Renewable Energy 241 (2025) 122362

e 3

Contents lists available at ScienceDirect
Renewable Energy

AN INTERNATIONAL JOURNAL

Renewable Energy

s =
ELSEVIER journal homepage: www.elsevier.com/locate/renene

L))

Check for

Multi-objective optimization of co-located wave-wind farm layouts | e
supported by genetic algorithms and numerical models

a,b,* a,b

Felipe Teixeira-Duarte , Paulo Rosa-Santos a’b, Francisco Taveira-Pinto

@ Hydraulics, Water Resources and Environmental Division, Department of Civil Engineering, Faculty of Engineering of the University of Porto, 4200-465, Porto, Portugal
® Marine Energy Research Group, Interdisciplinary Centre of Marine and Environmental Research of the University of Porto - CIIMAR, 4400-465, Porto, Portugal

ARTICLE INFO ABSTRACT
Keywords: This study introduces a novel methodology for optimizing Wave Energy Converter (WEC) positioning in an array
WEC

using a continuous domain, surpassing the traditional fixed layout approaches. The Wave Energy Park Layout
Assessment Index (WLA), which integrates the wave protection factor (HRA) and power absorption efficiency (q-
factor), is employed to evaluate the performance of WEC farms. To enhance computational efficiency, unsu-
Offshore renewable energy pervised classification methods, such as k-means clustering, are used to reduce the number of sea states while
Co-located wave-wind energy farms accurately representing wave energy, preserving 90 % of incoming wave energy. Genetic algorithms, integrating
K-means the SNL-SWAN hydrodynamic model, are then used to optimize WEC layout by balancing exploration and
computational cost, maintaining solution diversity, and avoiding premature convergence. Compared to the non-
optimized designs, the proposed method increases absorbed wave power by 87 % and wave height reduction by
46 %. The study acknowledges trade-offs between objectives and area restrictions, and provides an open-source
code for further research and development in WEC farm optimization. This integrated approach aims to enhance
the efficiency and effectiveness of WEC farm designs, offering a robust framework for future advancements in
wave energy extraction.

Layout optimization
Genetic algorithm
SNL-SWAN

List of abbreviations (continued)
WLA Wave Energy Park Layout Assessment Index

Hs Significant wave height HRA Reduction in significant wave height within the protected area index
Om Mean wave direction AOI Area of interest
Kt Transmission Coefficient MAPE Mean Absolute Percentage Error
LCoE Levelized Cost of Energy RMSE Root Mean Square Error
O&M Operation and maintenance GMM Gaussian mixture models
PTO Power take-off VBGMM  Variational Bayesian Gaussian mixture models
Te Wave energy period @ power representativeness
WEC Wave energy converter
Pyray power of the entire array
q g-factor of an array 1. Introduction
Z Piyec Summation of the power output of each single isolated device in the array
SNL Sandia National Laboratory In the transition towards a more sustainable energy system, wave
SWAN Simulating Waves Nearshore model o . . .

. . energy has significant potential due to its abundant, predictable, and
EA Evolutionary algorithms K K R K
GA Genetic algorithms high-density resource [1]. However, the high Levelized Cost of Energy
WFA WindFloat Atlantic project Turbine (LCoE) caused mainly by immature technologies hinders its progress.
GEBCO  General Bathymetric Chart of the Oceans Understanding wave farm effects (diffraction, reflection, radiation) on
IHO International Hydrographic Organization energy capture and their dependence on WECs’ layout is crucial for their
10C the Intergovernmental Oceanographic Commission of UNESCO

optimized design [2], which aims to maximize energy output, eventually

(continued on next column) explore co-location benefits (e.g., with offshore wind farms), and
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minimize costs and environmental impacts.

Portugal’s focus on offshore wind (10 GW targeted by 2030 [3])
creates an opportunity for co-location with wave energy [4,5]. This
option offers synergies that may range from dual energy conversion and
lower overall costs to improved accessibility for offshore wind farm
maintenance [6-13] since wave parks can act as wave attenuators,
creating a “shadowing” effect that protects the wind turbines [14,15].
This is particularly relevant as offshore wind farms are burdened by
significant operation and maintenance (O&M) costs, reaching 30%-35
% of their lifetime expenses [4]. Therefore, the industry is shifting to-
wards preventive and predictive maintenance strategies to reduce these
costs [5]. The high construction and O&M costs are also a major barrier
for wave energy farms [16]. Fortunately, combining offshore wind tur-
bines with WECs creates an opportunity to share infrastructure, elec-
trical systems, and operational resources, thereby reducing overall costs
[17].

The increased energy yield is also among the primary motivations for
exploring combined wind and wave energy arrays [18], with wave en-
ergy offering greater predictability compared to wind energy [6].
Additionally, their lagging can benefit battery storage systems and
potentially reduce the required combined power capacity, leading to a
smoother and more continuous power output. The integration of wave
energy can also reduce intermittency-related balancing costs in the
power grid [3].

Expanding on these co-location benefits, offshore wave farms can
also serve a secondary purpose — coastal protection through wave
attenuation and “shadowing” of sensitive shorelines [19,20], leading to
lower mean wave heights [17]. However, traditional farm modeling
approaches often oversimplify key aspects. These simplifications include
assuming invariant transmission coefficients, fixed power ratings, and
limited farm configurations. Additionally, they may neglect local marine
space restrictions or utilize a small number of WEC units.

Optimizing the layout of wave farms is complex due to the numerous
variables involved (WEC position, array shape), constraints (space
available, already allocated areas), and conflicting objectives (energy
output vs. costs vs. environment). Current design methods often neglect
these aspects, focusing solely on maximizing the energy output [2].
Additionally, computational demands increase significantly with
multi-objective functions or high-fidelity wave-WEC interaction models.

With limited field data available, WEC development usually relies on
physical and numerical modeling. Numerical modeling, particularly
through wave propagation models, is well-suited for assessing multi-
variable combinations. These tools can be adapted to forecast local
wave climates, wave farm energy outputs, and both near-field and far-
field effects [21,22].

Phase-averaged models provide a computationally efficient
approach for the simulation of waves and nearshore wave-induced
current fields. However, most of them rely on parametrizations to
represent WECs and other relevant wave characteristics. A common
technique involves representing WECs as porous structures acting as
sources or sinks for wave energy extraction [23,24]. The SWAN
(Simulating WAves Nearshore) spectral wave model is widely used and
validated for coastal wave transformation modeling. A modified version,
SWAN-SNL [25-28], allows for WEC representation as power sinks using
device-specific power performance data.

The use of evolutionary algorithms (EAs), specifically genetic algo-
rithms (GAs), provides an efficient solution to this optimization prob-
lem. EAs, inspired by natural selection, offer flexible and robust
optimization frameworks, with GAs operating on candidate solutions to
mimic the survival of the fittest, optimal layout, considering factors like
energy output, environmental impact, and economic viability. This
paper addresses the challenge of wave farm layout optimization by
proposing a novel, multi-objective framework. The framework in-
tegrates three key components:
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(i) Representative sea-state selection: a statistical analysis coupled
with machine learning techniques is used to identify a represen-
tative set of sea states that accurately capture the local wave
climate.

(i) Multi-objective genetic algorithm optimization: a tailored GA is
developed to optimize wave farm layouts for multiple objectives.
This includes energy production estimated using SNL-SWAN
model, alongside environmental impact considerations seam-
lessly integrated into the fitness function. Domain-specific oper-
ators are implemented in the GA to ensure physically feasible
solutions based on established knowledge of wave-WEC
interaction.

(iii) Open-source framework for reproducibility: the complete code-
base is provided to facilitate replication by other researchers. This
fosters further research on WEC farm optimization and coastal
morphodynamic evolution.

Previous studies in WEC array optimization have extensively used
fixed or small arrays in a much greater area [2,29], where the optimi-
zations merely find the best separation distance between WECs [30-32],
focused on discrete positioning strategies. For instance, many works
employ grid-based methods, limiting WEC placements to predefined
locations [32-42]. While these methods simplify computational de-
mands, they inherently restrict the flexibility needed to achieve optimal
layouts in realistic scenarios [43,44]. Moreover, the majority of existing
studies emphasize single-objective optimization, such as maximizing
power output [2,31] or focus on specific environmental conditions [17,
45,46], limiting their generalizability.

As the computational demands of evaluating WEC arrays grow
exponentially with the number of converters, developing a fast and
effective optimization approach for large-scale wave farms becomes
crucial [47]. To address this challenge, the proposed multi-objective
evolutionary algorithm optimizes both power output and hydrody-
namic interactions within large-scale farms. The methodology combines
a smart initialization process, a population-based evolutionary algo-
rithm, a third-generation wave numerical model, and continuous global
optimization. This integrated approach effectively handles the com-
plexities of large-scale wave farm optimization, scaling up the array size
without sacrificing computational efficiency, while accurately capturing
significant interactions between WECs and managing the extensive
search space dimensions inherent to the problem.

This approach departs from prior studies that often focus on single or
limited objectives. It offers a more realistic solution by simultaneously
considering a large number of WECs on a continuous deployment
domain, variable installed capacity, and a robust statistical representa-
tion of local wave conditions. The versatile SNL-SWAN model [26,27,
48], effectively captures complex interactions and provides greater
adaptability to site-specific constraints and stakeholder priorities. The
proposed GA framework demonstrates its effectiveness through rigorous
simulations and case studies. These studies evaluate convergence speed,
solution quality, and overall robustness against existing methods. The
framework excels in balancing energy extraction with environmental
considerations.

The research discusses future directions, including applicability to
diverse wave farm configurations, integration with advanced compu-
tational models for accuracy, and the development of self-adaptive
frameworks for dynamic optimization under varying wave conditions.
Overall, the work highlights the power of GA as a tool for optimizing
wave farm layouts. By facilitating efficient wave energy harvesting
while considering environmental and economic constraints, GA-based
optimization holds significant promise for unlocking the potential of
wave energy and contributing to a sustainable future powered by ocean
renewables.

The paper is organized as follows: Section 2 presents the methodo-
logical framework, detailing the chosen case study region, evaluation
parameters, WEC technology, numerical model, and the multi-objective
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Fig. 1. Location of the WindFloat Atlantic farm. ABCD are the vertices of the protection area and FEGH the submarine cable area [50].

Table 1
Coordinates (WGS84) of the protection area vertices and the wind turbines [51].

Vertex Latitude (°) Longitude (°)
A —9.0875989 41.697497
B —9.0335472 41.697934
C —9.0332331 41.675428
D —9.0872658 41.674992
WFA3 —9.0501671 41.686668
WFA1 —9.0574999 41.686501
WFA2 —9.0646667 41.686501

GA formulation. Section 3 delves into the statistical analysis employed
for sea-state selection. It elaborates on the implementation of the un-
supervised classification model, along with considerations regarding
model accuracy, validation, and convergence. Section 4 showcases the
key findings of the wave farm layout optimization process. This section
discusses the proposed solutions, drawing support from metrics associ-
ated with energy output, environmental impact (shielding protection),
and computational efficiency. Finally, Section 5 summarizes the study’s
primary contributions, offering practical considerations and recom-
mendations for future research.

2. Methodology
2.1. Case study site

The case-study site is located offshore Viana do Castelo (Northern
Portugal), where the offshore farm of WindFloat Atlantic project is

located. This wind farm is composed of three floating wind turbines with
a total installed capacity of 25 MW, and is located between 17 and 19 km

from the coast of Viana do Castelo, where water depths can reach 100 m
[49]. The wind farm positioning area is 4.77 km?, and the protection
area is 11.25 km? [50]. Fig. 1 presents the location of WindFloat park
and Table 1 the vertices’ coordinates of the protection area and the wind
turbines (WFA) [51].

The bathymetry data used were obtained from the datasets of GEBCO
(The General Bathymetric Chart of the Oceans), which operates under
the joint support of the International Hydrographic Organization (IHO)
and the Intergovernmental Oceanographic Commission (IOC) of
UNESCO.

2.2. Parameters and deployment area

This research work builds upon previous work [14], which intro-
duced a new multi-objective index for evaluating WEC farm layouts: the
Wave Energy Park Layout Assessment Index (WLA). This index combines
two separate metrics: the reduction in significant wave height within the
protected area (HRA) and a factor representing the power capture effi-
ciency (qg-factor).

Unlike previous work [14], which employed fixed layouts for the
WEGs, this study utilizes a continuous domain for WEC placement. This
approach allows for greater flexibility, as WEC locations can be freely
optimized within the designated area, adhering only to minimum dis-
tance constraint between WECs. To initiate the optimization process, the
initial layout was generated by randomly placing WECs within the
allowable domain. Fig. 2 depicts one such initial layout alongside the
selected placement area.

The HRA evaluates the reduction in significant wave height (Hy)
within the designated area of interest (AOI) protected by the WEC farm.
The AOI is defined as the rectangular area around the turbines, ensuring
a minimum distance from each turbine (e.g., 1600 x 400 m with a 200 m
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Fig. 2. Protection area (dark blue), WEC farm possible area (light blue), area of interest (red), and wind turbines (yellow). (For interpretation of the references to
color in this figure legend, the reader is referred to the Web version of this article.)

buffer as depicted in Fig. 2). The HRA index is calculated using:

100 i Hs; — HSye, D

HRA=—
RA n Hs;

i

where i represents a calculation node within the AOI, n is the total
number of nodes, Hs; is the significant wave height on the i ™ node in the
baseline scenario (without the WEC farm), and Hsy.., is the significant
wave height on the i ™ node with the WEC farm.

A common metric used to assess WEC farm performance is the g-
factor, since it provides a simple way to quantify how WEC interactions
affect overall power absorption. The g-factor is defined as the ratio be-
tween the power absorbed by the entire array, Pyrqy, and the summation
of the power that can be absorbed by each single WEC in the array
individually (i.e. without the influence of the other WECs), P, i.e.,

P array
— (2)
E Pyec

To aid decision-making and selecting the optimal WEC farm layout
based on stakeholder priorities, the Wave Energy Park Layout Assess-
ment Index (WLA) was developed. This index combines two seemingly
opposing metrics — the HRA (wave protection) and the g-factor (wave
power absorption) - to provide a comprehensive performance
evaluation.

The WLA index normalizes HRA and q-factor values and produces an
output ranging from zero to one, with one representing the most
favorable choice among the alternatives,

q

WLA =pN(q) + sN(HRA) 3)

wherep (p =1 - s) is the weighting factor for the power absorption, and s

is the weighting factor for the wave protection (shielding). The WLA
index employs a min-max normalization (N), i.e., a rescaling technique,
to put HRA and g-factor values into a range between 0 and 1. This
normalization ensures a consistent and comparable scale for both met-
rics within the final WLA index.

By incorporating weighting factors for power absorption and wave
protection, the WLA index allows stakeholders to prioritize their desired
outcome, hence resulting in a more informed decision-making process
for WEC farm layout design.

To have more insights on the array efficiency relative to the number
of devices it was also analyzed the Capture Width Ratio (CWR), which is
a widely used metric for evaluating the hydrodynamic efficiency of a
WEC. It represents the proportion of wave energy absorbed by the device
relative to the energy flux available within its characteristic length. This
efficiency is expressed as a ratio of the power absorbed by the WEC to
the product of the wave energy flux per unit width and the characteristic
length of the device.

The characteristic length, L, is often defined as the physical width of
the WEC that is perpendicular to the wave front. In this study, L corre-
sponds to the overall width of the CECO. The CWR can be expressed as:

P, abs

CWR = T

where P, is the power captured by the WEC, J is the wave energy flux
per meter of wave front, and L is the device’s characteristic width. Un-
like absolute measures of absorbed energy, the CWR offers a dimen-
sionless perspective on the performance of a device. By normalizing
energy capture relative to the device’s size, it becomes easier to compare
different WECs, regardless of their physical dimensions or operational
scales. This makes the CWR particularly useful for benchmarking and
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Table 2
Principal features of CECO (Key parameters for this investi-
gation are in bold).

Parameter Value
PTO inclination angle (°) 30
LMM inclination (°) 45
LMM length (m) 9.52
LMM width (m) 6
LMM maximum stroke (m) 15
LMM mass (ton) 288
Overall width (m) 22
PTO rated power (kW) 500

performance optimization.

2.3. Wave energy converter

In this study, the floating version of CECO [52-54] device was used
as a case study for capturing wave energy. CECO is a point absorber WEC
that utilizes a sloped power take—off (PTO) system [53], allowing it to
capture both the vertical and horizontal force components of ocean
waves [55,56]. The main elements of the CECO consist of two lateral
mobile modules (LMMs) connected by a frame of tubular elements. In its
current design, CECO uses a rack and pinion system to convert the
absorbed energy into electricity [52].

The CECO’s design is still under development and continues to
evolve as research progresses. Table 2 summarize the principal features
of CECO. Since, there has not been much studies done on the impacts of
CECO farms, this study uses the results of Ramos et al. [57], obtained for
the same site, as a starting point. The authors proposed an arrangement
of CECO units placed on a curvilinear alignment facing the prevailing
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wave direction (NW or 315°).

The SNL-SWAN model uses the WEC power matrix to establish the
frequency dependent transmission coefficients. Fig. 3 presents the power
matrix of CECO [57] used as an input in the model.

2.4. SNL-SWAN

The model SNL-SWAN [25,58] refers to the improvements that
Sandia National Laboratories made in SWAN to allow a more accurate
evaluation of WEC farm effects on wave propagation, considering also
the dependence of WEC performance on it. The model’s accuracy has
been verified and preliminarily validated against data from controlled
wave tank experiments [26-28]. SNL-SWAN includes new types of ob-
stacles that allow calculating transmission coefficients (kt) based on the
WEC power performance obtained from its power matrix or its relative
capture width curve. The model also permits frequency-dependent
wave energy transmission through obstacles. In fact, this method en-
ables the transmission coefficient (linked to wave power absorption) to
vary when wave conditions change over a relatively broad range of
temporal and spatial scales.

Furthermore, SNL-SWAN incorporates more comprehensive physical
processes, allowing for a more accurate representation of wave behavior
within WEC arrays. Additionally, the model grants greater control over
simulation parameters, which enables to input more precise data and
fine-tune settings to achieve a more realistic simulation environment.
SNL-SWAN also has greater flexibility compared to the original SWAN.
In essence, SNL-SWAN emerges as a powerful tool, significantly
improving upon SWAN’s capabilities for simulating ocean waves and
evaluating WEC performance.

Preliminary studies with the SNL-SWAN model have already been
conducted for the case study site — the WindFloat Atlantic wind farm

3 5 7 9 11 13 15 17 19
Tp (s)
200 250 300 350
Power (KW)

Fig. 3. Power matrix for CECO. It shows the average power output for each sea state conditions (adapted from Ref. [57]).
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located offshore Viana do Castelo in the Northern coast of Portugal —
focusing on co-located offshore energy farms and on analyzing their
impact on wave climate. The objective was to investigate the potential
effects of an array of WECs on leeward wave propagation and its syn-
ergies with the already installed wind farm [59]. Furthermore, the study
aimed to establish the multi-objective function to examine and choose
between WECs arrays.

This study uses a frequency-dependent transmission coefficient
based on the WEC’s power absorption matrix at each wave frequency.
While this approach offers advantages, it has some limitations. SNL-
SWAN does not account for diffracted or radiated waves generated by
WEC operation. Additionally, resonance phenomena and the potential
formation of standing waves within the WEC array are not captured.
These factors can influence WEC power absorption, and their omission
contributes to a shared limitation between SNL-SWAN and the standard
SWAN model [30].

Despite these limitations, SNL-SWAN remains the preferred choice
for assessing environmental and far-field impacts of WEC farms
compared to alternative models like RANS/SPH-CFD, coupled BEM and
Boussinesq, mild-slope, and non-hydrostatic models [30]. This prefer-
ence stems from SNL-SWAN’s key strength: ability to simulate wave
propagation across extensive coastal areas with varying bathymetry at
an acceptable/manageable computationally cost. In contrast, potential
flow models, while offering higher accuracy in some aspects, lack the
flexibility to handle complex bathymetric features and are more
demanding computationally.

2.5. Unsupervised classification for minimal representative sea states

The efficiency of the GA model in WEC farm optimization is highly
dependent on the number of sea states considered. Since GA simulations
require evaluating each population member (layout) under all sea states
across generations, the computational cost increases significantly with
additional sea states. For instance, in a scenario with 50 individuals, a
95 % crossover rate, and 100 generations, adding just one sea state
would result in over a 4000-fold increase in simulations (Scenario S4,
see Table 6). This exponential growth can become a major bottleneck,
especially considering the vast amount of data (nearly 600,000 entries).
Nevertheless, the unsupervised learning techniques effectively deal with
massive volumes of data [60].

Unsupervised classification is a fundamental method in machine
learning and data mining, allowing for the automatic discovery of hid-
den patterns and structures within unlabeled datasets, attributes or
characteristics. The process involves representing the data, defining a
distance or similarity measure, initializing the clusters, assigning data
points to the clusters, iteratively refining those clusters, and evaluating
the results. The group assignment is done based on the similarity to
cluster centroids. The quality of the clusters can be evaluated using both

internal or external metrics. Different clustering algorithms exist, each
employing different strategies and assumptions based on the nature of
the data and the problem at hand.

Some studies applied clustering methods to wave climate estimation,
mostly k-means, to deal with the huge amount of data [60-68]. The
k-means clustering algorithm can be applied to metocean data (e.g.,
significant wave heights, Hg, peak wave periods, Tp, peak wave di-
rections, € m) to analyze and understand local extreme events, as well as
to characterize waves and currents. In this context, k-means clustering
aims to identify distinct groups or clusters within the dataset based on
the values of Hg, Tp, and & m [66], to reduce the number of sea states
needed for the study.

The unsupervised classification methods utilized included k-means,
Gaussian Mixture models (GMM), and Variational Bayesian Gaussian
Mixture models (VBGMM). These methods were implemented using the
python scikit-learn library [69] with the full and filtered dataset. The
approach followed the normalization procedure outlined by Camus
[60], to equalize the scales.

To assess the effectiveness of sea state clustering, this study
employed two common error metrics: Mean Absolute Percentage Error
(MAPE) and Root Mean Squared Error (RMSE) [28]. These metrics are
widely used to evaluate model predictions providing valuable insights
on the representativeness of each cluster regarding the corresponding
sea states [70]. Notably, previous research [62-65] used metrics similar
to MAPE to evaluate input wave parameters within k-means clustering
applications.

2.6. Genetic algorithm optimization

The genetic algorithms (GA) are the most recognized type of evolu-
tionary algorithm and have been applied several times as optimization
function and search method [71]. These are robust methods that do not
necessitate derivative information and can manage a huge number of
variables to determine the minimum or the maximum of a function.
Usually, these algorithms have a binary representation, a low proba-
bility of mutation, and an emphasis on genetically inspired recombina-
tion to determine the selection of fittest, to generate the new candidate
solutions.

The algorithm flow is inspired by the continuous Darwinian
improvement cycle of evaluation [72]. In GA, the survivability, or
fitness, is evaluated by a selection operator, which determines the so-
lutions that best solve the problem with minimum error. The individuals
of the populations are evaluated according to the objective function, the
fitness. An evaluation step is a non-deterministic approach. The repe-
tition of the process for several generations, the probability disseminates
genes that promote higher fitness, creating better solutions and extin-
guishing the worse suited [31].

This study used an initial population of 500 random individuals
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Table 3
Statistical description of wave data parameters.
Hs (m) Tp (s) Om (°)
Mean 1.9 10.2 295
1.2 2.4 30
Standard Deviation
0.1 2.4 0
Minimum
1.1 8.5 281
Quantile 25 %
1.6 10.1 299
Quantile 50 %
2.5 11.8 315
Quantile 75 %
10.4 23.6 359

Maximum

(WEC farm layouts). Then the workflow of GA enters in a loop, Fig. 4
[12]. The SNL-SWAN model is incorporated inside the GA loop. At the
beginning, the model simulates all initial population for every sea state,
generating 2 outputs: the power absorption of each WEC and the Hg of
every node in the AOIL Those outputs are processed in the evaluation
code, and generate a table with weighted mean Hg reduction and power
absorption for each layout.

The fitness evaluation uses the WLA index [14] to classify the layouts
and determine the elite that will be granted in the next generation. The
parents’ selection is done using the probability according to the indi-
vidual ranking, i.e., individuals of higher rank have higher changes to be
picked, independently of their WLA value. It is worth noting that even
with a low probability of choosing the same pair of parents more than
once, the creation of new individuals is forced to be different from the

ones already in the offspring.

The reproduction was performed applying the crossover and muta-
tion, according to the flowchart in Fig. 5, using the function “create child
layout” described in the flowchart presented in Fig. 6, which combines
the WECs from the parents regarding the minimal distance between
WECs constrain.

The crossover flowchart outlines the selection process for elite in-
dividuals and best parents, which are individuals preserved even when
the crossover operation is bypassed due to the crossover rate, used to
populate the next generation. This ensures the retention of valuable
genetic information from the previous generation. The information for
all individuals, including offspring generated by crossover and elite
members from the prior generation, is retrieved from a dictionary data
structure. Then, the crossover loop iterates through each crossover rate,
determining whether crossover should be applied based on the pre-
defined probability.

To maintain population diversity and prevent duplicates, a check for
repeated individuals is done after the crossover operation. This ensures
that the newly formed population adheres to the principle of a unique
solution space within the GA. Finally, the complete population un-
dergoes mutation, introducing random variations within each WEC
(segment) while adhering to the pre-defined layout constraints. This
mutation process injects novelty into the population, facilitating the
exploration of the solution space.

Generating offspring layouts (children) within a continuous domain
presents a challenge due to the minimum distance constraint between
individual WECs. This function, illustrated in Fig. 6, addresses this
challenge by randomly selecting a WEC from either parent layout. The
selected WEC’s position is then evaluated to ensure it adheres to the
minimum distance requirement from previously placed WECs in the
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child layout.

However, this approach can potentially lead to deadlocks where the
remaining WECs cannot be positioned within the constraints. To miti-
gate this, a limit is set on the number of placements attempts for each
WEC. If this limit is reached without a successful placement, the
reproduction process restarts. This mechanism ensures that even if the
parents are highly similar, a valid child layout satisfying the minimum
distance restriction will eventually be generated.

There are two possible ways that an individual from previous gen-
erations survive to the next one. The first one is that it belongs to the
elite of that generation, which assures that the best individuals of the
generation are not lost in the reproduction process. The second one is
when the crossover does not occur, i.e., the rate of occurrence of that
matting is lower than the crossover rate predefined. In this case, the best
parents are repeated in the next generation after a chain of checks to
ensure no individual repetition in the offspring.

While the value of each fitness is important to determine the chances
of individual survival, there is no guarantee that the ones with the higher
fitness values will survive or the ones with the smaller values will perish,
because of the non—deterministic nature of the method [73]. Given that,
it could occur that some individuals with low fitness value genes might
prove to be useful when recombined in new chromosomes, which is a
low probability “second chance”, offered by the process flexibility that
would be impossible in a more deterministic setting [73].

2.7. Optimization problem definition

In this study, the optimization problem is designed to maximize the WLA
index in each generation, as presented in Ref. [14] and summarized in
Section 2.2. Therefore, globally, it will maximize a combination of the
g-factor and the HRA according to specified weights that reflect the impor-
tance given to each factor. For demonstration purposes, in this study equal
weights (p=s) were assigned to ensure a balanced contribution from both
factors.

The algorithm adjusts the positions of the WECs to find the optimal
layout. The position of the WECs is constrained by sector bounds, where
WECs are limited to a deployment sector between directions 213° and
338, as defined in Section 3 based on the predominant wave energy
direction, and by a radial distance. Where WECs are be placed at a
distance from the AOI boundary to 10 times the minimal distance be-
tween WECs. This deployment area was defined according to the pro-
tection area of the WindFloat Atlantic farm [57].

The selection of the crossover rate and population size was driven by

their influence on the required number of SWAN simulations for each
layout. Given the computationally intensive nature of multiple SWAN
simulations, it was imperative to carefully consider these parameters to
strike a balance between solution quality and computational cost. To
optimize the trade-off between exploration and exploitation within the
solution space while minimizing the computational burden imposed by
the several simulations, the crossover rate (70 % and 95 %) and popu-
lation size (25 and 50 arrays) were varied. Additionally, to keep a pro-
portionality and an integer number, the elite size varied with the
population size, 12 % for cases with 25 layouts and 10 % for cases with
50 layouts. This approach allowed to efficiently explore a diverse range
of solutions (while ensuring feasibility) and apply them to other ar-
rangements with more WECs (100 and 200) and larger spacing between
WECs (5D and 7D).

The termination criteria were defined based on the stability of the
main parameters (q-factor and HRA), with a tolerance of 10~%. This
means that the optimization process ends after 20 consecutive genera-
tions without relevant changes in the q-factor and HRA (i.e., within the
tolerance of 107%).

The arrangement of simulation parameters, including crossover rate,
elite size, number of WECs, number of layouts, and minimal spacing
between WEGCs, is detailed in Table 6 - Simulation Setup. These config-
urations were designed to test the algorithm under different scenarios
and evaluate its robustness and performance in optimizing WEC layouts.

3. Data analysis and clustering

As stated previously, the number of sea states significantly increases
the computational cost (scaling with population size and generations).
Hence, this study prioritizes data reduction through statistical analysis
and cleaning techniques avoiding losing data quality and
representativeness.

The wave characteristics in the study area were derived from the
SIMAR datasets, which are managed by Puertos del Estado. SIMAR
provides hourly re-analysis data for wind and wave conditions in the
North Atlantic and the Mediterranean Sea, with a spatial resolution of
0.25° x 0.25°. These datasets are generated through a thorough nu-
merical modeling approach that incorporates atmospheric, sea level,
and wave conditions [57]. For the specific location of interest, hourly
wave data was extracted from the SIMAR dataset, spanning from
January 1, 1960 to September 15, 2021. This extensive data set enables
a high level of accuracy and reliability. Table 3 present some important
parameters.
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Fig. 8. Heatmap of the significant wave height over time.

Fig. 7 shows the normal distribution of the wave parameters, high-
lighting the mean and one and two standard deviations (std). As can be
seen also in the wave rose, almost all directions are concentrated be-
tween incident angles of 225°(WNW) and 327° (NNW). Additionally, the
significant wave height (Hs) and the peak wave period (Tp) in the less
frequent directions are lower. Fig. 8 presents a heatmap of Hg distri-
bution over time, where is possible to see gaps in the data and a seasonal
variation, with lower Hg during summertime.

After the first data analysis, some trials were done with different
clustering methods and data cleaning techniques. The three clustering
methods presented similar results for the whole dataset (Fig. 9), and for
filtering extreme values (Fig. 10), the quantiles 2.5 % and 97.5 % were

10

used. Furthermore, filtering all parameters equally by a top percentile
(95th or 99th) yielded similar results, with a slight increase in the
directional distribution of clusters. However, there is a significant loss in
H; and T, data. On the other hand, it is possible to observe that more
than 99 % of all incident wave energy is concentrated in directions be-
tween 213° and 338°, as shown in Fig. 11, that presents the cumulative
distribution of wave power over wave directions.

In the context of this work, WEC farms have the primary goal of
harvesting wave energy and protecting the wind farm from high waves.
Therefore, the WEC farm does not have to enclose the entire wind farm.
Instead, it can be concentrated within an angular range (126° sector),
regarding incident wave energy. This range size is particularly
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important because traditional distance metrics, like the Euclidean dis-
tance used in k-means clustering, do not handle angular distances well.
For instance, they might calculate the distance between 10° and 350° as
340° instead of the correct 20°, which is essential for circular distance
considerations. This highlights the need for specialized methods or ad-
justments in clustering algorithms to handle circular distance calcula-
tions effectively.

Upon implementing a cleaning over the directions, keeping only the
126° sector between 213° and 338°, the data was subjected to clustering
once more, to determine which number of clusters could provide sea
states that represent at least 90 % of the incoming wave energy. In this
process, power representativeness (¢,) was used,

n
Z (Pcentroid X Nc)
c=1

@p= C)]

P;

=

-

i—

11

where P...rig Tepresents the wave energy per wave front for each sea
state, represented by the centroid of the cluster, N the total number of
data values, N, the values inside a cluster, n the number of clusters, and
P; the incoming wave energy per wave front for each data value. Fig. 12
shows the outcomes of the cluster’s representativeness map up to 20
clusters. Notably, the partition in 8 clusters is the lowest partition where
the rate of power efficiency surpasses 90 %. Hence, it was determined
that 8 clusters were the minimum number required to effectively
represent the sea states.

Fig. 13 shows the data obtained by the directional filtering, clustered
by the k-means. The centroids of each cluster represent the wave pa-
rameters that were pursued (shown in Table 4).

An automated search was conducted within the dataset, assessing
MAPE of each sea state in relation to the hourly mean of each parameter.
This analysis aimed to locate the optimal temporal positioning
throughout the year for these sea states. The findings demonstrate that
selected sea states effectively encapsulate the seasonal variations across
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the entire annual cycle (Fig. 14).
4. Wave farm layout optimization
4.1. Definition of single WEC power absorption

The definition of power absorption of a single WEC is important to
estimate the g-factor, which is the most used parameter for the optimi-
zation of wave energy farms. Since using the rated power of the device
overestimates the power output, two different methods were used to
estimate the average power absorption of a single WEC: positioning of
the WEC randomly a thousand times in the domain, and in an arc path
with each WEC at every 0.5°. As the average of the arc method returned
a higher single WEC absorption, this method was used to estimate the g-
factor of the layouts. The statistics of the arc method are displayed in
Table 5.

4.2. Simulation setup

The crossover rate and the population size have a significant

12

influence on the model computational time. Therefore, the used
approach commenced with a series of simulations where these param-
eters were systematically varied. Then, upon identifying the optimal
configuration, further simulations were conducted to assess the
method’s efficacy across a broader spectrum, encompassing a larger
array of devices and increased inter-device spacing.

Table 6 provides a comprehensive overview of the simulation setups
employed in this investigation, detailing the average new layouts
generated (referred to as “children”) and the corresponding number of
simulations needed by each variation of the GA parameters. The “effi-
ciency” of each simulation iteration was quantified by computing the
average execution time across its generational iterations, compared
against the baseline established by the fastest simulation, which was S1.

As will be more comprehensively elaborated in section 4.3, simula-
tion S1 was not only the fastest (by generation) but also presented the
best results. Hence, the simulations denoted as S5 to S8 aimed at
elucidating the method’s scalability to accommodate a larger number of
WEGCs and increased inter-WEC spacings, using as basis S1 configuration.
This configuration entailed a crossover rate set at 70 %, a population size
consisting of 25 individuals (farm layouts), and an elite rate of 12 %
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Table 4

Wave parameters achieved with k-means.
Cluster Hs (m) Tp (s) Om (°)
0 1.2 7.8 325.5
1 1.2 9.1 301.5
2 1.3 9.4 274.7
3 1.9 8.8 235.7
4 2.1 11.6 314.1
5 2.3 12 290.7
6 3.5 12 262.7
7 4.6 139 292.2

13

(equivalent to 3 individuals). Notably, the average efficiencies observed
in these subsequent simulations deviated by less than 1 % from that of
the benchmark S1 simulation.

In order to validate the proposed method and verify the accuracy of
the algorithm, additional simulations were performed using the simu-
lation setups S1, S5 and S6 as base because they are the ones that have a
different number of WECs. The additional simulations vary the weights
associated to wave protection and power production. Three scenarios
are considered: i) same weight for both objectives, as in the previous
setups (s = p), and only one objective function is optimized, for (ii)
maximum power production (p = 1) or (iii) maximum wave protection
(s=1).

The simulations were executed on the FEUP cluster, which comprises
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Table 5
Statistics of the single WEC simulations using the
distribution in arc.

Parameter Value (kW)
mean 129.3
std 9.6
min 104.6
25 % 120.6
50 % 130.3
75 % 135.3
max 149.3

multiple nodes, each possessing distinct CPU processing capacities. To
ensure equitable comparison, the number of generations for each
simulation was estimated to achieve at least the computational execu-
tion time equivalent of 100 generations of the slowest simulation (S4),
which was about 4 days. It is noteworthy that, to maintain consistent
runtime conditions, all simulations were executed utilizing 24 cores on
an AMD EPYC 7443 processor for a minimum of 10 generations.
Consequently, owing to its superior performance, the S1 simulation was
extended to 500 generations to optimize the layout of the WEC farm
layout.

14
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Table 6
Simulation setup.
SIM WECs Layouts Min Dist. Elite Crossover Rate Children/Generation Simulations/Generation Max
Gen.
S1 50 25 2.5D 0.12 0.70 15.4 123.2 500
S2 50 25 2.5D 0.12 0.95 20.9 167.2 260
S3 50 50 2.5D 0.10 0.70 31.5 252.0 150
S4 50 50 2.5D 0.10 0.95 42.75 342.0 120
S5 100 25 2.5D 0.12 0.70 15.4 123.2 200
S6 200 25 2.5D 0.12 0.70 15.4 123.2 200
S7 50 25 5D 0.12 0.70 15.4 123.2 125
S8 50 25 7D 0.12 0.70 15.4 123.2 125

Table 7
Results of S1, S2, S3 and S4 simulations regarding the average execution time.

SIM  Average 100 generations Generations in Run time
generations time time (days) 4 days efficiency
(min)

S1 18.5 1.3 308 1

S2 25.1 1.7 227 1.36

S3 37.8 2.6 150 2.05

S4 51.3 3.6 111 2.78

4.3. Results of the wave farm layout optimization

The study initially focused on optimizing the parameters of the GA,
contrasting the runtime efficiency and the evolution of results for HRA,
g-factor, and WLA across generations and execution time. Table 7
summarizes the outcomes derived from using 24 cores within the AMD
EPYC 7443 node. It delineates the average execution time for 1 and 100
generations, estimates the equivalent generations attainable within a
four-day timeframe, and provides the runtime efficiency of each
simulation.

The evolution of the results is presented in Fig. 15 for the HRA and g-
factor, and in Fig. 16 for the WLA, offering comparisons across genera-
tion and execution time. Upon individual examination, all simulations
exhibit remarkably similar trends across generations, with S4 showing
marginally superior results compared to the others.

In comparing simulations S1 to S4 using the WLA index, it becomes
evident that by the generation, S4 notably distinguishes itself from the
others. This outcome was anticipated, given the utilization of a 95 %
crossover rate and a larger population, both of which contribute to a
more favorable environment for the emergence of novel and superior

individuals. However, it is crucial to acknowledge that the assessment of
farm layouts depends on SWAN simulations, and expanding both pa-
rameters leads to an increase in the number of simulations and, subse-
quently, the execution time. Consequently, the optimal adjustment for
the algorithm must carefully weigh against execution time constraints.
In this context, simulation S1, the swiftest among them, unequivocally
demonstrates superior results with the best balance between HRA and g-
factor from the initial hours of simulation.

Table 8 shows the results of the simulations considering the execu-
tion time of 100 generations of S4, which is 86 h. The data show that as it
is a multi-objective optimization, and both parameters are equally
balanced, the best result for one parameter will not always return the
best output. As an example, in Fig. 16 the results of WLA for S3 after 86 h
are better than for S2 and S4, although S2 has a higher g-factor and S4
has a higher HRA than S3.

Having established the S1 configuration as the optimal choice, sim-
ulations S5 to S8 were subsequently conducted to gauge the algorithm’s
performance across other variants. These included variations in the
number of WECs and in the minimal distance between them. By
exploring these additional factors, we aimed to comprehensively assess
the adaptability and efficacy of the GA in accommodating different
parameters crucial to the design and optimization of WEC farm layouts.

All simulations performed showed a distinct evolutionary trajectory,
even when sharing identical array parameters. The individual pro-
gressions across generations are visually depicted in Fig. 17, where a
simultaneous moving average, with a window of 5 values for both ob-
jectives (HRA and g-factor), is presented for all simulations. Fig. 17
provides an interesting visualization of the trade-offs between the ob-
jectives. Furthermore, Fig. 18 offers insight into the optimized final WEC
farm design for each variation. Despite all simulations showcasing a
heightened density of WECs strategically positioned to harness the most
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Table 8
Results of simulations S1, S2, S3 and S4 considering an execution time equiva-
lent of 100 generations of S4 (86 h).

Simulation Generations HRA (%) Q-factor
S1 279 13.21 1.008
S2 205 12.28 1.010
S3 136 12.44 1.007
S4 100 12.93 0.999

energetic sea states, the path to achieving these outcomes varied
significantly, resulting in diverse final configurations. These graphical
representations underscore the nuanced and multifaceted nature of the
optimization process, highlighting the unique pathways each simulation
traverses to attain its final objective.

In the analysis of the different arrangement’s inputs and restrictions,
the evolution of all simulations was plotted considering the values of
HRA and g-factor, in Fig. 19, and of WLA, in Fig. 20. The dynamic nature
of the WLA requires recalculating it after every generation, as the data is
normalized. To ensure consistency across simulations, the WLA for all
scenarios was calculated using the global maximum and minimum
values derived from simulations S1 to S4 (in Fig. 16) and simulations S1
to S8 (in Fig. 20). This approach facilitates a standardized comparison
across different simulation runs, allowing for a comprehensive evalua-
tion of the optimization process’s performance and effectiveness.

The exceptionally high HRA value in the 200 WECs layout (S6)
resulted in a significantly larger WLA, effectively compensating for its
lower g-factor. However, it is crucial to acknowledge the challenges
posed by area restriction issues arising from either an excessive number
of WECs or a wide inter-WEC spacing. These constraints constitute
formidable obstacles within the optimization framework, as they can
limit the development of the algorithm, causing premature convergence
evidenced by horizontal curves. This underscores the complex interplay
between the layout optimization objectives and the physical constraints
inherent in the wave energy conversion domain.

Table 9 presents the final outcomes of each simulation. Although
comparisons among simulations S1 to S4 are not feasible due to the
different execution times and generation counts, it is pertinent to note
that comparisons between S5 to S6 and S7 to S8 are viable, as these
simulations are variations of the same parameter and feature identical
generation counts. Additionally, and in accordance with the findings
presented in Ref. [14], the accessibility for the operation and mainte-
nance of the wind farm emerges as a critical parameter for analyzing the

efficiency of wave height reduction. Consequently, this parameter has
been duly incorporated into Table 9 for a comprehensive analysis.

In contrast with the findings detailed in Ref. [14], which share the
same inputs as this study and entailed the positioning of 4 WEC farms in
a customized arc arrangement, simulation S1 exhibited notable superi-
ority. Specifically, in comparison to the best layout identified in
Ref. [14], simulation S1 showed an 87 % improvement in absorbed wave
power and a 46 % enhancement in wave height reduction within the
designated area of interest.

As the S1 simulation demonstrated superior performance, extending
it to 500 generations allowed for a detailed analysis of its behavior.
Fig. 21 shows a notable initial improvement in both parameters, fol-
lowed by a gradual enhancement in g-factor over the subsequent gen-
erations, while HRA remains relatively stable after 300 generations. This
pattern highlights the inherent trade-offs between parameters, notably
observed in the best fit curve, where new individuals with higher g-
factor exhibit lower HRA than the previous best fit, and vice versa.

The Capture Width Ratio decreases as the number of WECs increases,
indicating a trade-off between total energy absorption and individual
device efficiency. Simulations with fewer WECs, such as S1 (50 WECs)
and S2 (50 WECs), show higher CWR values (40.25 and 39.62),
reflecting better energy capture efficiency per device. However, as more
WECs are added, like in S5 (100 WECs) and S6 (200 WECs), the CWR
drops significantly, despite a higher total power absorption, suggesting
that scaling up the number of devices reduces their relative efficiency.
This trend highlights the balance between optimizing the number of
devices and maximizing energy capture efficiency.

Moreover, it is noteworthy that not only the best fit individual or the
elite evolve. Instead, the entire population experiences an increase in
values, indicating a collective trend toward achieving optimal results.
While the population range maintains the potential to circumvent local
optima, the ongoing evolution of individuals across successive genera-
tions suggests a continual exploration of the solution space, thus miti-
gating the risk of convergence towards suboptimal solutions.

Interestingly, the best fit individual remained unchanged in the last
50 generations, despite sporadic instances of improved HRA and g-factor
in other individuals. This suggests the possibility of a superior fit indi-
vidual, albeit with diminishing probability as the best fit remains un-
changed over successive generations.

4.4. Comparative analysis and validation of the optimization algorithm

A comparative study was conducted to validate the performance and
accuracy of the proposed optimization algorithm. This section presents a
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Fig. 17. Comparison of the evolution of the HRA and g-factor parameters for all simulations carried out.
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Table 9

Final generation results for best fit layout, and estimated increase in the accessibility of the wind farm for operation and maintenance.

Simulation Generation Power absorption (MW) CWR Q-Factor HRA (%) Accessibility increase (%)
S1 500 33.07 40.25 1.023 13.21 28.4
S2 260 32.71 39.62 1.012 12.52 26.7
S3 150 32.52 33.21 1.006 12.82 27.6
S4 125 32.36 38.96 1.001 12.86 27.8
S5 200 59.77 34.39 0.924 21.08 44.0
S6 200 221.53 30.08 0.857 32.14 69.5
S7 125 32.12 38.90 0.992 10.43 22.2
S8 125 31.41 38.27 0.972 8.92 19.0
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Table 10

Results of the verification and validation study. Where Ad is the distance from the first run position.
Sim Power abs (MW) Power HRA (%) HRA Layout RMSE Pairs (%) Centroid

Error (%) Error (%) Ad >1D Ad (m)

S1 rerun 6.53 0.26 12.63 —1.80 112.71 52 16.76
S5 rerun 11.90 -0.47 20.89 —-0.91 106.81 57 22.16
S6 rerun 22.17 0.09 32.48 1.04 98.81 44 14.42
S1 max shield 6.22 —4.42 14.53 12.96 225.71 86 51.55
S5 max shield 11.44 —4.28 22.76 7.95 136.52 88 68.36
S6 max shield 21.24 —4.14 33.97 5.68 110.52 88 49.73
S1 max power 6.59 1.20 9.78 —23.97 336.69 90 171.72
S5 max power 12.09 1.14 18.94 —10.14 180.73 91 84.68
S6 max power 22.35 0.88 30.43 —5.32 170.28 93 72.00

detailed analysis of three selected cases with a different number of WECs
(S1, S5, and S6). This study compares optimization results obtained
using the dual-objective function (WLA) against those obtained with
single-objective functions focused exclusively on maximizing the power
production (Q-factor) and the wave protection factor (HRA). This
comparison aims to highlight the importance and effectiveness of the
dual-objective approach.

Additionally, the accuracy of the algorithm is evaluated by rerunning the
selected cases and comparing the optimized layouts with those presented in
Fig. 19 of the original manuscript. To evaluate the positional discrepancies
between the rerun optimized layouts and the original simulation, the RMSE
was employed as a quantitative metric. The calculation methodology
comprised two key steps.

First, to find the optimal pairing of WEC positions, the Kuhn-
Munkres algorithm was utilized to establish the optimal

20

correspondence between the WECs in the original and rerun layouts.
This method minimizes the total positional distance across all WECs,
ensuring an objective and globally optimal pairing. Once the optimal
pairs were identified, the RMSE was calculated to the distances between
the paired WECs. This approach captures the magnitude of the average
positional error in meters, providing a comprehensive measure of the
layout deviations between simulations. Furthermore, the number of
WECs whose positions changed more than the WECs width was
accounted, to evaluate the precision.

This methodology ensures a rigorous and systematic assessment of
the optimization algorithm’s consistency. The RMSE serves as a robust
indicator of the accuracy of the rerun layouts compared to the original
simulation, reflecting the algorithm’s capability to reproduce optimal
configurations under varying conditions.

Considering the computational costs, all simulations performed for
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verification were run with a termination criterion of 200 generations
and their results compared to the results of the original simulation at the
same generation. The outcomes for the 200th generation of configura-
tions S5 and S6 are presented in Table 9 (for reference, configuration S1
achieved a power absorption of 6.51 MW and an HRA of 12.86 % after
200 generations). A summary of the results for all cases can be found in
Table 10.

To further illustrate the findings, the outcomes of the S1 configura-
tion are highlighted in Fig. 22, which provides an evolutionary com-
parison of the two optimization runs with equal weights assigned to
power absorption and shield protection. Additionally, Fig. 23 showcases
the layouts of all S1 simulations, including those optimized solely for
power absorption and wave protection. These visualizations emphasize
the versatility and effectiveness of the proposed optimization algorithm
under varying objectives.

The second round of simulations with equal weights assigned to
wave protection and power absorption produced results that were
remarkably similar to the first ones. Approximately half of the WECs
were positioned in locations less than one device diameter (<1D) apart,
with variations in HRA of less than 2 % and power absorption differing
by less than 0.5 %. Additionally, the RMSE remained stable around 5D
across all three simulations of different numbers of WECs. The evolu-
tionary process of the optimization was also highly similar, indicating a
strong tendency toward convergence on a global optimum with minimal
variation.

Notably, the simulations performed for maximizing just one
parameter exhibited higher variations in RMSE and centroid positions
compared to the rerun simulations, as these focus on a single objective,
which causes greater layout variability, with approximately 90 % of the
devices repositioned. The RMSE was higher for layouts with fewer WECs
compared to those with more devices. A plausible explanation is the
reduction of available space for positioning in larger layouts, which
leads to a more uniform device distribution and minimizes the average
positional differences between optimized pairs.

The centroids, which can represent the positioning of a central col-
lecting hub, were highly stable for the rerun simulations, with variations
of 1D or less. An exception occurred in the S1 maximum power case,
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where centroid variation reached 8D due to the focus on maximizing
power absorption alone, which led to more distinct optimized positions.
Nevertheless, considering the layout domain of approximately 1.3 km?,
this difference is practically insignificant.

The random nature of the initial generation and the mutation pro-
cess, which allows WECs to be repositioned anywhere within the domain
regardless of previous layouts, supports this global optimization search.
This tendency for the simulations to converge toward a common solu-
tion is further demonstrated by the evolution of the entire population, as
shown in Fig. 21, where the population progresses collectively toward
an optimal configuration.

These results further corroborate the trend toward an optimal global
layout. A plausible explanation for the consistency of results and the
similarity in evolutionary paths, even when considering continuous
spatial positioning, lies in the random sampling of 500 layouts in the
initial generation. This broad exploration minimizes the likelihood of
convergence to local optima by effectively distributing the WECs across
the entire domain.

For the simulations that aimed to maximize only one parameter in
the objective function, the non-prioritized parameter was consistently
neglected in the best-fit solutions, never achieving the highest value in
the generation and remaining close to the generation average.
Conversely, the prioritized parameter was always maximized. This is
reflected in Table 10, where reductions in power absorption and HRA
are evident for the neglected objectives.

Interestingly, Table 10 also reveals that, even with equal weights,
power absorption reaches levels very close to those achieved in simu-
lations exclusively maximizing power. This suggests a potential barrier
for this parameter, as the q-factor is already close to or exceeds 1. On the
other hand, HRA appears to have more room for improvement.
Furthermore, small variations in power absorption have a more pro-
nounced impact on wave protection than variations in protection have
on power absorption.

Examining Fig. 23 and the variations in centroids, it becomes evident
that prioritizing one objective significantly influences the spatial
arrangement of the layouts. Simulations that prioritize wave protection
exhibit a more compact spatial distribution, concentrating the WECs in
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areas aligned with the predominant wave energy directions and fre-
quencies. Conversely, simulations that prioritize power absorption
result in a more dispersed spatial configuration, aimed at minimizing
interference between WECs and maximizing wave energy exposure for
each device. These findings highlight how the objective function weights
influence not only the performance metrics but also the spatial charac-
teristics of the optimal WEC layouts.

These findings emphasize the importance of carefully calibrating the
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weights of the objective function. Their adjustment should be based on
thorough evaluation and may consider a range of economic, social, and
environmental factors to reflect stakeholder priorities and optimize
outcomes effectively.

5. Conclusions

This study successfully employed a GA to optimize the layout of a
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WEC farm situated offshore Viana do Castelo, Portugal. The farm’s
primary objective was to harness wave energy while simultaneously
protecting a co-located wind farm from waves, in order to increase the
weather windows for operation and maintenance.

The key findings of the study are as follows:

e K-means clustering effectively reduced the number of sea states
required for the accurate wave farm simulations while preserving at
least 90 % of the incoming wave energy. However, it is crucial to
acknowledge that k-means clustering utilizes Euclidean distance,
which is not well-suited for analyzing data with circular character-
istics, such as wave direction. This limitation was overcome by
restricting wave directions to a sector lower than 180°. Alternatively,
employing specialized distance metrics for circular data representa-
tion could be explored in future works;

The GA configured with a 70 % crossover rate, a population size of 25
individuals, and an elite rate of 12 % achieved the optimal balance
between solution quality and computational efficiency. Importantly,
this approach leverages a continuous domain for WEC placement.
Unlike traditional grid-based methods that restrict WEC positions to
pre-defined locations, the GA allows for a more nuanced and
potentially superior optimization by enabling free positioning within
the designated area;

Compared to a previous study with a non-optimized layout design,
the proposed GA method yielded a significant improvement in both
the absorbed wave power (87 % increase) and wave height reduction
(46 % increase) within the designated area of interest;

The limitations of the study include the inherent trade-offs between
the optimization objectives (HRA and g-factor) and the challenges
posed by area restrictions due to a large number of WECs or wide
inter-device spacing.

In essence, this study demonstrates the effectiveness of the GA in
optimizing wave farm layouts for efficient wave energy capture while
simultaneously mitigating negative wave impacts on co-located wind
farms. The proposed methodology, particularly the utilization of a
continuous domain and the versatile SNL-SWAN model, is valuable for
advancing the development and implementation of wave farms. The vast
range of inputs and outputs allowed by SNL-SWAN model enhances the
applicability and comparability of this framework across diverse WEC
technologies and environmental conditions.

This finding underscores the nuanced interplay between different
performance metrics within multi-objective optimization frameworks. It
suggests that achieving the most favorable outcome needs a holistic
evaluation of various parameters and their respective trade-offs, rather
than focusing solely on individual metrics. Such insights are instru-
mental in refining optimization strategies and enhancing the effective-
ness of WEC layout design processes.

Future work entails the incorporation of economic valuation within
the WLA, specifically through the integration of LCoE assessments for
both wave and wind farms. Additionally, there is a focus on environ-
mental impact evaluation, particularly in the context of WEC farms
installed in nearshore environments. These endeavors aim to provide a
more comprehensive understanding of the economic viability and
environmental sustainability of integrated renewable energy systems.

To foster further R&D in the area, the GA code, as well as the pre- and
post-processing codes used, are made available on the GitHub repository
https://github.com/FelipeTDuarte/GA_WEC_farm_optimization.  This
will enable researchers to replicate the findings, explore modifications
to the algorithm, and adapt the framework to different conditions. By
facilitating collaboration and knowledge sharing, this open-source
approach can accelerate the progress towards optimized and efficient
wave energy farms.
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