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A B S T R A C T

This study introduces a novel methodology for optimizing Wave Energy Converter (WEC) positioning in an array 
using a continuous domain, surpassing the traditional fixed layout approaches. The Wave Energy Park Layout 
Assessment Index (WLA), which integrates the wave protection factor (HRA) and power absorption efficiency (q- 
factor), is employed to evaluate the performance of WEC farms. To enhance computational efficiency, unsu
pervised classification methods, such as k-means clustering, are used to reduce the number of sea states while 
accurately representing wave energy, preserving 90 % of incoming wave energy. Genetic algorithms, integrating 
the SNL-SWAN hydrodynamic model, are then used to optimize WEC layout by balancing exploration and 
computational cost, maintaining solution diversity, and avoiding premature convergence. Compared to the non- 
optimized designs, the proposed method increases absorbed wave power by 87 % and wave height reduction by 
46 %. The study acknowledges trade-offs between objectives and area restrictions, and provides an open-source 
code for further research and development in WEC farm optimization. This integrated approach aims to enhance 
the efficiency and effectiveness of WEC farm designs, offering a robust framework for future advancements in 
wave energy extraction.

List of abbreviations

Hs Significant wave height
Θm Mean wave direction
Kt Transmission Coefficient
LCoE Levelized Cost of Energy
O&M Operation and maintenance
PTO Power take-off
Te Wave energy period
WEC Wave energy converter
Parray power of the entire array
q q-factor of an array
∑

Pwec Summation of the power output of each single isolated device in the array

SNL Sandia National Laboratory
SWAN Simulating Waves Nearshore model
EA Evolutionary algorithms
GA Genetic algorithms
WFA WindFloat Atlantic project Turbine
GEBCO General Bathymetric Chart of the Oceans
IHO International Hydrographic Organization
IOC the Intergovernmental Oceanographic Commission of UNESCO

(continued on next column)

(continued )

WLA Wave Energy Park Layout Assessment Index
HRA Reduction in significant wave height within the protected area index
AOI Area of interest
MAPE Mean Absolute Percentage Error
RMSE Root Mean Square Error
GMM Gaussian mixture models
VBGMM Variational Bayesian Gaussian mixture models
φp power representativeness

1. Introduction

In the transition towards a more sustainable energy system, wave 
energy has significant potential due to its abundant, predictable, and 
high-density resource [1]. However, the high Levelized Cost of Energy 
(LCoE) caused mainly by immature technologies hinders its progress. 
Understanding wave farm effects (diffraction, reflection, radiation) on 
energy capture and their dependence on WECs’ layout is crucial for their 
optimized design [2], which aims to maximize energy output, eventually 
explore co-location benefits (e.g., with offshore wind farms), and 
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minimize costs and environmental impacts.
Portugal’s focus on offshore wind (10 GW targeted by 2030 [3]) 

creates an opportunity for co-location with wave energy [4,5]. This 
option offers synergies that may range from dual energy conversion and 
lower overall costs to improved accessibility for offshore wind farm 
maintenance [6–13] since wave parks can act as wave attenuators, 
creating a “shadowing” effect that protects the wind turbines [14,15]. 
This is particularly relevant as offshore wind farms are burdened by 
significant operation and maintenance (O&M) costs, reaching 30%–35 
% of their lifetime expenses [4]. Therefore, the industry is shifting to
wards preventive and predictive maintenance strategies to reduce these 
costs [5]. The high construction and O&M costs are also a major barrier 
for wave energy farms [16]. Fortunately, combining offshore wind tur
bines with WECs creates an opportunity to share infrastructure, elec
trical systems, and operational resources, thereby reducing overall costs 
[17].

The increased energy yield is also among the primary motivations for 
exploring combined wind and wave energy arrays [18], with wave en
ergy offering greater predictability compared to wind energy [6]. 
Additionally, their lagging can benefit battery storage systems and 
potentially reduce the required combined power capacity, leading to a 
smoother and more continuous power output. The integration of wave 
energy can also reduce intermittency-related balancing costs in the 
power grid [3].

Expanding on these co-location benefits, offshore wave farms can 
also serve a secondary purpose – coastal protection through wave 
attenuation and “shadowing” of sensitive shorelines [19,20], leading to 
lower mean wave heights [17]. However, traditional farm modeling 
approaches often oversimplify key aspects. These simplifications include 
assuming invariant transmission coefficients, fixed power ratings, and 
limited farm configurations. Additionally, they may neglect local marine 
space restrictions or utilize a small number of WEC units.

Optimizing the layout of wave farms is complex due to the numerous 
variables involved (WEC position, array shape), constraints (space 
available, already allocated areas), and conflicting objectives (energy 
output vs. costs vs. environment). Current design methods often neglect 
these aspects, focusing solely on maximizing the energy output [2]. 
Additionally, computational demands increase significantly with 
multi-objective functions or high-fidelity wave-WEC interaction models.

With limited field data available, WEC development usually relies on 
physical and numerical modeling. Numerical modeling, particularly 
through wave propagation models, is well-suited for assessing multi- 
variable combinations. These tools can be adapted to forecast local 
wave climates, wave farm energy outputs, and both near-field and far- 
field effects [21,22].

Phase-averaged models provide a computationally efficient 
approach for the simulation of waves and nearshore wave-induced 
current fields. However, most of them rely on parametrizations to 
represent WECs and other relevant wave characteristics. A common 
technique involves representing WECs as porous structures acting as 
sources or sinks for wave energy extraction [23,24]. The SWAN 
(Simulating WAves Nearshore) spectral wave model is widely used and 
validated for coastal wave transformation modeling. A modified version, 
SWAN-SNL [25–28], allows for WEC representation as power sinks using 
device-specific power performance data.

The use of evolutionary algorithms (EAs), specifically genetic algo
rithms (GAs), provides an efficient solution to this optimization prob
lem. EAs, inspired by natural selection, offer flexible and robust 
optimization frameworks, with GAs operating on candidate solutions to 
mimic the survival of the fittest, optimal layout, considering factors like 
energy output, environmental impact, and economic viability. This 
paper addresses the challenge of wave farm layout optimization by 
proposing a novel, multi-objective framework. The framework in
tegrates three key components: 

(i) Representative sea-state selection: a statistical analysis coupled 
with machine learning techniques is used to identify a represen
tative set of sea states that accurately capture the local wave 
climate.

(ii) Multi-objective genetic algorithm optimization: a tailored GA is 
developed to optimize wave farm layouts for multiple objectives. 
This includes energy production estimated using SNL-SWAN 
model, alongside environmental impact considerations seam
lessly integrated into the fitness function. Domain-specific oper
ators are implemented in the GA to ensure physically feasible 
solutions based on established knowledge of wave-WEC 
interaction.

(iii) Open-source framework for reproducibility: the complete code
base is provided to facilitate replication by other researchers. This 
fosters further research on WEC farm optimization and coastal 
morphodynamic evolution.

Previous studies in WEC array optimization have extensively used 
fixed or small arrays in a much greater area [2,29], where the optimi
zations merely find the best separation distance between WECs [30–32], 
focused on discrete positioning strategies. For instance, many works 
employ grid-based methods, limiting WEC placements to predefined 
locations [32–42]. While these methods simplify computational de
mands, they inherently restrict the flexibility needed to achieve optimal 
layouts in realistic scenarios [43,44]. Moreover, the majority of existing 
studies emphasize single-objective optimization, such as maximizing 
power output [2,31] or focus on specific environmental conditions [17,
45,46], limiting their generalizability.

As the computational demands of evaluating WEC arrays grow 
exponentially with the number of converters, developing a fast and 
effective optimization approach for large-scale wave farms becomes 
crucial [47]. To address this challenge, the proposed multi-objective 
evolutionary algorithm optimizes both power output and hydrody
namic interactions within large-scale farms. The methodology combines 
a smart initialization process, a population-based evolutionary algo
rithm, a third-generation wave numerical model, and continuous global 
optimization. This integrated approach effectively handles the com
plexities of large-scale wave farm optimization, scaling up the array size 
without sacrificing computational efficiency, while accurately capturing 
significant interactions between WECs and managing the extensive 
search space dimensions inherent to the problem.

This approach departs from prior studies that often focus on single or 
limited objectives. It offers a more realistic solution by simultaneously 
considering a large number of WECs on a continuous deployment 
domain, variable installed capacity, and a robust statistical representa
tion of local wave conditions. The versatile SNL-SWAN model [26,27,
48], effectively captures complex interactions and provides greater 
adaptability to site-specific constraints and stakeholder priorities. The 
proposed GA framework demonstrates its effectiveness through rigorous 
simulations and case studies. These studies evaluate convergence speed, 
solution quality, and overall robustness against existing methods. The 
framework excels in balancing energy extraction with environmental 
considerations.

The research discusses future directions, including applicability to 
diverse wave farm configurations, integration with advanced compu
tational models for accuracy, and the development of self-adaptive 
frameworks for dynamic optimization under varying wave conditions. 
Overall, the work highlights the power of GA as a tool for optimizing 
wave farm layouts. By facilitating efficient wave energy harvesting 
while considering environmental and economic constraints, GA-based 
optimization holds significant promise for unlocking the potential of 
wave energy and contributing to a sustainable future powered by ocean 
renewables.

The paper is organized as follows: Section 2 presents the methodo
logical framework, detailing the chosen case study region, evaluation 
parameters, WEC technology, numerical model, and the multi-objective 
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GA formulation. Section 3 delves into the statistical analysis employed 
for sea-state selection. It elaborates on the implementation of the un
supervised classification model, along with considerations regarding 
model accuracy, validation, and convergence. Section 4 showcases the 
key findings of the wave farm layout optimization process. This section 
discusses the proposed solutions, drawing support from metrics associ
ated with energy output, environmental impact (shielding protection), 
and computational efficiency. Finally, Section 5 summarizes the study’s 
primary contributions, offering practical considerations and recom
mendations for future research.

2. Methodology

2.1. Case study site

The case-study site is located offshore Viana do Castelo (Northern 
Portugal), where the offshore farm of WindFloat Atlantic project is 
located. This wind farm is composed of three floating wind turbines with 
a total installed capacity of 25 MW, and is located between 17 and 19 km 

from the coast of Viana do Castelo, where water depths can reach 100 m 
[49]. The wind farm positioning area is 4.77 km2, and the protection 
area is 11.25 km2 [50]. Fig. 1 presents the location of WindFloat park 
and Table 1 the vertices’ coordinates of the protection area and the wind 
turbines (WFA) [51].

The bathymetry data used were obtained from the datasets of GEBCO 
(The General Bathymetric Chart of the Oceans), which operates under 
the joint support of the International Hydrographic Organization (IHO) 
and the Intergovernmental Oceanographic Commission (IOC) of 
UNESCO.

2.2. Parameters and deployment area

This research work builds upon previous work [14], which intro
duced a new multi-objective index for evaluating WEC farm layouts: the 
Wave Energy Park Layout Assessment Index (WLA). This index combines 
two separate metrics: the reduction in significant wave height within the 
protected area (HRA) and a factor representing the power capture effi
ciency (q-factor).

Unlike previous work [14], which employed fixed layouts for the 
WECs, this study utilizes a continuous domain for WEC placement. This 
approach allows for greater flexibility, as WEC locations can be freely 
optimized within the designated area, adhering only to minimum dis
tance constraint between WECs. To initiate the optimization process, the 
initial layout was generated by randomly placing WECs within the 
allowable domain. Fig. 2 depicts one such initial layout alongside the 
selected placement area.

The HRA evaluates the reduction in significant wave height (Hs) 
within the designated area of interest (AOI) protected by the WEC farm. 
The AOI is defined as the rectangular area around the turbines, ensuring 
a minimum distance from each turbine (e.g., 1600 × 400 m with a 200 m 

Fig. 1. Location of the WindFloat Atlantic farm. ABCD are the vertices of the protection area and FEGH the submarine cable area [50].

Table 1 
Coordinates (WGS84) of the protection area vertices and the wind turbines [51].

Vertex Latitude (◦) Longitude (◦)

A − 9.0875989 41.697497
B − 9.0335472 41.697934
C − 9.0332331 41.675428
D − 9.0872658 41.674992
WFA3 − 9.0501671 41.686668
WFA1 − 9.0574999 41.686501
WFA2 − 9.0646667 41.686501
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buffer as depicted in Fig. 2). The HRA index is calculated using: 

HRA=
100
n

∑n

i

Hsi − Hsweci

Hsi
(1) 

where i represents a calculation node within the AOI, n is the total 
number of nodes, Hsi is the significant wave height on the i th node in the 
baseline scenario (without the WEC farm), and Hsweci is the significant 
wave height on the i th node with the WEC farm.

A common metric used to assess WEC farm performance is the q- 
factor, since it provides a simple way to quantify how WEC interactions 
affect overall power absorption. The q-factor is defined as the ratio be
tween the power absorbed by the entire array, Parray, and the summation 
of the power that can be absorbed by each single WEC in the array 
individually (i.e. without the influence of the other WECs), Pwec, i.e., 

q=
Parray
∑

Pwec
(2) 

To aid decision-making and selecting the optimal WEC farm layout 
based on stakeholder priorities, the Wave Energy Park Layout Assess
ment Index (WLA) was developed. This index combines two seemingly 
opposing metrics – the HRA (wave protection) and the q-factor (wave 
power absorption) - to provide a comprehensive performance 
evaluation.

The WLA index normalizes HRA and q-factor values and produces an 
output ranging from zero to one, with one representing the most 
favorable choice among the alternatives, 

WLA= pN(q) + sN(HRA) (3) 

where p (p = 1 - s) is the weighting factor for the power absorption, and s 

is the weighting factor for the wave protection (shielding). The WLA 
index employs a min-max normalization (N), i.e., a rescaling technique, 
to put HRA and q-factor values into a range between 0 and 1. This 
normalization ensures a consistent and comparable scale for both met
rics within the final WLA index.

By incorporating weighting factors for power absorption and wave 
protection, the WLA index allows stakeholders to prioritize their desired 
outcome, hence resulting in a more informed decision-making process 
for WEC farm layout design.

To have more insights on the array efficiency relative to the number 
of devices it was also analyzed the Capture Width Ratio (CWR), which is 
a widely used metric for evaluating the hydrodynamic efficiency of a 
WEC. It represents the proportion of wave energy absorbed by the device 
relative to the energy flux available within its characteristic length. This 
efficiency is expressed as a ratio of the power absorbed by the WEC to 
the product of the wave energy flux per unit width and the characteristic 
length of the device.

The characteristic length, L, is often defined as the physical width of 
the WEC that is perpendicular to the wave front. In this study, L corre
sponds to the overall width of the CECO. The CWR can be expressed as: 

CWR=
Pabs

J.L 

where Pabs is the power captured by the WEC, J is the wave energy flux 
per meter of wave front, and L is the device’s characteristic width. Un
like absolute measures of absorbed energy, the CWR offers a dimen
sionless perspective on the performance of a device. By normalizing 
energy capture relative to the device’s size, it becomes easier to compare 
different WECs, regardless of their physical dimensions or operational 
scales. This makes the CWR particularly useful for benchmarking and 

Fig. 2. Protection area (dark blue), WEC farm possible area (light blue), area of interest (red), and wind turbines (yellow). (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of this article.)
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performance optimization.

2.3. Wave energy converter

In this study, the floating version of CECO [52–54] device was used 
as a case study for capturing wave energy. CECO is a point absorber WEC 
that utilizes a sloped power take–off (PTO) system [53], allowing it to 
capture both the vertical and horizontal force components of ocean 
waves [55,56]. The main elements of the CECO consist of two lateral 
mobile modules (LMMs) connected by a frame of tubular elements. In its 
current design, CECO uses a rack and pinion system to convert the 
absorbed energy into electricity [52].

The CECO’s design is still under development and continues to 
evolve as research progresses. Table 2 summarize the principal features 
of CECO. Since, there has not been much studies done on the impacts of 
CECO farms, this study uses the results of Ramos et al. [57], obtained for 
the same site, as a starting point. The authors proposed an arrangement 
of CECO units placed on a curvilinear alignment facing the prevailing 

wave direction (NW or 315◦).
The SNL–SWAN model uses the WEC power matrix to establish the 

frequency dependent transmission coefficients. Fig. 3 presents the power 
matrix of CECO [57] used as an input in the model.

2.4. SNL-SWAN

The model SNL–SWAN [25,58] refers to the improvements that 
Sandia National Laboratories made in SWAN to allow a more accurate 
evaluation of WEC farm effects on wave propagation, considering also 
the dependence of WEC performance on it. The model’s accuracy has 
been verified and preliminarily validated against data from controlled 
wave tank experiments [26–28]. SNL–SWAN includes new types of ob
stacles that allow calculating transmission coefficients (kt) based on the 
WEC power performance obtained from its power matrix or its relative 
capture width curve. The model also permits frequency–dependent 
wave energy transmission through obstacles. In fact, this method en
ables the transmission coefficient (linked to wave power absorption) to 
vary when wave conditions change over a relatively broad range of 
temporal and spatial scales.

Furthermore, SNL-SWAN incorporates more comprehensive physical 
processes, allowing for a more accurate representation of wave behavior 
within WEC arrays. Additionally, the model grants greater control over 
simulation parameters, which enables to input more precise data and 
fine-tune settings to achieve a more realistic simulation environment. 
SNL-SWAN also has greater flexibility compared to the original SWAN. 
In essence, SNL-SWAN emerges as a powerful tool, significantly 
improving upon SWAN’s capabilities for simulating ocean waves and 
evaluating WEC performance.

Preliminary studies with the SNL–SWAN model have already been 
conducted for the case study site – the WindFloat Atlantic wind farm 

Table 2 
Principal features of CECO (Key parameters for this investi
gation are in bold).

Parameter Value

PTO inclination angle (◦) 30
LMM inclination (◦) 45
LMM length (m) 9.52
LMM width (m) 6
LMM maximum stroke (m) 15
LMM mass (ton) 288
Overall width (m) 22
PTO rated power (kW) 500

Fig. 3. Power matrix for CECO. It shows the average power output for each sea state conditions (adapted from Ref. [57]).

F. Teixeira-Duarte et al.                                                                                                                                                                                                                       Renewable Energy 241 (2025) 122362 

5 



located offshore Viana do Castelo in the Northern coast of Portugal – 
focusing on co–located offshore energy farms and on analyzing their 
impact on wave climate. The objective was to investigate the potential 
effects of an array of WECs on leeward wave propagation and its syn
ergies with the already installed wind farm [59]. Furthermore, the study 
aimed to establish the multi–objective function to examine and choose 
between WECs arrays.

This study uses a frequency-dependent transmission coefficient 
based on the WEC’s power absorption matrix at each wave frequency. 
While this approach offers advantages, it has some limitations. SNL- 
SWAN does not account for diffracted or radiated waves generated by 
WEC operation. Additionally, resonance phenomena and the potential 
formation of standing waves within the WEC array are not captured. 
These factors can influence WEC power absorption, and their omission 
contributes to a shared limitation between SNL-SWAN and the standard 
SWAN model [30].

Despite these limitations, SNL-SWAN remains the preferred choice 
for assessing environmental and far-field impacts of WEC farms 
compared to alternative models like RANS/SPH-CFD, coupled BEM and 
Boussinesq, mild-slope, and non-hydrostatic models [30]. This prefer
ence stems from SNL-SWAN’s key strength: ability to simulate wave 
propagation across extensive coastal areas with varying bathymetry at 
an acceptable/manageable computationally cost. In contrast, potential 
flow models, while offering higher accuracy in some aspects, lack the 
flexibility to handle complex bathymetric features and are more 
demanding computationally.

2.5. Unsupervised classification for minimal representative sea states

The efficiency of the GA model in WEC farm optimization is highly 
dependent on the number of sea states considered. Since GA simulations 
require evaluating each population member (layout) under all sea states 
across generations, the computational cost increases significantly with 
additional sea states. For instance, in a scenario with 50 individuals, a 
95 % crossover rate, and 100 generations, adding just one sea state 
would result in over a 4000-fold increase in simulations (Scenario S4, 
see Table 6). This exponential growth can become a major bottleneck, 
especially considering the vast amount of data (nearly 600,000 entries). 
Nevertheless, the unsupervised learning techniques effectively deal with 
massive volumes of data [60].

Unsupervised classification is a fundamental method in machine 
learning and data mining, allowing for the automatic discovery of hid
den patterns and structures within unlabeled datasets, attributes or 
characteristics. The process involves representing the data, defining a 
distance or similarity measure, initializing the clusters, assigning data 
points to the clusters, iteratively refining those clusters, and evaluating 
the results. The group assignment is done based on the similarity to 
cluster centroids. The quality of the clusters can be evaluated using both 

internal or external metrics. Different clustering algorithms exist, each 
employing different strategies and assumptions based on the nature of 
the data and the problem at hand.

Some studies applied clustering methods to wave climate estimation, 
mostly k–means, to deal with the huge amount of data [60–68]. The 
k–means clustering algorithm can be applied to metocean data (e.g., 
significant wave heights, HS, peak wave periods, TP, peak wave di
rections, θ m) to analyze and understand local extreme events, as well as 
to characterize waves and currents. In this context, k–means clustering 
aims to identify distinct groups or clusters within the dataset based on 
the values of HS, TP, and θ m [66], to reduce the number of sea states 
needed for the study.

The unsupervised classification methods utilized included k-means, 
Gaussian Mixture models (GMM), and Variational Bayesian Gaussian 
Mixture models (VBGMM). These methods were implemented using the 
python scikit-learn library [69] with the full and filtered dataset. The 
approach followed the normalization procedure outlined by Camus 
[60], to equalize the scales.

To assess the effectiveness of sea state clustering, this study 
employed two common error metrics: Mean Absolute Percentage Error 
(MAPE) and Root Mean Squared Error (RMSE) [28]. These metrics are 
widely used to evaluate model predictions providing valuable insights 
on the representativeness of each cluster regarding the corresponding 
sea states [70]. Notably, previous research [62–65] used metrics similar 
to MAPE to evaluate input wave parameters within k-means clustering 
applications.

2.6. Genetic algorithm optimization

The genetic algorithms (GA) are the most recognized type of evolu
tionary algorithm and have been applied several times as optimization 
function and search method [71]. These are robust methods that do not 
necessitate derivative information and can manage a huge number of 
variables to determine the minimum or the maximum of a function. 
Usually, these algorithms have a binary representation, a low proba
bility of mutation, and an emphasis on genetically inspired recombina
tion to determine the selection of fittest, to generate the new candidate 
solutions.

The algorithm flow is inspired by the continuous Darwinian 
improvement cycle of evaluation [72]. In GA, the survivability, or 
fitness, is evaluated by a selection operator, which determines the so
lutions that best solve the problem with minimum error. The individuals 
of the populations are evaluated according to the objective function, the 
fitness. An evaluation step is a non–deterministic approach. The repe
tition of the process for several generations, the probability disseminates 
genes that promote higher fitness, creating better solutions and extin
guishing the worse suited [31].

This study used an initial population of 500 random individuals 

Fig. 4. Genetic Algorithm loop.
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Fig. 5. Flowcharts of crossover and mutation functions inside the genetic algorithm.
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(WEC farm layouts). Then the workflow of GA enters in a loop, Fig. 4
[12]. The SNL-SWAN model is incorporated inside the GA loop. At the 
beginning, the model simulates all initial population for every sea state, 
generating 2 outputs: the power absorption of each WEC and the HS of 
every node in the AOI. Those outputs are processed in the evaluation 
code, and generate a table with weighted mean HS reduction and power 
absorption for each layout.

The fitness evaluation uses the WLA index [14] to classify the layouts 
and determine the elite that will be granted in the next generation. The 
parents’ selection is done using the probability according to the indi
vidual ranking, i.e., individuals of higher rank have higher changes to be 
picked, independently of their WLA value. It is worth noting that even 
with a low probability of choosing the same pair of parents more than 
once, the creation of new individuals is forced to be different from the 

ones already in the offspring.
The reproduction was performed applying the crossover and muta

tion, according to the flowchart in Fig. 5, using the function “create child 
layout” described in the flowchart presented in Fig. 6, which combines 
the WECs from the parents regarding the minimal distance between 
WECs constrain.

The crossover flowchart outlines the selection process for elite in
dividuals and best parents, which are individuals preserved even when 
the crossover operation is bypassed due to the crossover rate, used to 
populate the next generation. This ensures the retention of valuable 
genetic information from the previous generation. The information for 
all individuals, including offspring generated by crossover and elite 
members from the prior generation, is retrieved from a dictionary data 
structure. Then, the crossover loop iterates through each crossover rate, 
determining whether crossover should be applied based on the pre
defined probability.

To maintain population diversity and prevent duplicates, a check for 
repeated individuals is done after the crossover operation. This ensures 
that the newly formed population adheres to the principle of a unique 
solution space within the GA. Finally, the complete population un
dergoes mutation, introducing random variations within each WEC 
(segment) while adhering to the pre-defined layout constraints. This 
mutation process injects novelty into the population, facilitating the 
exploration of the solution space.

Generating offspring layouts (children) within a continuous domain 
presents a challenge due to the minimum distance constraint between 
individual WECs. This function, illustrated in Fig. 6, addresses this 
challenge by randomly selecting a WEC from either parent layout. The 
selected WEC’s position is then evaluated to ensure it adheres to the 
minimum distance requirement from previously placed WECs in the 

Fig. 6. Flowcharts of the function to create new (child) layout simulating reproduction between two previous generation layouts (parents).

Table 3 
Statistical description of wave data parameters.

Hs (m) Tp (s) Θm (◦)

Mean 1.9 10.2 295

Standard Deviation
1.2 2.4 30

Minimum
0.1 2.4 0

Quantile 25 %
1.1 8.5 281

Quantile 50 %
1.6 10.1 299

Quantile 75 %
2.5 11.8 315

Maximum
10.4 23.6 359
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child layout.
However, this approach can potentially lead to deadlocks where the 

remaining WECs cannot be positioned within the constraints. To miti
gate this, a limit is set on the number of placements attempts for each 
WEC. If this limit is reached without a successful placement, the 
reproduction process restarts. This mechanism ensures that even if the 
parents are highly similar, a valid child layout satisfying the minimum 
distance restriction will eventually be generated.

There are two possible ways that an individual from previous gen
erations survive to the next one. The first one is that it belongs to the 
elite of that generation, which assures that the best individuals of the 
generation are not lost in the reproduction process. The second one is 
when the crossover does not occur, i.e., the rate of occurrence of that 
matting is lower than the crossover rate predefined. In this case, the best 
parents are repeated in the next generation after a chain of checks to 
ensure no individual repetition in the offspring.

While the value of each fitness is important to determine the chances 
of individual survival, there is no guarantee that the ones with the higher 
fitness values will survive or the ones with the smaller values will perish, 
because of the non–deterministic nature of the method [73]. Given that, 
it could occur that some individuals with low fitness value genes might 
prove to be useful when recombined in new chromosomes, which is a 
low probability “second chance”, offered by the process flexibility that 
would be impossible in a more deterministic setting [73].

2.7. Optimization problem definition

In this study, the optimization problem is designed to maximize the WLA 
index in each generation, as presented in Ref. [14] and summarized in 
Section 2.2. Therefore, globally, it will maximize a combination of the 
q-factor and the HRA according to specified weights that reflect the impor
tance given to each factor. For demonstration purposes, in this study equal 
weights (p=s) were assigned to ensure a balanced contribution from both 
factors.

The algorithm adjusts the positions of the WECs to find the optimal 
layout. The position of the WECs is constrained by sector bounds, where 
WECs are limited to a deployment sector between directions 213◦ and 
338◦, as defined in Section 3 based on the predominant wave energy 
direction, and by a radial distance. Where WECs are be placed at a 
distance from the AOI boundary to 10 times the minimal distance be
tween WECs. This deployment area was defined according to the pro
tection area of the WindFloat Atlantic farm [57].

The selection of the crossover rate and population size was driven by 

their influence on the required number of SWAN simulations for each 
layout. Given the computationally intensive nature of multiple SWAN 
simulations, it was imperative to carefully consider these parameters to 
strike a balance between solution quality and computational cost. To 
optimize the trade-off between exploration and exploitation within the 
solution space while minimizing the computational burden imposed by 
the several simulations, the crossover rate (70 % and 95 %) and popu
lation size (25 and 50 arrays) were varied. Additionally, to keep a pro
portionality and an integer number, the elite size varied with the 
population size, 12 % for cases with 25 layouts and 10 % for cases with 
50 layouts. This approach allowed to efficiently explore a diverse range 
of solutions (while ensuring feasibility) and apply them to other ar
rangements with more WECs (100 and 200) and larger spacing between 
WECs (5D and 7D).

The termination criteria were defined based on the stability of the 
main parameters (q-factor and HRA), with a tolerance of 10− 4. This 
means that the optimization process ends after 20 consecutive genera
tions without relevant changes in the q-factor and HRA (i.e., within the 
tolerance of 10− 4).

The arrangement of simulation parameters, including crossover rate, 
elite size, number of WECs, number of layouts, and minimal spacing 
between WECs, is detailed in Table 6 - Simulation Setup. These config
urations were designed to test the algorithm under different scenarios 
and evaluate its robustness and performance in optimizing WEC layouts.

3. Data analysis and clustering

As stated previously, the number of sea states significantly increases 
the computational cost (scaling with population size and generations). 
Hence, this study prioritizes data reduction through statistical analysis 
and cleaning techniques avoiding losing data quality and 
representativeness.

The wave characteristics in the study area were derived from the 
SIMAR datasets, which are managed by Puertos del Estado. SIMAR 
provides hourly re–analysis data for wind and wave conditions in the 
North Atlantic and the Mediterranean Sea, with a spatial resolution of 
0.25◦ × 0.25◦. These datasets are generated through a thorough nu
merical modeling approach that incorporates atmospheric, sea level, 
and wave conditions [57]. For the specific location of interest, hourly 
wave data was extracted from the SIMAR dataset, spanning from 
January 1, 1960 to September 15, 2021. This extensive data set enables 
a high level of accuracy and reliability. Table 3 present some important 
parameters.

Fig. 7. Normal distribution of the wave parameters and a wave rose of the location.
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Fig. 7 shows the normal distribution of the wave parameters, high
lighting the mean and one and two standard deviations (std). As can be 
seen also in the wave rose, almost all directions are concentrated be
tween incident angles of 225◦(WNW) and 327◦ (NNW). Additionally, the 
significant wave height (HS) and the peak wave period (TP) in the less 
frequent directions are lower. Fig. 8 presents a heatmap of HS distri
bution over time, where is possible to see gaps in the data and a seasonal 
variation, with lower HS during summertime.

After the first data analysis, some trials were done with different 
clustering methods and data cleaning techniques. The three clustering 
methods presented similar results for the whole dataset (Fig. 9), and for 
filtering extreme values (Fig. 10), the quantiles 2.5 % and 97.5 % were 

used. Furthermore, filtering all parameters equally by a top percentile 
(95th or 99th) yielded similar results, with a slight increase in the 
directional distribution of clusters. However, there is a significant loss in 
Hs and Tp data. On the other hand, it is possible to observe that more 
than 99 % of all incident wave energy is concentrated in directions be
tween 213◦ and 338◦, as shown in Fig. 11, that presents the cumulative 
distribution of wave power over wave directions.

In the context of this work, WEC farms have the primary goal of 
harvesting wave energy and protecting the wind farm from high waves. 
Therefore, the WEC farm does not have to enclose the entire wind farm. 
Instead, it can be concentrated within an angular range (126◦ sector), 
regarding incident wave energy. This range size is particularly 

Fig. 8. Heatmap of the significant wave height over time.
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important because traditional distance metrics, like the Euclidean dis
tance used in k-means clustering, do not handle angular distances well. 
For instance, they might calculate the distance between 10◦ and 350◦ as 
340◦ instead of the correct 20◦, which is essential for circular distance 
considerations. This highlights the need for specialized methods or ad
justments in clustering algorithms to handle circular distance calcula
tions effectively.

Upon implementing a cleaning over the directions, keeping only the 
126◦ sector between 213◦ and 338◦, the data was subjected to clustering 
once more, to determine which number of clusters could provide sea 
states that represent at least 90 % of the incoming wave energy. In this 
process, power representativeness (φp) was used, 

φp =

∑n

c=1
(Pcentroid × Nc)

∑N

i=1
Pi

(4) 

where Pcentroid represents the wave energy per wave front for each sea 
state, represented by the centroid of the cluster, N the total number of 
data values, Nc the values inside a cluster, n the number of clusters, and 
Pi the incoming wave energy per wave front for each data value. Fig. 12
shows the outcomes of the cluster’s representativeness map up to 20 
clusters. Notably, the partition in 8 clusters is the lowest partition where 
the rate of power efficiency surpasses 90 %. Hence, it was determined 
that 8 clusters were the minimum number required to effectively 
represent the sea states.

Fig. 13 shows the data obtained by the directional filtering, clustered 
by the k–means. The centroids of each cluster represent the wave pa
rameters that were pursued (shown in Table 4).

An automated search was conducted within the dataset, assessing 
MAPE of each sea state in relation to the hourly mean of each parameter. 
This analysis aimed to locate the optimal temporal positioning 
throughout the year for these sea states. The findings demonstrate that 
selected sea states effectively encapsulate the seasonal variations across 

Fig. 9. Mean Absolute Percentage Error (MAPE) for different numbers of clusters and different methods: K–means, Gaussian mixture models (GMM) and variational 
Bayesian Gaussian mixture models (VBGMM).

Fig. 10. Root Mean Square Error (RMSE) for different numbers of clusters and different methods: K–means, Gaussian mixture models (GMM) and variational 
Bayesian Gaussian mixture models (VBGMM).
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the entire annual cycle (Fig. 14).

4. Wave farm layout optimization

4.1. Definition of single WEC power absorption

The definition of power absorption of a single WEC is important to 
estimate the q-factor, which is the most used parameter for the optimi
zation of wave energy farms. Since using the rated power of the device 
overestimates the power output, two different methods were used to 
estimate the average power absorption of a single WEC: positioning of 
the WEC randomly a thousand times in the domain, and in an arc path 
with each WEC at every 0.5◦. As the average of the arc method returned 
a higher single WEC absorption, this method was used to estimate the q- 
factor of the layouts. The statistics of the arc method are displayed in 
Table 5.

4.2. Simulation setup

The crossover rate and the population size have a significant 

influence on the model computational time. Therefore, the used 
approach commenced with a series of simulations where these param
eters were systematically varied. Then, upon identifying the optimal 
configuration, further simulations were conducted to assess the 
method’s efficacy across a broader spectrum, encompassing a larger 
array of devices and increased inter-device spacing.

Table 6 provides a comprehensive overview of the simulation setups 
employed in this investigation, detailing the average new layouts 
generated (referred to as “children”) and the corresponding number of 
simulations needed by each variation of the GA parameters. The “effi
ciency” of each simulation iteration was quantified by computing the 
average execution time across its generational iterations, compared 
against the baseline established by the fastest simulation, which was S1.

As will be more comprehensively elaborated in section 4.3, simula
tion S1 was not only the fastest (by generation) but also presented the 
best results. Hence, the simulations denoted as S5 to S8 aimed at 
elucidating the method’s scalability to accommodate a larger number of 
WECs and increased inter-WEC spacings, using as basis S1 configuration. 
This configuration entailed a crossover rate set at 70 %, a population size 
consisting of 25 individuals (farm layouts), and an elite rate of 12 % 

Fig. 11. Cumulative incident wave energy distribution by wave direction.

Fig. 12. K-means clustering wave power efficiency up to 20 clusters.
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(equivalent to 3 individuals). Notably, the average efficiencies observed 
in these subsequent simulations deviated by less than 1 % from that of 
the benchmark S1 simulation.

In order to validate the proposed method and verify the accuracy of 
the algorithm, additional simulations were performed using the simu
lation setups S1, S5 and S6 as base because they are the ones that have a 
different number of WECs. The additional simulations vary the weights 
associated to wave protection and power production. Three scenarios 
are considered: i) same weight for both objectives, as in the previous 
setups (s = p), and only one objective function is optimized, for (ii) 
maximum power production (p = 1) or (iii) maximum wave protection 
(s = 1).

The simulations were executed on the FEUP cluster, which comprises 

Fig. 13. – Clusters obtained by K–means. Each color represents one cluster and the white stars the centroids. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.)

Table 4 
Wave parameters achieved with k–means.

Cluster Hs (m) Tp (s) Θm (◦)

0 1.2 7.8 325.5
1 1.2 9.1 301.5
2 1.3 9.4 274.7
3 1.9 8.8 235.7
4 2.1 11.6 314.1
5 2.3 12 290.7
6 3.5 12 262.7
7 4.6 13.9 292.2
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multiple nodes, each possessing distinct CPU processing capacities. To 
ensure equitable comparison, the number of generations for each 
simulation was estimated to achieve at least the computational execu
tion time equivalent of 100 generations of the slowest simulation (S4), 
which was about 4 days. It is noteworthy that, to maintain consistent 
runtime conditions, all simulations were executed utilizing 24 cores on 
an AMD EPYC 7443 processor for a minimum of 10 generations. 
Consequently, owing to its superior performance, the S1 simulation was 
extended to 500 generations to optimize the layout of the WEC farm 
layout.

Fig. 14. Fit of the chosen sea states compared with hourly mean parameters. Blue line is the hourly mean and the purple shadow the standard deviation multiplied by 
2, which represent approximately 95 % of data. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.)

Table 5 
Statistics of the single WEC simulations using the 
distribution in arc.

Parameter Value (kW)

mean 129.3
std 9.6
min 104.6
25 % 120.6
50 % 130.3
75 % 135.3
max 149.3
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4.3. Results of the wave farm layout optimization

The study initially focused on optimizing the parameters of the GA, 
contrasting the runtime efficiency and the evolution of results for HRA, 
q-factor, and WLA across generations and execution time. Table 7
summarizes the outcomes derived from using 24 cores within the AMD 
EPYC 7443 node. It delineates the average execution time for 1 and 100 
generations, estimates the equivalent generations attainable within a 
four-day timeframe, and provides the runtime efficiency of each 
simulation.

The evolution of the results is presented in Fig. 15 for the HRA and q- 
factor, and in Fig. 16 for the WLA, offering comparisons across genera
tion and execution time. Upon individual examination, all simulations 
exhibit remarkably similar trends across generations, with S4 showing 
marginally superior results compared to the others.

In comparing simulations S1 to S4 using the WLA index, it becomes 
evident that by the generation, S4 notably distinguishes itself from the 
others. This outcome was anticipated, given the utilization of a 95 % 
crossover rate and a larger population, both of which contribute to a 
more favorable environment for the emergence of novel and superior 

individuals. However, it is crucial to acknowledge that the assessment of 
farm layouts depends on SWAN simulations, and expanding both pa
rameters leads to an increase in the number of simulations and, subse
quently, the execution time. Consequently, the optimal adjustment for 
the algorithm must carefully weigh against execution time constraints. 
In this context, simulation S1, the swiftest among them, unequivocally 
demonstrates superior results with the best balance between HRA and q- 
factor from the initial hours of simulation.

Table 8 shows the results of the simulations considering the execu
tion time of 100 generations of S4, which is 86 h. The data show that as it 
is a multi-objective optimization, and both parameters are equally 
balanced, the best result for one parameter will not always return the 
best output. As an example, in Fig. 16 the results of WLA for S3 after 86 h 
are better than for S2 and S4, although S2 has a higher q-factor and S4 
has a higher HRA than S3.

Having established the S1 configuration as the optimal choice, sim
ulations S5 to S8 were subsequently conducted to gauge the algorithm’s 
performance across other variants. These included variations in the 
number of WECs and in the minimal distance between them. By 
exploring these additional factors, we aimed to comprehensively assess 
the adaptability and efficacy of the GA in accommodating different 
parameters crucial to the design and optimization of WEC farm layouts.

All simulations performed showed a distinct evolutionary trajectory, 
even when sharing identical array parameters. The individual pro
gressions across generations are visually depicted in Fig. 17, where a 
simultaneous moving average, with a window of 5 values for both ob
jectives (HRA and q-factor), is presented for all simulations. Fig. 17
provides an interesting visualization of the trade-offs between the ob
jectives. Furthermore, Fig. 18 offers insight into the optimized final WEC 
farm design for each variation. Despite all simulations showcasing a 
heightened density of WECs strategically positioned to harness the most 

Table 6 
Simulation setup.

SIM WECs Layouts Min Dist. Elite Crossover Rate Children/Generation Simulations/Generation Max 
Gen.

S1 50 25 2.5D 0.12 0.70 15.4 123.2 500
S2 50 25 2.5D 0.12 0.95 20.9 167.2 260
S3 50 50 2.5D 0.10 0.70 31.5 252.0 150
S4 50 50 2.5D 0.10 0.95 42.75 342.0 120
S5 100 25 2.5D 0.12 0.70 15.4 123.2 200
S6 200 25 2.5D 0.12 0.70 15.4 123.2 200
S7 50 25 5D 0.12 0.70 15.4 123.2 125
S8 50 25 7D 0.12 0.70 15.4 123.2 125

Table 7 
Results of S1, S2, S3 and S4 simulations regarding the average execution time.

SIM Average 
generations time 
(min)

100 generations 
time (days)

Generations in 
4 days

Run time 
efficiency

S1 18.5 1.3 308 1
S2 25.1 1.7 227 1.36
S3 37.8 2.6 150 2.05
S4 51.3 3.6 111 2.78

Fig. 15. Evolution of the parameters HRA (left) and q-factor (right) of simulations S1 to S4 through 100 generations.
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energetic sea states, the path to achieving these outcomes varied 
significantly, resulting in diverse final configurations. These graphical 
representations underscore the nuanced and multifaceted nature of the 
optimization process, highlighting the unique pathways each simulation 
traverses to attain its final objective.

In the analysis of the different arrangement’s inputs and restrictions, 
the evolution of all simulations was plotted considering the values of 
HRA and q-factor, in Fig. 19, and of WLA, in Fig. 20. The dynamic nature 
of the WLA requires recalculating it after every generation, as the data is 
normalized. To ensure consistency across simulations, the WLA for all 
scenarios was calculated using the global maximum and minimum 
values derived from simulations S1 to S4 (in Fig. 16) and simulations S1 
to S8 (in Fig. 20). This approach facilitates a standardized comparison 
across different simulation runs, allowing for a comprehensive evalua
tion of the optimization process’s performance and effectiveness.

The exceptionally high HRA value in the 200 WECs layout (S6) 
resulted in a significantly larger WLA, effectively compensating for its 
lower q-factor. However, it is crucial to acknowledge the challenges 
posed by area restriction issues arising from either an excessive number 
of WECs or a wide inter-WEC spacing. These constraints constitute 
formidable obstacles within the optimization framework, as they can 
limit the development of the algorithm, causing premature convergence 
evidenced by horizontal curves. This underscores the complex interplay 
between the layout optimization objectives and the physical constraints 
inherent in the wave energy conversion domain.

Table 9 presents the final outcomes of each simulation. Although 
comparisons among simulations S1 to S4 are not feasible due to the 
different execution times and generation counts, it is pertinent to note 
that comparisons between S5 to S6 and S7 to S8 are viable, as these 
simulations are variations of the same parameter and feature identical 
generation counts. Additionally, and in accordance with the findings 
presented in Ref. [14], the accessibility for the operation and mainte
nance of the wind farm emerges as a critical parameter for analyzing the 

efficiency of wave height reduction. Consequently, this parameter has 
been duly incorporated into Table 9 for a comprehensive analysis.

In contrast with the findings detailed in Ref. [14], which share the 
same inputs as this study and entailed the positioning of 4 WEC farms in 
a customized arc arrangement, simulation S1 exhibited notable superi
ority. Specifically, in comparison to the best layout identified in 
Ref. [14], simulation S1 showed an 87 % improvement in absorbed wave 
power and a 46 % enhancement in wave height reduction within the 
designated area of interest.

As the S1 simulation demonstrated superior performance, extending 
it to 500 generations allowed for a detailed analysis of its behavior. 
Fig. 21 shows a notable initial improvement in both parameters, fol
lowed by a gradual enhancement in q-factor over the subsequent gen
erations, while HRA remains relatively stable after 300 generations. This 
pattern highlights the inherent trade-offs between parameters, notably 
observed in the best fit curve, where new individuals with higher q- 
factor exhibit lower HRA than the previous best fit, and vice versa.

The Capture Width Ratio decreases as the number of WECs increases, 
indicating a trade-off between total energy absorption and individual 
device efficiency. Simulations with fewer WECs, such as S1 (50 WECs) 
and S2 (50 WECs), show higher CWR values (40.25 and 39.62), 
reflecting better energy capture efficiency per device. However, as more 
WECs are added, like in S5 (100 WECs) and S6 (200 WECs), the CWR 
drops significantly, despite a higher total power absorption, suggesting 
that scaling up the number of devices reduces their relative efficiency. 
This trend highlights the balance between optimizing the number of 
devices and maximizing energy capture efficiency.

Moreover, it is noteworthy that not only the best fit individual or the 
elite evolve. Instead, the entire population experiences an increase in 
values, indicating a collective trend toward achieving optimal results. 
While the population range maintains the potential to circumvent local 
optima, the ongoing evolution of individuals across successive genera
tions suggests a continual exploration of the solution space, thus miti
gating the risk of convergence towards suboptimal solutions.

Interestingly, the best fit individual remained unchanged in the last 
50 generations, despite sporadic instances of improved HRA and q-factor 
in other individuals. This suggests the possibility of a superior fit indi
vidual, albeit with diminishing probability as the best fit remains un
changed over successive generations.

4.4. Comparative analysis and validation of the optimization algorithm

A comparative study was conducted to validate the performance and 
accuracy of the proposed optimization algorithm. This section presents a 

Fig. 16. Wave energy park Layout Assessment index (WLA) evolution of simulations S1 to S4, comparing the result by generation and the execution time.

Table 8 
Results of simulations S1, S2, S3 and S4 considering an execution time equiva
lent of 100 generations of S4 (86 h).

Simulation Generations HRA (%) Q-factor

S1 279 13.21 1.008
S2 205 12.28 1.010
S3 136 12.44 1.007
S4 100 12.93 0.999

F. Teixeira-Duarte et al.                                                                                                                                                                                                                       Renewable Energy 241 (2025) 122362 

16 



Fig. 17. Comparison of the evolution of the HRA and q-factor parameters for all simulations carried out.
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Fig. 18. Best fit layout for each simulation. The blue lines represent the WECs, the yellow triangles the wind turbines of the WindFloat Atlantic and the red rectangle 
the interest area. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 19. Evolution of the parameters HRA (left) and q-factor (right) of all simulations through 100 generations.

Fig. 20. Wave energy park Layout Assessment index (WLA) evolution of all simulations comparing the result by generation and the execution time.

Table 9 
Final generation results for best fit layout, and estimated increase in the accessibility of the wind farm for operation and maintenance.

Simulation Generation Power absorption (MW) CWR Q-Factor HRA (%) Accessibility increase (%)

S1 500 33.07 40.25 1.023 13.21 28.4
S2 260 32.71 39.62 1.012 12.52 26.7
S3 150 32.52 33.21 1.006 12.82 27.6
S4 125 32.36 38.96 1.001 12.86 27.8
S5 200 59.77 34.39 0.924 21.08 44.0
S6 200 221.53 30.08 0.857 32.14 69.5
S7 125 32.12 38.90 0.992 10.43 22.2
S8 125 31.41 38.27 0.972 8.92 19.0
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detailed analysis of three selected cases with a different number of WECs 
(S1, S5, and S6). This study compares optimization results obtained 
using the dual-objective function (WLA) against those obtained with 
single-objective functions focused exclusively on maximizing the power 
production (Q-factor) and the wave protection factor (HRA). This 
comparison aims to highlight the importance and effectiveness of the 
dual-objective approach.

Additionally, the accuracy of the algorithm is evaluated by rerunning the 
selected cases and comparing the optimized layouts with those presented in 
Fig. 19 of the original manuscript. To evaluate the positional discrepancies 
between the rerun optimized layouts and the original simulation, the RMSE 
was employed as a quantitative metric. The calculation methodology 
comprised two key steps.

First, to find the optimal pairing of WEC positions, the Kuhn- 
Munkres algorithm was utilized to establish the optimal 

correspondence between the WECs in the original and rerun layouts. 
This method minimizes the total positional distance across all WECs, 
ensuring an objective and globally optimal pairing. Once the optimal 
pairs were identified, the RMSE was calculated to the distances between 
the paired WECs. This approach captures the magnitude of the average 
positional error in meters, providing a comprehensive measure of the 
layout deviations between simulations. Furthermore, the number of 
WECs whose positions changed more than the WECs width was 
accounted, to evaluate the precision.

This methodology ensures a rigorous and systematic assessment of 
the optimization algorithm’s consistency. The RMSE serves as a robust 
indicator of the accuracy of the rerun layouts compared to the original 
simulation, reflecting the algorithm’s capability to reproduce optimal 
configurations under varying conditions.

Considering the computational costs, all simulations performed for 

Fig. 21. Evolution of simulation S1 for the HRA and q-factor parameters. The purple shadow represents the range of values presented in the population, the green line 
the best fit layout, the blue line the average of all population and yellow line the average of elite layouts. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.)

Table 10 
Results of the verification and validation study. Where Δd is the distance from the first run position.

Sim Power abs (MW) Power 
Error (%)

HRA (%) HRA 
Error (%)

Layout RMSE Pairs (%) 
Δd >1D

Centroid 
Δd (m)

S1 rerun 6.53 0.26 12.63 − 1.80 112.71 52 16.76
S5 rerun 11.90 − 0.47 20.89 − 0.91 106.81 57 22.16
S6 rerun 22.17 0.09 32.48 1.04 98.81 44 14.42
S1 max shield 6.22 − 4.42 14.53 12.96 225.71 86 51.55
S5 max shield 11.44 − 4.28 22.76 7.95 136.52 88 68.36
S6 max shield 21.24 − 4.14 33.97 5.68 110.52 88 49.73
S1 max power 6.59 1.20 9.78 − 23.97 336.69 90 171.72
S5 max power 12.09 1.14 18.94 − 10.14 180.73 91 84.68
S6 max power 22.35 0.88 30.43 − 5.32 170.28 93 72.00
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verification were run with a termination criterion of 200 generations 
and their results compared to the results of the original simulation at the 
same generation. The outcomes for the 200th generation of configura
tions S5 and S6 are presented in Table 9 (for reference, configuration S1 
achieved a power absorption of 6.51 MW and an HRA of 12.86 % after 
200 generations). A summary of the results for all cases can be found in 
Table 10.

To further illustrate the findings, the outcomes of the S1 configura
tion are highlighted in Fig. 22, which provides an evolutionary com
parison of the two optimization runs with equal weights assigned to 
power absorption and shield protection. Additionally, Fig. 23 showcases 
the layouts of all S1 simulations, including those optimized solely for 
power absorption and wave protection. These visualizations emphasize 
the versatility and effectiveness of the proposed optimization algorithm 
under varying objectives.

The second round of simulations with equal weights assigned to 
wave protection and power absorption produced results that were 
remarkably similar to the first ones. Approximately half of the WECs 
were positioned in locations less than one device diameter (<1D) apart, 
with variations in HRA of less than 2 % and power absorption differing 
by less than 0.5 %. Additionally, the RMSE remained stable around 5D 
across all three simulations of different numbers of WECs. The evolu
tionary process of the optimization was also highly similar, indicating a 
strong tendency toward convergence on a global optimum with minimal 
variation.

Notably, the simulations performed for maximizing just one 
parameter exhibited higher variations in RMSE and centroid positions 
compared to the rerun simulations, as these focus on a single objective, 
which causes greater layout variability, with approximately 90 % of the 
devices repositioned. The RMSE was higher for layouts with fewer WECs 
compared to those with more devices. A plausible explanation is the 
reduction of available space for positioning in larger layouts, which 
leads to a more uniform device distribution and minimizes the average 
positional differences between optimized pairs.

The centroids, which can represent the positioning of a central col
lecting hub, were highly stable for the rerun simulations, with variations 
of 1D or less. An exception occurred in the S1 maximum power case, 

where centroid variation reached 8D due to the focus on maximizing 
power absorption alone, which led to more distinct optimized positions. 
Nevertheless, considering the layout domain of approximately 1.3 km2, 
this difference is practically insignificant.

The random nature of the initial generation and the mutation pro
cess, which allows WECs to be repositioned anywhere within the domain 
regardless of previous layouts, supports this global optimization search. 
This tendency for the simulations to converge toward a common solu
tion is further demonstrated by the evolution of the entire population, as 
shown in Fig. 21, where the population progresses collectively toward 
an optimal configuration.

These results further corroborate the trend toward an optimal global 
layout. A plausible explanation for the consistency of results and the 
similarity in evolutionary paths, even when considering continuous 
spatial positioning, lies in the random sampling of 500 layouts in the 
initial generation. This broad exploration minimizes the likelihood of 
convergence to local optima by effectively distributing the WECs across 
the entire domain.

For the simulations that aimed to maximize only one parameter in 
the objective function, the non-prioritized parameter was consistently 
neglected in the best-fit solutions, never achieving the highest value in 
the generation and remaining close to the generation average. 
Conversely, the prioritized parameter was always maximized. This is 
reflected in Table 10, where reductions in power absorption and HRA 
are evident for the neglected objectives.

Interestingly, Table 10 also reveals that, even with equal weights, 
power absorption reaches levels very close to those achieved in simu
lations exclusively maximizing power. This suggests a potential barrier 
for this parameter, as the q-factor is already close to or exceeds 1. On the 
other hand, HRA appears to have more room for improvement. 
Furthermore, small variations in power absorption have a more pro
nounced impact on wave protection than variations in protection have 
on power absorption.

Examining Fig. 23 and the variations in centroids, it becomes evident 
that prioritizing one objective significantly influences the spatial 
arrangement of the layouts. Simulations that prioritize wave protection 
exhibit a more compact spatial distribution, concentrating the WECs in 

Fig. 22. Comparison of the evolution of the HRA and q-factor values and it their variation for the two simulations with S1 parameters. The blue line represents the 
evolution of first run, the green line the evolution of second run and the red bars represents the percentual difference between each run. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.)
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areas aligned with the predominant wave energy directions and fre
quencies. Conversely, simulations that prioritize power absorption 
result in a more dispersed spatial configuration, aimed at minimizing 
interference between WECs and maximizing wave energy exposure for 
each device. These findings highlight how the objective function weights 
influence not only the performance metrics but also the spatial charac
teristics of the optimal WEC layouts.

These findings emphasize the importance of carefully calibrating the 

weights of the objective function. Their adjustment should be based on 
thorough evaluation and may consider a range of economic, social, and 
environmental factors to reflect stakeholder priorities and optimize 
outcomes effectively.

5. Conclusions

This study successfully employed a GA to optimize the layout of a 

Fig. 23. Best fit layout of generation 200 for each simulation using the S1 parameters. The blue lines represent the WECs, the yellow triangles the wind turbines of 
the WindFloat Atlantic and the red rectangle the interest area. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.)
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WEC farm situated offshore Viana do Castelo, Portugal. The farm’s 
primary objective was to harness wave energy while simultaneously 
protecting a co-located wind farm from waves, in order to increase the 
weather windows for operation and maintenance.

The key findings of the study are as follows: 

• K-means clustering effectively reduced the number of sea states 
required for the accurate wave farm simulations while preserving at 
least 90 % of the incoming wave energy. However, it is crucial to 
acknowledge that k-means clustering utilizes Euclidean distance, 
which is not well-suited for analyzing data with circular character
istics, such as wave direction. This limitation was overcome by 
restricting wave directions to a sector lower than 180◦. Alternatively, 
employing specialized distance metrics for circular data representa
tion could be explored in future works;

• The GA configured with a 70 % crossover rate, a population size of 25 
individuals, and an elite rate of 12 % achieved the optimal balance 
between solution quality and computational efficiency. Importantly, 
this approach leverages a continuous domain for WEC placement. 
Unlike traditional grid-based methods that restrict WEC positions to 
pre-defined locations, the GA allows for a more nuanced and 
potentially superior optimization by enabling free positioning within 
the designated area;

• Compared to a previous study with a non-optimized layout design, 
the proposed GA method yielded a significant improvement in both 
the absorbed wave power (87 % increase) and wave height reduction 
(46 % increase) within the designated area of interest;

• The limitations of the study include the inherent trade-offs between 
the optimization objectives (HRA and q-factor) and the challenges 
posed by area restrictions due to a large number of WECs or wide 
inter-device spacing.

In essence, this study demonstrates the effectiveness of the GA in 
optimizing wave farm layouts for efficient wave energy capture while 
simultaneously mitigating negative wave impacts on co-located wind 
farms. The proposed methodology, particularly the utilization of a 
continuous domain and the versatile SNL-SWAN model, is valuable for 
advancing the development and implementation of wave farms. The vast 
range of inputs and outputs allowed by SNL-SWAN model enhances the 
applicability and comparability of this framework across diverse WEC 
technologies and environmental conditions.

This finding underscores the nuanced interplay between different 
performance metrics within multi-objective optimization frameworks. It 
suggests that achieving the most favorable outcome needs a holistic 
evaluation of various parameters and their respective trade-offs, rather 
than focusing solely on individual metrics. Such insights are instru
mental in refining optimization strategies and enhancing the effective
ness of WEC layout design processes.

Future work entails the incorporation of economic valuation within 
the WLA, specifically through the integration of LCoE assessments for 
both wave and wind farms. Additionally, there is a focus on environ
mental impact evaluation, particularly in the context of WEC farms 
installed in nearshore environments. These endeavors aim to provide a 
more comprehensive understanding of the economic viability and 
environmental sustainability of integrated renewable energy systems.

To foster further R&D in the area, the GA code, as well as the pre- and 
post-processing codes used, are made available on the GitHub repository 
https://github.com/FelipeTDuarte/GA_WEC_farm_optimization. This 
will enable researchers to replicate the findings, explore modifications 
to the algorithm, and adapt the framework to different conditions. By 
facilitating collaboration and knowledge sharing, this open-source 
approach can accelerate the progress towards optimized and efficient 
wave energy farms.
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wave energy converter: recent developments, Renew. Energy 139 (2019) 368–384, 
https://doi.org/10.1016/J.RENENE.2019.02.081.

[53] P. Rosa-Santos, F. Taveira-Pinto, L. Teixeira, J. Ribeiro, CECO wave energy 
converter: experimental proof of concept, J. Renew. Sustain. Energy 7 (2015) 
061704, https://doi.org/10.1063/1.4938179.

[54] G. Giannini, P. Rosa-Santos, V. Ramos, F. Taveira-Pinto, On the development of an 
offshore version of the CECO wave energy converter, Energies 13 (2020) 1036, 
https://doi.org/10.3390/EN13051036, 2020;13:1036.
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