vector 𝐡 in (31) as the basis vector, 

𝐖𝐢 =
1
2

⎣
⎢
⎢
⎢
⎢
⎡
−2𝑐!,. −𝑐2,. 0 0 0
−𝑐2,. −2𝑐*,. −𝑐9,. 0 0
0 −𝑐9,. −2𝑐",. 𝑐1,. −𝑐:,.
0 0 𝑐1,. 0 0
0 0 −𝑐:,. 0 −2𝑐;,.⎦

⎥
⎥
⎥
⎥
⎤

, 𝑖 = 3,5 (33) 

7.1.6. Simulink Implementation of Pitch and Heave PTO NMPC 
The Simulink model of 2-DoF NMPC for the pitch and heave is shown in Figure 18. The number of PTO 
units is increased in a step at 200 sec. The heave and pitch instantaneous PTO power and moving 
average power are shown in Figure 19 and 20, respectively. The heave and pitch PTO forces are shown 
in Figure 21 and Figure 22, respectively. 

 
Figure 18. Simulink model of 2-DoF NMPC for a single pod. 
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Figure 19. The heave PTO instantaneous power and moving average for a single pod. 

 
Figure 20. The pitch PTO instantaneous power and moving average for a single pod. 

 
Figure 21. The heave PTO force for pod-1. 
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Figure 22. The pitch PTO moment for pod-1. 

7.1.7. Interface of Pitch-Heave NMPC with a Single Pod in WEC-Sim Centipod Model 

7.1.7.1 Heave-only-PTO WEC-Sim Model and Simulation with 2-DoF NMPC 
The 2-DoF NMPC is interfaced with a single pod in the heave-only-PTO WEC-Sim model of Centipod 
shown in Figure 23. 

 
Figure 23. 2-DoF NMPC interface with WEC-Sim Single PTO model. 

The simulation results for multiple PTO pickup coils are presented here. The instantaneous and moving 
average heave PTO power graphs are shown in Figure 24 under Nonlinear hydrodynamic conditions, the 
heave PTO force is shown in Figure 25, and the heave velocity and position for pod-1 are shown in Figure 
26. The output power results under Linear hydrodynamic conditions are shown in Fig 27. 
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Figure 24. The heave PTO instantaneous power and moving average for a pod-1 in WEC-Sim under 
Nonlinear hydrodynamic conditions. 

 
Figure 25. The heave PTO force for pod-1 under Nonlinear hydrodynamic conditions. 

 
Figure 26. The heave velocity and position for pod-1 under Nonlinear hydrodynamic conditions. 
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Figure 27. The heave PTO instantaneous power and moving average for a pod-1 in WEC-Sim under 
Linear hydrodynamic conditions. 

7.1.7.2 Heave and Pitch-PTO WEC-Sim Model for Centipod and Simulation with 2-DoF NMPC 
A pitch PTO is added in the WEC-Sim Centipod model along with the heave PTO mechanism, as shown in 
Figure 27. 

 
Figure 27. 2-DoF NMPC interface with WEC-Sim single PTO model with heave-pitch PTOs. 

7.1.7.2.a Heave and Pitch Simultaneous Control 
With the two degrees of freedom controller simultaneously in action for both degrees of freedom under 
Nonlinear hydrodynamic conditions, the instantaneous power and average power responses along with 
position and velocities are shown in Figure 29 through Figure 32 below. The output power results under 
Linear hydrodynamic conditions are shown in Figure 33 and Figure 34. 
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Figure 29. The heave PTO instantaneous power and moving average for WEC-Sim model for pod-1, 
under Nonlinear hydrodynamic conditions. 

 

Figure 30. The heave velocity and position for pod-1. 

 
Figure 31. The pitch PTO instantaneous power and moving average for WEC-Sim model for pod-1, under 
Nonlinear hydrodynamic conditions. 
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Figure 32. The pitch velocity and position for pod-1. 

 
Figure 33. The heave PTO instantaneous power and moving average for WEC-Sim model for pod-1, 
under Linear hydrodynamic conditions. 

 
Figure 34. The pitch PTO instantaneous power and moving average for WEC-Sim model for pod-1, under 
Linear hydrodynamic conditions. 

7.1.7.2.b Pitch Control Disabled, Heave Control Enabled System Responses 
The heave output power responses under the scenario when the pitch control loop is open and the 
heave control loop is closed, are shown in Figure 35 and Figure 36 for nonlinear and linear 
hydrodynamics in WEC-Sim, respectively.  
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Figure 35. The heave PTO instantaneous power and moving average for WEC-Sim model for pod-1, 
under Nonlinear hydrodynamic conditions. 

 
Figure 36. The heave PTO instantaneous power and moving average for WEC-Sim model for pod-1, 
under Linear hydrodynamic conditions. 

7.1.7.2.c Pitch Control Enabled, Heave Control Disabled System Responses 
The pitch output power responses under the scenario when the pitch control loop is closed and the 
heave control loop is open are shown in Figure 37 and Figure 38 for nonlinear and linear hydrodynamics 
in WEC-Sim, respectively. 

 
Figure 37. The pitch PTO instantaneous power and moving average for WEC-Sim model for pod-1, under 
Nonlinear hydrodynamic conditions. 
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Figure 38. The pitch PTO instantaneous power and moving average for WEC-Sim model for pod-1, under 
Linear hydrodynamic conditions. 

7.1.7.3 Pitch-only-PTO WEC-Sim Model and Simulation with 2-DoF NMPC 
The 2-DoF NMPC is interfaced with a single pod in the pitch-only-PTO WEC-Sim. The pitch output power 
responses are shown in Figure 39 and Figure 40 for nonlinear and linear hydrodynamics in WEC-Sim, 
respectively.  

 
Figure 39. The pitch PTO instantaneous power and moving average for WEC-Sim model for pod-1, under 
Nonlinear hydrodynamic conditions; controller becomes unstable. 

 
Figure 40. The pitch PTO instantaneous power and moving average for WEC-Sim model for pod-1, under 
Linear hydrodynamic conditions. 
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7.2 LESSON LEARNED AND TEST PLAN DEVIATION 
The summary of WEC-Sim simulation results for the full-scale version of Dehlsen's 3-pod device is given 
in Table 3 and Table 4 with the simulation conditions given in Table 1. For the average power results, the 
'Exponential Weighting' option has been used to calculate the moving average of the instantaneous PTO 
power, with an exponential weight set to '1'; this selection gives equal weight to each data sample 
during averaging, and results get smooth with time, making them easy to be interpreted and compared. 
The data in Table. 2 corresponds to Linear hydrodynamic conditions in WEC-Sim while in Table. 3 
corresponds to Nonlinear hydrodynamic conditions. 

Table 1. Sea conditions for WEC-Sim simulation. 
WEC-Sim Simulation Parameter Value 

Significant Wave Height [m] 2.5 
Peak Period [s] 7.35 

Wave Spectrum Type Pierson Moskowitz (PM) 
Wave Class Irregular 

 
Table 2. Average 1 output power results per Pod with 2-DoF NMPC Controller, under  

Linear Hydrodynamic conditions in WEC-Sim 

WEC DoFs 
Controller 
Enabled 

Reference 
Figures 

Heave Power 
[kW] 

Pitch Power 
[kW] 

Net Power 
[kW] 

One (Heave) Heave 27 103.00 - 103.00 
One (Pitch) Pitch 40 - 34.90 34.90 

Two  
(Heave and Pitch) 

Heave 36 90.40 - 90.40 
Pitch 38 - 38.40 38.40 

Heave and Pitch 33 and 34 78.30 38.80 117.10 
1 Exponentially weighted moving average with exponential weight set to ‘1’. 

 
Table 3. Average 2 output power results per Pod with 2-DoF NMPC Controller, under  

Nonlinear Hydrodynamic conditions in WEC-Sim. 

WEC DoFs 
Controller 
Enabled 

Reference 
Figures 

Heave Power 
[kW] 

Pitch Power 
[kW] 

Net Power 
[kW] 

One (Heave) Heave 24 117.00 - 117.00 
One (Pitch) Pitch 39 - Unstable - 

Two  
(Heave and Pitch) 

Heave 35 74.60 - 74.60 
Pitch 37 - 43.80 43.80 

Heave and Pitch 29 and 31 70.30 62.70 133.00 
2 Exponentially weighted moving average with exponential weight set to '1'. 
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8 CONCLUSIONS AND RECOMMENDATIONS 

In moving from 1-DoF (heave) to 2-DoF (heave-pitch), the power gain for a single pod is 13.7% for both, 
the linear and nonlinear hydro results in Table 2 and Table 2 respectively.The power gain per pod is 
calculated as follows, 

%	𝐏𝐨𝐰𝐞𝐫	𝐆𝐚𝐢𝐧 =
(𝐍𝐞𝐭	𝐩𝐨𝐰𝐞𝐫	𝐰𝐢𝐭𝐡	𝟐𝐃𝐨𝐅) − (𝐧𝐞𝐭	𝐩𝐨𝐰𝐞𝐫	𝐰𝐢𝐭𝐡	𝟏𝐃𝐨𝐅	𝐇𝐞𝐚𝐯𝐞)

𝐧𝐞𝐭	𝐩𝐨𝐰𝐞𝐫	𝐰𝐢𝐭𝐡	𝟏𝐃𝐨𝐅	𝐇𝐞𝐚𝐯𝐞 × 100	

=
117.10 − 103.00

103.00 × 100 = 13.7% 
(34) 

The power gain result falls within the mean power improvement range anticipated for this project. 
While the result is reflective of only a single sea state, the improvement is likely to be reflected similarly 
in annual energy production (AEP), with an AEP uplift of over 10% expected. The AEP impact of this 
project will therefore have substantive impact on levelized cost of energy (LCOE), providing a 
justification for further pursuit of this line of research and continued work to integrate this DoF with the 
larger WEC design. 
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