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Abstract
One way to lower the levelized cost of energy for wave power plants and paving so the way for
commercial success, is to increase the power absorption by use of advanced control algorithms.
This thesis investigates the influence of the generator inertia, the generator damping and the
layout on power absorption and presents a new model free strategy of controlling wave energy
converters.

The evaluation of all control strategies was done in a numerical simulation and in experi-
mental 1:10 model scale wave tank tests conducted in the COAST laboratory at the University
of Plymouth. The WECs used are inspired by the wave energy concept developed at Uppsala
University.

The influence of the generator inertia on the power absorption was tested with an uncontrol-
led WEC. Compared to a conventional WEC the power output could be significantly increased
for small waves and high wave periods.

As a simple and easy to implement a control strategy, a WEC with sea state optimized
generator damping was used to create a power matrix. The optimal damping factor depends on
both wave period and wave height. The power absorption increases with the wave height and
when the wave period converges towards the oscillation period of the WEC.

A genetic algorithm was used to obtain the optimized layouts for wave energy farms, which
suggest that the converter should be placed in rows parallel to the wave front, and the position
in the array has almost no influence on the optimal control parameter.

Finally, a collaborative learning approach using machine learning is presented, with several
identical wave energy converters in a row to parallelise the search of the optimal control para-
meter. It was implemented to control the generator damping factor and the latching time. With
the latter the power could be increased significantly.
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1. Introduction

For seamen like James Cook the energy transported in ocean waves was mostly
seen as a danger which should be avoided. But when he landed with his ship
HMS Endeavour in Tahiti in 1769, he could observe people bathing in the
water, enjoying the waves and trying to ride them. Maybe this was the first
time wave energy was used for human purposes.

Over two-hundred years later some people still like to ride waves, but much
more they enjoy the comfort of nowadays electrical powered world and also
here wave energy could be useful. To ensure a sustainable electrical energy
supply in the future, electrical energy converted from ocean waves may play
an important role. However, despite a long history of research in wave energy
conversation and a wide range of proposed wave energy converter (WEC) de-
signs, the idea, as easy and reasonable it seems, is not brought to a commercial
scale yet.

For commercial success the levelized cost of energy have to be at or below
the level of other electricity plants, what is not the case for WECs yet. To
lower these costs, the cost of each WEC has to be reduced, for example by
simplified designs or the power production has to be increased, for example
by using advanced control strategies. As the energy density of ocean waves is
much lower than for fossil fuels, most wave energy converter produces much
less power than a conventional power plant. To produce significant amounts
of energy WECs have to be put into farms consisting of ten to thousands of
WECs, which brings new challenges how to place the devices and how to
control them.

The history of modern wave energy research dates back to the 1970s and
since then a wide range of concepts for wave energy converter were developed
[1]. However, due to the way WECs interact with the waves, these designs
can be classified in three categories: attenuators, terminators and absorbers.
The latter is especially popular as point absorber, where a buoy that is small
compared to the wave length, absorbs the energy.

1.1 Wave energy research at Uppsala University
The wave energy research at Uppsala University dates back to the beginning
of this century [2], when a generator concept was developed [3], and later built
an tested in full scale [4] close to Lysekil at the west coast of Sweden, what be-
came the test site for several wave energy prototypes [5, 6, 7, 8]. The research
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Figure 1.1. Sketch of the wave energy converter concept developed at Uppsala uni-
versity.

focuses on nearly all aspects of wave energy, from the WEC design [9, 10]
and deployment [11], the sensor system [12, 13] and grid connection [14], but
also the control of WECs [15, 16], the survivability in extreme waves [17], the
interaction in wave energy farms [18], the deployment and maintenance with
help of remotely operated underwater vehicles [19] as well as environmental
aspects [20]. The WEC’s installed at the Lysekil testsite, in this thesis refered
as UU-WEC, are floating point absorbers of the heave buoy type with gravity
mounted direct-driven three-phase linear generators at the seabed. Generator
and buoy are connected with a line. End stops spring inside the generator hou-
sing prevent the translator damaging the generator when pulled further than
the stroke length. See Figure 1.1 for a sketch of the WEC. The generators
are connected to a substation that is connected to a control centre on the main
land, where it can be either connected to the grid or to a load resistance. By
changing the load resistance, the generator damping can be controlled.

1.2 Control
When it comes to control, the balance between the increase in power absorp-
tion and the complexity of the system has to be found. An control easy to im-
plement in most generators is a variable generator damping, scheduled accor-
ding to the sea state. However, to maximize the power absorption, the WEC’s
natural frequency has to match the frequency of the wave. Some systems uses
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specialized mechanisms to change the natural frequency of the WEC [21],
while other just change the generator damping and consequently the damped
frequency of the WEC. Quite often the latching or declutching approach pro-
posed by Budal and Falnes [22] is used: Here the translator is latched or freely
moving until the desired phase offset between WEC and wave is reached. For
all controlled systems, the biggest challenges is to find the best control para-
meters, as the waves are changing constantly.

Conventional approaches
Optimal control as investigated in [23, 15, 16] requires a very accurate mat-
hematical model of the system, especially constrains are hard to implement
[24]. Model-predictive control as in [25], uses a model of the WEC to find the
best scenario for a specific time horizon. Also here the quality of the control
is related to that of the model. Many model based approaches rely therefore
on a good characterisation of the system, which may be difficult to obtain in
the real world.

Machine learning approaches
In recent years, control using machine learning have become popular. Here the
control strategy is not implemented manually, instead it is trained autonomous
on a set of data. Notable approaches in the field of wave energy can be found
in [26, 27].

1.3 Research question
This thesis is addressing the challenges in controlling a WEC by looking for a
robust and model-free control strategy that increases the power absorption of
floating point wave energy converter in an array.

Also this thesis focuses on strategies suitable for different types of wave
energy converter (and even energy converter in general), for the numerical
simulations and physical experiments a specific device had to be chosen. The-
refore a floating point wave energy converter inspired by the WEC designed
at Uppsala University was selected: A floating point absorber with bottom
mounted direct driven linear generator. This design is very simple, allowing to
get more universal results. Furthermore many similar concepts can be found,
making it easier to compare the results to other devices.

1.4 Outline
In order to approach the thesis’s aim, several steps had to be undertaken: Phy-
sical scale model were designed for wave tank tests and a numerical model
was development to validate the control strategies. The influence of the PTO
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inertia and damping on the power absorption were evaluated and possible op-
timized layouts and their influence on the control were discussed. On base of
these findings the collaborative learning control approach aiming to increase
the power absorption of WECs in an array was developed:

• An uncontrolled approach with using a high inertia PTO to match the
wave frequency is tested as the contrary approach to a controlled WEC
(Paper I).

• The characteristics of the Wave Energy Converter were investigated while
performing a power matrix with optimal damping control for a single
WEC. This was done in simulation and for the physical scale model (Pa-
per II).

• Wave farm optimization can not be done by focusing on the control only,
the layout also needs to be considered. The layout of the array may
influence the optimal control parameters, while it also determine what
kind of control strategies may be used. Therefore investigation is also
undertaken on how a optimal WEC farm layouts may look (Paper III).

• Finally, the Collaborative Learning (CL) is presented, which makes use
of the array configuration for a robust and model-free control strategy.
Here, several WECs in a row apply different strategies. The result of
each strategy helps to train a machine learning algorithm, who will then
be able to find suitable parameters for a specific sea state. This strategy
is used for generator damping (Paper IV) and latching control (Paper V).

The next chapter will focus on the theory that is used in this paper, follo-
wed by the presentation of the collaborative learning algorithm in chapter 3.
Chapter 4 presents the results of the numerical simulation and the wave tank
tests, before chapter 5 discusses these results. The last chapters will give a
conclusion of this thesis and a outlook on future work.

It took hundreds of years and a lot of invention, but then a tradition from
Hawaii spread out into the whole world and become modern surfing. This
thesis wants to contribute that the same will happen to wave energy one time.
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2. Theory

This chapter will explain briefly the theoretical background for the methods
used. It starts with the theoretical background of the linear potential wave
theory which is used for the numerical simulation presented in the next chap-
ter, before continuing with a short description about the fundamentals of wave
energy absorption with heave buoy type converters. Common control strate-
gies are presents and from this the ones investigated in this thesis are chosen.
A special focus is put on machine learning which was used for a novel colla-
borative control. The basis, artificial neuronal networks are introduced in the
last section of this chapter.

2.1 Numerical wave modelling
2.1.1 Linear wave theory
While interacting with the ground, objects in the water and themselves, the dy-
namics of water waves are very complex. With the increase in computational
performance, it became possible to use simulate thousands of water particles
at the same time, leading to very accurate results. These methods are known
under the name Computational Fluid Dynamic (CFD) and are used for a wide
field of application. Unfortunately they are very resource consuming. In the
field of marine and naval engineering, where multi-body wave interaction and
large areas have to be simulated, a simplified but - while staying inside the
limitations as listed below - still accurate simplification is used: The linear
wave theory.

The basic assumption of linear wave theory is that the fluid is inviscid,
incompressible and irrotational and the waves are non-steep [28], small com-
pared to the water depth, the body motion is small and gravity is the only
force acting on the fluid, what is in good agreement given for the waves under
consideration in this study.

Having an incompressible fluid the fluid velocity in all dimension has to
equal out:

∇�v =
∂u
∂x

+
∂v
∂y

+
∂w
∂ z

= 0 (2.1)

where �v = (u v w) is the fluid velocity in all directions. The irrotational fluid
allows to introduce the velocity potential Φ, a scalar that is defined as the
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negative of the partial integration of u, v, w, along x,y and z. With that 2.1
becomes:

∇�v =
∂ 2Φ
∂ 2x

+
∂ 2Φ
∂ 2y

+
∂ 2Φ
∂ 2z

= 0 (2.2)

which is well known as the Laplace equation.
Next, the boundary conditions have to determined: First it is assumed that

there is no vertical water movement at the sea bed:

w(x,z =−h, t) =
∂Φ
∂ z

∣∣∣∣
z=−h

= 0 (2.3)

The surface condition (z=0) is split into kinematic and dynamic conditions.
At the free surface the velocity potential in z-direction is determined by the
surface elevation η(x, t) (kinematic surface condition):

η = −1
g

δΦ
δ t

∣∣∣∣
z=0

(2.4)

and at the same time the pressure at the surface must be constan (dynamic
surface condition): [

δ 2Φ
δ 2t

=−g
δΦ
δ z

∣∣∣∣
z=0

(2.5)

Based on these conditions the wave field can be calculated and so, via integra-
tion over the wetted surface all hydrodynamic parameter.

2.1.2 Wave Body interactions
A wave interacts with a body in three ways:

• The incident wave φi causes a pressure on the object’s wetted surface
Aw and so a force. If the object is not fixed, it will start to move and
so

• radiate a wave φr, which will spread out and so influence the incident
waves of bodies nearby.

• Each body in the water is a obstacle for the wave, causing the wave
to scatter φd .

When the hydrodynamic coefficients are known the forces on the object can
be calculated. The excitation force is calculated by integrating the velocity
potential over the wetted surface Aw:

Fe, j = iωρ
∫∫

S
(φ0+φS)n jdS , (2.6)

with n j being the normal vector in direction j [29, 28]. The excitation force
may cause a movement of the body. While focusing on heave (direction: z)
point absorbers, only motion in heave direction is considered; surge and sway
are seen as neglectable which is in good agreement with experimental tests
[30].
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2.2 Control of Wave Energy converters
2.2.1 Wave energy absorption with heave buoy type converters
For simplification a one degree of freedom (heave direction) single body (buoy
and generator have a fixed connection) floating point absorber with a fixed
generator damping is considered in this section. In calm water, the system can
be seen as an harmonic oscillator with a damped frequency of:

ωd =
√

k/Mt −0.5d/Mt , (2.7)

where d is the overall damping (the sum of the generator damping γ and the
hydrodynamical damping), k is the buoyancy stiffness and Mt the total mass of
inertia. As d is fixed, the absorbed power Pa = γv depends only on the velocity
v, and so the absorbed energy for a forced oscillation with frequency ω is:

E ∼ F̂/( jωMt +d − jk/ω), (2.8)

with E being the absorbed energy and F̂ the amplitude of the force. From 2.8
follows that the energy absorption is maximized when

Mt = k/ω2. (2.9)

If condition 2.9 is fulfilled, the WEC has the same natural frequency as the
forced oscillation (e.g. sea state).

If the WEC is in resonance and the damping is matching the sea state, the
theoretical maximum is reached. However, the influence of the natural period
is much higher than the influence of the damping.

From this four important conclusion can be drawn:
• The generator damping γ can be used to adjust the damped frequency and

so increase the power absorption
• The power absorption for a fixed damping is maximized if the natural fre-

quency matches the wave frequency. The natural frequency of the WEC can
be changed by either altering the spring constant of the system or the inertia.

• The maximal power is absorbed if the WEC is in resonance, and the dam-
ping matches the sea state.

• The influence of the natural frequency on the power absorption is much
higher than the influence of the damping.

2.2.2 Challenges with energy absorption of WECs
In reality, one body WECs can be rarely found. The WECs considered in this
thesis for example have two bodies (buoy and generator) which are connected
via a line. If the line is slack the characteristics of the system differs from the
characteristic when the line is tensioned.

Furthermore the interaction between the WEC and the wave has to be con-
sidered: The radiated wave is related to the speed of the buoy: On one side
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a measure of the absorbed power by the buoy, on the other side, due to the
interaction with the incoming wave, it also reduces the power that can be ab-
sorbed. In arrays the influence of the radiated wave on neighbouring WECs
have to be considered.

Finding the optimal frequency for a WEC can be challenging for ocean
waves, as they are in general irregular waves, superposition of waves with
different frequencies. If such a sea spectra is constant for a time interval, it
is called a sea state. The distribution of sea states at a specific location is
known at the wave climate. So there is not one single optimal frequency, in
fact the optimal frequency is changing over time, and is in general not known
in advanced.

2.2.3 Control strategies
Over the time different control strategies for WECs have been developed, fo-
cusing on different aspects: Beside the absorbed power, the parameters that
are controlled, the need of a theoretical model and the robustness are impor-
tant aspects of a control strategy. This section will give a brief overview over
state of the art control strategies, a more detailed discussion can be found in
[31].

Controllable values
A comparable easy to implement option is to change the damping of the ge-
nerator. In case of an electric generator, this can be done by altering the load.
Some systems may furthermore allow to tune the natural frequency of the
WEC with adjustable stiffness of additional inertia. But more convenient are
systems that change the oscillation frequency of the WEC by manipulating the
motion of the power take, for example by decoupling the translator from the
buoy motion, or by stopping the motion of the PTO [22].

No control
Some WECs, like the UU-WEC, use no control to simplify the mechanics.
Depending on the design, the WEC will capture significantly less power than
the theoretical optimum, but for a wide range of sea states. Or it will be tuned
for a specific sea state where it reaches the optimum, but will show a poor
capture performance outside these sea states.

Complex-conjugate control
A controllable spring stiffness or inertia, together with an adjustable damping
enables a control strategy that fullfills condition 2.9 with optimal damping
for every wave. Complex-conjugate control will lead to the highest power
absorption, but systems with tunable inertia or spring stiffness require complex
mechanism and are rarely found. An example for such devices can be found
in [21].
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Figure 2.1. Latching sequence of the second buoy: In the first picture the buoy is
latched and noticeable lower than the other buoys. Between picture 2 and 3 the buoy
is released and ‘jumps’ up. In picture 6 the buoy is latched again (From Paper V).

Latching and declutching
For WECs with fixed oscillation frequencies higher than typical wave periods,
the latching control was proposed. Here, a phase offset between wave and
WEC is created by latching the WEC and releasing it after a latching time
tl . This time depends on the difference between wave period and oscillation
period of the WEC. The opposite control strategy for WECs with a lower
oscillation frequency is called declutching, here, the PTO is detached. An
example of a latching buoy can be seen in Figure 2.1.

Control parameter estimation
The problem of all presented controls is the determination of the best parame-
ters. In the following three methods used to find the best control parameters
are described:

Optimal control
Assuming the control problem is accurately described with differential equa-
tions, the search for optimal control parameter can be done with ordinary op-
timization methods (Hamilton-Jacobi-Bellman). The first step is to introduce
a cost function stating the weighting of different factors that have to be con-
sidered in the optimization. The next step is to solve the equation. However,
it is not always possible to get a suitable mathematical model of the control
problem: Non-linearities like constraints are difficult to implement and very
often a detailed parametrisation of a WEC is too complex.

Model-Predictive Control
To achieve the optimal power absorption a controller has to look forward. The
idea of model predictive control (MPC) is, to provide the controller with a
model, which can be used to simulate the impact of the current action on the
further power absorption, and so look for the scenario which increases the
power absorption. The prediction is updated at each time step to consider pos-
sible differences between prediction and reality. MPC is successfully used in
many areas. An example for a MPC for wave energy converters can be found
in [25]. The quality (or more precisely: the prediction horizon) of an MPC
relies strongly on the accuracy of the model. Especially the complex interacti-
ons of WECs in general, and for WEC arrays in particular may increase the
complexity to develop a suitable controller for realistic conditions.
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Machine learning
In recent years machine learning algorithm have been used to solve many pro-
blems which are otherwise hard to describe. No model of the process to be
controlled is needed. Due to the complex interactions between buoy and wave
and the constraint and non-linearities of the PTO, machine learning was tried
earlier successfully in wave power applications [33, 34]. In this thesis two ma-
chine learning approaches are used: Genetic algorithm were used to optimize
the array layout in Paper III and artificial neural networks (ANN) were used
in the collaborative learning algorithm in Paper IV and V.

2.2.4 Control strategies used in this thesis
The aim of this thesis is to find a control for wave energy converters in a
farm which will work under realistic condition. Therefore the robustness is
seen as an important aspect. As obtaining a good and reliable model and
parametrization is still a challenge for WECs, a model free control was chosen,
excluding optimal and model predicting controllers.

The easiest way to operate a WEC is using no control. This was tested in
Paper I with a special WEC with an optimized natural frequency. The next
step was to test the performance of an optimized generator damping in Paper
II, a control value that is comparably easy to implement. The main focus of
this thesis lies on the collaborative learning, which is a control strategy based
on machine learning and was implemented with latching (in Paper V) and
damping (in Paper IV) control. As learnable element artificial neural networks
are used, which are explained in the next section.

2.3 Artificial Neuronal Networks
Within the area of machine learning, artificial neuronal networks (ANN) stick
out due to their good performance in application where analytical methods
are hard to implements, such as speech recognition [35], picture recognition
[36], artificial intelligence [37] and wave prediction [38]. ANNs are so-called
black-box models, meaning that no information about the task to perform is
necessary. In the beginning the ANN is just structure, that adapts to its specific
task by learning. Learning can be done in three fundamental ways:

• Supervised learning means that a data set linking input and desired
output data is used to train the ANN, which tries to change its struc-
ture so that it finds a function describing these linkage.

• Unsupervised learning on the other side does not need a data set with
referenced values. The network gets data and tries itself to classify
them into categories. An example for such networks are self organi-
zing maps.
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• Reinforcement learning does like unsupervised learning not need any
reference value, instead it needs an evaluation function that is judging
over its output. The ANN will take some action on basis of the input,
the results of the action are then judged and a positive or negative
reward is feed back to the network; the aim of the ANN is to find the
output values for an input value that lead to an positive reward.

Supervised learning is maybe the most popular of these learning strategies, as
it is the most direct and fastest one. However, a large data set of labelled data
is needed. This is not required for reinforcement learning, which is in return
not as effective as supervised learning and depends heavily on how accurate
and quick a specific output can be rewarded.

Networks types
The name artificial neural networks comes from the fact that they were in-
spired by the brain structures in animals. However, despite some similarities
artificial neuronal networks used for machine learning are much simpler than
biological ones. While in biological neuronal networks connection between
neurons are unordered and contain many feedback loops, they are often more
ordered and feedback loops are limited in artificial ones. In the following three
common network types are presented:

• The widely used multi layer feed forward perceptron networks clas-
sifies the neurons in layers. Each neuron of a layer feeds its signal
forward to all neurons in the next layer. However, backward con-
nections or connections skipping one layer are not allowed. The out-
put is only dependent on the current input, temporal dynamics are not
considered.

• Recurrent networks allow backward connection, and so allow to have
internal states. But due to stability reasons they are mostly used in the
form of short-long term networks which limits the feedback [39].

• Convolutional layers can be used with both network topologies. Con-
volutional layers played an important role for many recent advances
in artificial intelligence [37, 40] and picture recognition [36]. Theore-
tically a non-convectional network can act the same, but only for the
cost of much more layers.

Paradigmas
Beside the network types, two paradigms are common with neuronal net-
works. The traditional paradigm is to use small networks with just a few neu-
ron layers, but pre-processing the input data easing the learning process for the
network. While the computer performance increased significantly in the last
years, the paradigm of the "deep" network, using more layers while reducing
the pre-processing of the input data evolved. Especially in combination with
convolution networks these networks established new records in the field of
artificial intelligence, non-linear control and speech and image processing.
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Working principle
The basic working principle of a neuronal WEC is now explained with an
artificial neural multi layer feed-forward perceptron network The smallest part
of an artificial neural network is the neuron, also called perceptron or unit. In
each layer l a number of nl neurons are placed. The first layer receiving the
input values is called input layer, the last layer is analogues called output layer;
all layers in-between are called hidden layers. A neuron j in a hidden or output
layer l has exactly one input connection to each neuron in the previous layer.
It takes each input times a weight wi, j where i is the neuron the signal comes
from. This leads to a nl−1×nl weighting matrix W for layer l. To the weighted
input a bias bi is added, the result is called potential pi. This potential is
input of a non-linear activation function fA, which determines the output of the
neuron. Common activation functions are the logistic function for networks
with a few layers and the ramp function (neurons using this function are often
called rectified linear units, ReLUs). In the input layer neurons have no input
weights and only one input: the input data. The number of neurons in the
input layer is equivalent with the number of input scalars. Similar the number
of neurons determines the number of output scalars. When the output neurons
represent probabilities of a classification or action, the softmax function may
be used to determine the neuron with the highest probability.

Learning
Learning is done by adjusting the weight regarding the influence of the weight
on the output error e, expressed with δ :

δ j =
∂e

∂w ji
(2.10)

The error is first calculated fo each output neuron by comparing the output�o of
the network to reference data�r to calculate the square error�e for each neuron:

ei = 0.5(ri −oi)
2. (2.11)

And so δ becomes:
δi = (ri −oi) (2.12)

For the hidden and input layers, the error has to be back propagated, so δ is
calculated:

δi =
n−l

∑
j=0

(w jiδ j)
d fA, j(p j)

do j
. (2.13)

The weight is than updated with a specific learning rate η :

wi j = ηδ joi. (2.14)

A too high learning rate will increase the chance that a minima is missed and
may lead to an unstable system, a lower learning rate will reduce these risk,
but will also slow down the learning.
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2.4 Array layout
As WECs in an array interact with each other, optimal control and farm layout
depend on each other. In order to know how a optimized layout for WECs may
look like, this was investigated in Paper III: For three different scenarios (see
Table 2.1) the optimal configuration was searched with a genetic algorithm
(GA).

Table 2.1. Overview of the scenarios (scen.) used in the layout optimization; The
layout grid spacing is 15 m in each direction.

scen. WECs Layout Optimization value parameters
1 9 3x3 non-dimensional

power/mass
buoy radius (2 m or 3.5 m)

2 6 large,
6 small

- total power layout, 6x6 grid

3 4 2x2 power/mass buoy radius:
R ∈ [2 : 0.5 : 3.5] m,
buoy draft:
d ∈ [0.3 : 0.05 : 0.6] m,
PTO damping:
γ ∈ [15 : 1 : 250] kNs

m

2.4.1 Experiments
Genetic Algorithm
Genetic algorithms are biological inspired optimization strategies. The set
of variables is seen as a chromosome, where each variable is a gen. Several
chromosomes, so possible solutions for this optimization problem, form a po-
pulation. All chromosomes in a population are evaluated and rated on base of
a cost (or in GA terminology fitness) function. Only from the best rated chro-
mosomes the gens are mixed (normally in pairs of two) and slightly changed
(mutation), so that a new set of possible solutions (new generation) is created.
More details can be found in Paper III.

Cost function
Three cost functions are used. For the first scenario the non-dimensionalized
power absorption to mass ratio is used:

fC1 =− (Pt −Ps)/(Pb −Ps)
(mt −ms)/(mb −ms)

, (2.15)

where Pt is the total absorbed power, Ps the absorbed power when all buoy
have the smallest radius and Pb the absorbed power when all buoys have the
biggest radius. The second case uses the absorbed power as cost function and
case three the ratio between total absorbed power and total mass.
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Figure 2.2. Best solutions of the GA for case 1 (From Paper III).

WEC sizes
A WEC inspired by the UU-WEC was used to perform the tests. In case 3 the
parameters of the WECs were chosen by the GA, in case one and two the two
different WEC sizes were used:

• The small WEC has a radius of 2 m and a mass of 6440 kg, resulting
in a draft of 0.5 m. The generator damping is 70 kNs/m.

• The large WEC has a radius of 3.5 m and a mass of 23668 kg, re-
sulting in a draft of 0.6 m. The generator damping is 200 kNs/m.

Evaluation
The solutions were evaluated with a linear frequency domain model of the
wave park.

2.4.2 Optimal Array
The result for case one can be seen in Figure 2.2. Two rows with three small
WECs and one row with three large WECs are placed parallel to the wave
front. The solution for case 2 can be seen in Figure 2.3. Both solutions, the
best and the worst, look a bit chaotic. This might be an indicator that the GA
has not found the optimal solution yet. A qualitative guess how the optimal
layout could look like can be seen in Figure 2.4. The best solution of the GA
optimization of the WEC parameters can be seen in Figure 2.5. The four WEC
differ only slightly in the generator damping (which is about 2.7% higher in
the second row seen from the wave direction), but are otherwise equal.

2.4.3 Discussion under the aspect of control
It is remarkable in Figure 2.2 and 2.4 that the WECs in a line parallel to the
wave front are the same. Also when looking on the original solution of the
second case in Figure 2.3, it can be seen that in the worst case the WECs are
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Figure 2.3. Solution of the GA for case 2. The best solution is on the left, the worst
on the right (From Paper III).

Figure 2.4. Guess how the ideal solution for case 2 could look like (From Paper III).

Figure 2.5. The best solution of the GA for case 3 (From Paper III).
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located unordered in the whole grid, while the best solution is dominated by
equally sized WECs ordered in lines parallel to the wave front. According
to this results, a WEC controller can focus on grids with rows of identical
WECs. Moreover, from Figure 2.5 it can be argued, that the WECs in an array
may have similar parametrisation and the optimal generator damping (which
is often the only control parameter) is almost independent of the position.
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3. Methods

The control strategies presented were tested in both numerical simulation and
wave tank tests. First, the numerical simulation used in Paper I, II and V is
described which is based on linear potential theory and is able to simulate
single WECs as well as WEC arrays and allows to control each WEC with
a range of control strategies. Then the simplification made on the numerical
simulation for Paper IV is introduced.

All control concepts were also tested in 1:10 scale physical experiments in
the wave tank of the COAST laboratory at the University of Plymouth. Two
experimental models were used: The active model allows to simulate all kind
of controls, while the passive one can only perform constant damping. Both
are introduced in section 3.3.

The last section of this chapter deals with the collaborative learning, the
model free machine learning based control strategy which was developed for
WECs in an array.

3.1 Numerical Simulation
The hydrodynamic parameter were calculated by WAMIT, a hydrodynamic
solver based on the linear potential wave theory described in the last chapter.
The outputs, impulse response functions (indicated with f , while forces are
indicated with F) of the excitation wave force (including the incident wave
force and the scattered wave force Fe, j(t) = Fi, j(t)+Fs, j(t)) and the radiated
wave Fr, j(t) for all WECs in the array where then used in the numerical simu-
lation. The buoy and PTO were the same for all WECs involved in each array.
The simulation models the WEC as a two body system (buoy and generator)
and the connection line as a damped spring. A similar models was validated
for full size WEC data in [41].

Buoy
For the buoy j (position x) the equation of motion is:

ẍ j = (Fe, j +Fr, j +Fh, j +Fl, j +mbg)/(mb+ma), (3.1)

where Fl is the line force, mb is the mass and ma the added mass of the buoy.
The other forces are: The excitation force Fe is the force on the body caused
by the incident wave and decreased by the scattered wave:

Fe, j(t) = ( fe, j(t))∗η(t), (3.2)
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where η(t) is the wave elevation. The hydrostatic force Fh is the product of the
buoyancy at equilibrium draft and the position of the buoy below the surface
(x):

Fh, j(t) = bbx j(t). (3.3)
The buoyancy is calculated as the product of the cross-sectional area of the
buoy on the water surface Aw, the water density ρ and the gravity acceleration
g. The force on WEC j caused by the radiated waves of all n buoys is:

Fr, j(t) =
n

∑
k=0

fr, j(t)∗ ẋ j(t). (3.4)

Line
The connecting line force Fl, j is non-linear, depending if the line is slack or
tensioned:

Fl, j =

{
cl(x j(t)− y j(t))+dl(ẋ j(t)− ẏ j(t)) , x j > y j
0 , else , (3.5)

with y being the position of the translator, cl being the line elasticity and dl the
line damping.

Generator
The characteristics of different generators may vary significantly. Therefore
the generator is not part of the main software, but different profiles can be
loaded via library files. Unless otherwise stated in the experiment description,
an idealized velocity dependent generator force with the damping factor γ is
used. With mw being the translator weight, the equation of motion for the
generator is:

ÿ = (γ ẏ j(t)−Fl, j +mwg)/mw. (3.6)
A modification of the ideal linear generator can read the control libraries as
used by the physical set-up (see later in this chapter), so that the same control
strategies can be used in physical and numerical experiments.

The coupled equation (3.1), (3.5) and (3.6) were solved using a delayed
differential equation solver (DDE) with a fixed step-width of 1 ms. The inputs
are the wave time series, the number of WECs to be simulated, the parameters
for the buoy, the line and the PTO and the generator model that should be
used for each WEC (including a possible control strategy). The output is the
position and velocity of both translator/rotor of the generator and buoy as well
as the absorbed power. Figure 3.1 gives an overview of the simulation. This
model was used in Paper I, V and II.

3.2 Simplified Numerical Simulation
For the CL latching control in Paper IV a simplified version of the model is
used to speed up the learning process. While translator and line modelling
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Figure 3.1. A block diagram of the numerical simulation including all revelant equa-
tions (From Paper II).

is analogue to the model described above, the hydrodynamic interactions are
simplified: It is also assumed that the WECs in the array have no interactions
among each other; the scattered wave is neglected and effects of radiated wa-
ves are expressed in a linear buoy damping constant bd . The so obtained model
is not relying on the impulse response function what makes it causal. The ad-
ded mass and the buoy damping constant where determined from a decay test
of the buoy. A sketch of this model is found in Figure 3.2.

Heave force
According to Bernoulli’s principle the force can be described as a potential
force FBc and a kinematic force FH , both are depending on the surface elevation
h, the buoy’s position x and the projected wetted surface of the buoy AB. The
potential force FBc = ρgAB(h−x) is called buoyancy stiffness. The kinematic
force is

FH =

{
ABρ(ḣ− ẋ)2 , x < h∧ ḣ− ẋ > 0
0 ,else , (3.7)

where ρ is the density of water (here set to 1000 kg/m3).

Buoy
The buoy is modelled as a linear spring-mass-damper system, with the equa-
tion of motion:

ẍ =
FH +FBc+FBg+Fr+Fbd

mB+mA
, (3.8)
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Figure 3.2. A sketch of the simplified numerical simulation; c indicates a spring
stiffness, d stands for a damping factor, and m symbolises a mass..

with FL being the line force, Fbd = dbẋ being the linear damping of the buoy,
mB being the mass and mA being the added mass of the buoy and FBg = Mbg
being the gravity force.

3.3 Physical modelling
Two physical models were used. The active model (in use in Paper II, IV and
V) uses an electric motor as power take off which can mimic a wide range of
control algorithm, while the passive model (used in Paper I) is able to accura-
tely simulate PTOs with an ideal constant damping and was used to study the
influence of the inertia of the PTO on the absorbed power.

During the wave tank tests, both systems are located on a gantry over the
wave basin. The line attached to the PTO is guided by a pulley system over
the top of the gantry to the bottom of the wave tank (see also Figure 3.3),
from where it is distributed to the corresponding buoy. This systems offers the
possibility to accurately simulate a seabed based generator without the need
of having a waterproofed PTO. It furthermore gives a great flexibility in the
positioning of the buoys.

3.3.1 Active PTO
The active PTO consists of a tubular electric motor of type Parker ETT-080 for
single buoy experiments or ETT-050 for up to four buoys simultaneously, both
provide a stroke length of 330 mm. Springs on the ends of the casing prohibit
damage to the structure in case the translator exceeds the stroke length. A force
sensor of type Megatron KT1101 is mounted between translator and line, see
also the photo of the set up in Figure 3.3.
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Figure 3.3. Set up of the active PTO for the single buoy experiments in Paper II. Also
the motor model was changed for other tests, the overall set-up stayed the same for all
tests.

Control system
The control of the motor is done in three cascades. Cascade one is the ser-
vodrive of type Parker Compax 3 which allows to control the motor in the
following ways:

• The current control mode allows to specify a specific current to the
motor which will induce a force.

• The velocity control mode allows to specify a the velocity of the trans-
lator, which the servo drives tries to achieve.

The servodrive itself is connected via Profibus to the control computer, that
sends the reference data, so that the motor mimics a generator (Cascade 2).
The third cascade is the library with the specific control strategy, which is also
running on the control computer. The programming interface is the same as
for the numerical simulation (see above), so that the same implementations
can be tested in the numerical simulation and in the wave tank test. Cascade 1
is executed with 8 kHz, while Cascade 2 and 3 run with 100 Hz.

To achieve a reliable constant damping, two different concepts for the con-
troller in the second cascade were tested:

• In Paper II the current control mode was fed with an electric current
proportional to the velocity, in order to simulate the generator dam-
ping. Due to dead times and noise, the system was instable; first
a filtering of the velocity input, leading to an approximately 25 %
smaller damping force could resolve this problem. This strategy was
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enhanced for the tests in Paper V were a proportional-derivative filter
was used to compensate the integral characteristics of the system and
improve the dynamics. However the dead times couldn’t be reduced.

• In Paper IV the velocity control mode is used. The input force is
measured by the force sensor and then a model calculates the corre-
sponding acceleration and so the actual speed. This algorithm had
problems while taking the inertia of the translator into account, as
it leads together with the limited dynamic of the translator to small
oscillations also in calm water.

3.3.2 Passive PTO
The damping of the passive PTO is achieved by using an eddy current break:
An aluminium disc is rotating within the magnetic field created by magnets
mounted on a vice. Only the movable jaw is equipped with magnets, the fixed
jaw may work as back iron if the gap is small enough. By changing the jaw
gap, the distance between the magnets and the disc can be varied and so the
induced eddy current in the disc which provides the system with a nearly ideal
linear damping. A winch is fixed with the aluminium disc, on which a line is
leading towards the buoy and another line is fixed with the weight. The indu-
ced forces will cancel each other in calm sea state. Compared to a traditional
linear generator WEC, the aluminium disc will lead to a high inertia of the
system. The specific set-up was build using a bicycle wheel truing stand (Tacx
T3175) with a hub for disc breaks mounted (Shimano XT HB-M756), but
instead of the disc break the aluminium disc is mounted. The alloy AL1050
was chosen, as it is a good compromise between weight and electric conducti-
vity. The disc has a diameter of 40 mm and a thickness of 2 mm. On the disc a
inertia measurement unit (IMU) acts as an absolute encoder of the disc’s posi-
tion and the velocity, see Figure 3.4 for details about the data processing The
magnets on the vice are five Neodymium N42 squares with a size of 20x20x10
mm. A sketch can be found in Figure 3.5.

3.4 The collaborative learning algorithm
While working with WECs in an array the search for optimal controlling pa-
rameters can be parallelised. This solves a big problem: In reinforcement
learning the actions of the agent (here a WEC) have to be judged with a po-
sitive and negative reward. With collaborative learning several parameters are
tested simultaneously, so that the most beneficial of these parameter can be
easily determined, and so reference data for the machine learning is obtained.
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Figure 3.5. Sketch of the passive PTO (from Paper I).

3.4.1 The CL process
Several WECs, all applying different control parameter, but are otherwise
identical are placed parallel to the unidirectional, irregular wave crest. At
least one of the WECs has to be learnable.

1. The central WEC sends a start signal.
2. All WECs apply their control strategy according to their internal policy

based on the actual sea state.
3. The central WEC sends the stop signal.
4. All WECs report their absorbed power and their applied control parame-

ters to the central WEC.
5. The central WEC selects the control parameter which leads to the highest

power absorption and feeds it back to the learnable WECs.
6. The learnable WECs adapt their policies.
7. The process starts again at 1.

The CL algorithm was implemented to control the generator damping in Paper
IV and to choose the best latching time in irregular sea states in Paper V. In
both implementations constant WECs (cWEC) and learnable WECs (lWEC)
were used. A cWEC applies always the same damping factor or latching time,
while a lWEC is equipped with a machine learning algorithm and selects the
control value based on its policy.
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For the damping control, the WECs recorded the line force, the applied
damping and the absorbed power (all together called a sample) with a sampling
frequency of 1.15 Hz. The duration between ’start’ and ’stop’ signal was fixed
with 3 s in the simulation and 6 s as full scale equivalent in the wave tank
tests. The input data for the machine learning algorithm was a series of the
latest four reading of the force sensor data for each sample. The output was
the damping coefficient.

Due to the non-linear movement during latching, the information about the
sea state could differ between the WECs. Therefore a central WEC without
latching is introduced for CL latching: It measures the wave to synchronize
all WECs. When it detects the first crest or through it raises a start (or latch
event) and sends the mean wave period of the last seven waves to all WECs.
All WECs choose their latching time based on the information about the mean
wave period and according to their policy. The next time the central WEC de-
tects a extrema it sends a stop event and immediately after learning is finished
the next start event it raised. The WECs record only one sample, consisting of
the applied latching and the absorbed power for each latch event. The input
data for the machine learning algorithm is the mean wave period, the output is
the latching time.

3.4.2 Design of the ANN
For both control strategies ANNs are used for machine learning.

CL Damping
In Paper IV the damping control uses a time series as input. A ’deep’ network
approach with eight hidden layers and a ’shallow’ approach with just 2 hidden
layers were chosen. The ’shallow’ network is furthermore equipped with a ex-
ploration algorithm. In both cases, the output was a single neuron representing
the damping factor.

CL Latching
For the latching control in Paper V a very basic ANN is used, consisting of
just nine hidden neurons distributed over three hidden layers. The mean wave
period is fed into the input layer consisting of 10 neurons, each representing a
specific time interval. The output layer is made of 13 neurons of which each is
assigned with a latching period. A SoftMax function calculates the probability
for each latching time.
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Figure 3.6. The evaluation and training waves (from Paper V).

3.4.3 Mean wave period correlated latching time
As reference for the latching strategy a latching time linearly related to the
mean wave period was chosen:

TL = c pw , (3.9)

where c is the linear correlation coefficient, TL the latching time and pw the
mean wave period. Assuming a regular wave with a period much lower com-
pared to the oscillation period of the WEC, then the optimal latching time is
1/4th of the wave length, so that the phase offset between wave and translator
motion is 45◦. An evaluation in the training sequence (see below) with the
numerical simulation resulted in a optimal latching time of 0.22 of the mean
wave length for the WECs.

3.4.4 Wave Sequences
To train and test the CL strategies in different sea states, wave sequences con-
taining several Brettschneider spectra sea states were used. Each sea states
lasts for approximately half a minute, before the next sea state starts. A over-
view of all these sequences can be found in figure 3.6. The wave sequences
used for learning are longer than these used for evaluation. Two training wa-
ves were used: training waves one is made up of sea states up to a significant
wave height of 3.75 m, where else the second evaluation sequence uses only
sea states with significant wave heights up to 1.75 m. The latter is used for the
wave tank test of the CL latching strategy, were high waves were avoided to
reduce the forces on the set-up.
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4. Experiments

Four methods to increase the power absorption of wave energy converters were
tested. Two methods focused on single devices, while the CL strategies are de-
signed for WECs in arrays. The optimized natural frequency WEC (Paper I)
was not controllable, in the optimized damping (Paper II) and CL damping
(Paper IV) the generator damping was controllable, and in Paper V the lat-
ching time was adjusted by the CL. All experiments except the CL latching
simulation were performed with buoys of 5 m diameter (0.5 m in the wave
tank test). For the numerical CL latching simulation the buoy diameter was
reduced to 3.2 m.

WEC design
All WEC designs in the experiments are inspired by the UU-WEC, however,
the parametrisation changes slightly between the experiments. Table 4.1 gi-
ves an overview over the parametrisation of all WECs simulated during the
experiments.

Waves
All tests have in common that the irregular sea states are selected out of a pool
of 72 Brettschneider spectra. This spectra is defined as:

S(ω) =
5
16

ω4
m

ω5 H2
s exp−1.25ω4

m/ω4
, (4.1)

where HS is the significant wave height, the mean wave height of the highest
third of the waves. Instead of the modal wave period ωm, the energy period is
used to characterize the spectra:

Te =

∫
S(ω)ω dω∫
S(ω)dω

1
2π

. (4.2)

The significant wave heights of the sea states reaches from 0.75 m in steps of
0.5 m up to 3.75 m, while the energy periods are inbetween 3.5 s and 10.5 s,
with a step width of 1 s.

4.1 Optimized natural frequency of the PTO
Instead of increasing the power absorption with a control algorithm, here the
PTO inertia was optimized, so that the WEC’s natural frequency gets close to
that of typical sea states.

34



Table 4.1. Overview over the WEC parameters in the different experiments in the
wave tank (tank) and the numerical simulation (sim.). Ellipsoidal (e) and cylindircal
(c) shaped buoys were used. All values are Froude scaled to full scale.

Test Optimized
frequency

Optimized
Damping

CL dam-
ping

CL latching

tank sim tank sim. tank sim. tank sim.

Buoy

shape e c c c e c e c

diameter [m] 5 3.2

weight [t] 5 5.3 5

PTO

stroke [m] 5 20 3 3 3 3 20 3

transl. weight [t] 5 6 5

... inertia [t] 46/96 46/120 6 5

damping [kNs/m] 100 75/125 50-210 200-500 70

latching no yes

Many floating point absorbers with linear generators, for example the UU-
WEC, have a natural frequency lower than the typical wave periods. A heavier
translator would lower the natural frequency, but also increase the weight and
the dimensions of the PTO.

With the passive PTO the rotating disc brings an extra moment of inertia J
into the system: For the translator, the weight resulting in the weight force and
the inertia of the translator are always equal, but for the rotating system, the
total rotor inertia M = J/r2

l +mw is higher than mw, allowing to build light-
weight systems with a high inertia. The generator equation for the numerical
simulation 3.6 becomes:

ÿ = (γ ẏ(t)−Fl +mwg)/M. (4.3)

The inertia md of the solid disc is related to the ratio between the disc radius
rc and the radius the line is connected to the disc rl (and therefore winds up at
this radius) (see Figure 4.1 for a sketch of the PTO):

md = 0.5mr2
c/r2

l , (4.4)

the natural frequency can be adjusted just by changing this ratio, while the
PTO weight stays the same.

The tests were run with two different PTO inertias (53 t and 101 t).
In the wave tank tests the two inertias were tested in eight sea states with a

generator damping of 100 kNs
m .
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Figure 4.1. Sketch with parameters of the PTO with optimized natural frequency
(from Paper I).

In the simulation each of the inertias was furthermore tested with two diffe-
rent generator dampings (75 kNs

m and 125 kNs
m ) in a power matrix consisting of

17 sea states. To match the results of the numerical simulation and the wave
tank experiments, the sea states used in the wave tank test were also simulated
using a line with increased elasticity to match the line used in the wave tank.

4.2 Optimized damping control
The optimal damping for a single WEC was evaluated for each sea state in a
power matrix of 41 sea states by performing a damping sweep in the nume-
rical simulation and picking the damping factor leading to the highest power
absorption in this sea state. This damping was then applied by the active PTO
and a cylindrical buoy during wave tank tests. The waves energy period of the
power matrix ranges from 3.5 s to 9.5 s and the significant wave height start at
0.75 m and goes up to 3.25 m. The sea state Te = 3.5 s/ Hs = 3.25 m was not
performed, due to the unrealistic steep waves.
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4.3 Collaborative damping
Two numerical simulation were performed. The first one is called ’static’ as
out of the five WECs placed perpendicular to the wave front only one is le-
arnable, while the other were cWECs with latching times of 200 Ns

m , 300 Ns
m ,

400 Ns
m and 500 Ns

m . The lWEC uses a ‘deep’ artificial neural network. In the
second run called ’dynamic’, two WECs, both learnable, are placed perpen-
dicular to the wave front. The first WEC using exactly the same ANN as in
the first test, while the second WEC, uses the more ‘shallow’ ANN and an
exploration function.

The experimental test was performed in a different way: two constant dam-
ping WECs were used simultaneously in the wave tank. During the training
sequence, sample sets of the winning device for each control period were re-
corded. This data was used to train the ANN offline. The evaluation was done
analougously: The measured force data recorded by the cWECs in the evalu-
ation wave sequence was used offline as input for the lWEC. Its output was
then compared to the best constant latching time of the two WECs in the wave
tank.

4.4 Collaborative latching
Three different latching strategies were used for the collaborative learning in
the numerical simulation: constant latching WECs, of which one is the central
WEC without latching, a linear latching WEC and the learnable WEC.

In the simulation four WECs were participating: One central WEC, which
also acts as a cWEC with a latching period of 0 s, two cWEC with 3 s and 1.25
s latching time and one lWEC, trained with the same wave sequences as in the
CL damping experiments. The evaluation was done with the evaluation wave
sequence from the CL damping experiments, but also performing a power
matrix consisting of 17 sea states with wave energy periods ranging from Te =
3.5 s to 9.5 s and with significants wave heights from 0.75 m to 3.75 m; The
sea state of Te = 3.5 s / Hs = 3.75 m was excluded, due to the unrealistic steep
waves. The three strategies compared are the constant latching time of 1.25
s (which performed best of the constant latching times in the evaluation wave
sequence), the linear latching and the learnable network. The reference for all
this strategy was a non-latching WEC.

In the wave tank test four WECs were participating: One central WEC, two
cWECs with 1.25 s and 0.25 s latching time and the lWEC. The specific WEC
and the buoy position, named A, B,C and D (see Figure 4.2) has a big influ-
ence on the absorbed power: When applying constant damping for all WECs,
the absorbed power of WEC D (normally performing the 1.25 s latching time)
reaches only 80% and WEC B (normally performing the lWEC) only 98%
of the power of WEC A (normally performing the 0.25 s latching time). As
differences in the WEC parameters, for example caused by manufacturing to-

37



Figure 4.2. Position and applied strategy of the four WECs during the CL latching
wave tank test (from Paper V).

lerances or wear, may also occur in real operation, this was not corrected for
the CL process. However, it was considered when calculating the absorbed
power to get a fair judgement of the different strategies. For the training, the
training wave sequence for the wave tank test was used. The evaluation was
done with two sea states with Hs = 1.25 m and energy period of Te = 4.5 s and
Te = 7.5 s.
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5. Results

In this section the results are presented, structured in numerical simulation and
wave tank tests.

5.1 Optimized natural frequency
The numerically obtained power matrices in Figure 5.1 shows the expected
influence of the inertia on the power absorption: Compared to the medium
(M = 45 t) inertia WEC, the high (M = 120 t) inertia WEC absorbs signifi-
cantly more power in sea states with higher wave periods, while the medium
inertia WEC is beneficial for shorter periods. This is especially noticeable for
low dampings: here, the maximal absorbed power is much higher than in the
case of the high damping factor; On the other hand, for sea states outside the
region where wave and WEC are close to resonance the power drops slower
with increased damping. The medium inertia WEC, with the high damping,
absorbs for all tested sea states more power than the reference WEC. This is
not true for the low damping case, where in two cases only 95% of the power
output is reached In return the maximal absorbed power for the low damping
is 86% higher than the reference, but with the high damping this advantage
shrinks to about half (42%). This observation can also be seen in the small po-
wer matrix obtained experimentally in Figure 5.2: Here, the high inertia WEC
absorbs more power in sea states with long periods and small wave heights,
but absorbs less for sea states with short periods and small wave heights. Nu-
merical and experimental test are compared in Figure 5.3. To match simulated
an experimental obtained power output, the line elasticity of the wave tank
tests has to be modelled into the simulation.

M=120 t, m=5 t, d=75 kNs/m M=45 t, m=5 t, d=75 kNs/m
T [s] 3.5 5.5 7.5 9.5 3.5 5.5 7.5 9.5

0.75 146% 239% 211% 162% 0.75 186% 139% 110% 95%
1.75 87% 147% 167% 159% 1.75 167% 139% 111% 95%
2.75 61% 111% 137% 143% 2.75 142% 138% 118% 101%
3.75 95% 124% 135% 3.75 136% 124% 109%

M=120 t, m=5 t, d=125 kNs/m M=45 t, m=5 t, d=125 kNs/m
T [s] 3.5 5.5 7.5 9.5 3.5 5.5 7.5 9.5

0.75 124% 193% 197% 177% 0.75 142% 139% 130% 123%
1.75 86% 133% 157% 163% 1.75 130% 130% 126% 122%
2.75 65% 104% 128% 141% 2.75 114% 120% 120% 119%
3.75 90% 113% 109% 3.75 114% 116% 109%

Reference: M=m=5 t mass and d=125kNs/m

Hs
 [m

]
Hs

 [m
]

0%
20%
40%
60%
80%

100%
120%
140%
160%
180%
200%

Color
key:

Figure 5.1. Simulated power matrices using two different inertias and damping fac-
tors. Reference is a WEC where the mass is equal the inertia (from Paper I).
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Power [W], M=53 t, m=5 t, d=100 kNs/m Color key:
Ts [s] 3.5 5.5 7.5 9.5

0.75 223 626 800 756 0
1.75 2289 4095 5311 5036 1000

2000
3000

Power [W], M=101 t, m=5 t, d=100 kNs/m 4000
Ts [s] 3.5 5.5 7.5 9.5 5000

0.75 155 639 919 915 6000
1.75 1336 2768 4416 4806

Power(M=101 t)/Power(M=53 t) 50%
Ts [s] 3.5 5.5 7.5 9.5 80%

0.75 69% 102% 115% 121% 110%
1.75 58% 68% 83% 95% 140%

Hs
 

[m
]

Hs
 

[m
]

Hs
 

[m
]

Figure 5.2. Experimentally obtained power matrices using two different inertias. The
third matrix shows the ratio between the power output of the high and low inertia PTO
(slightly modified Figure from Paper I).
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Figure 5.3. Experimentally and numerical obtained power: To get a good agreement,
the line elasticity in the simulation has to be lowered. Blue (right) shows the mean
power of the simulation using an nearly ideal line, orange (left) shows the mean power
from the wave tank tests and grey (middle) the absorbed power of the simulation with
the elastic line (from Paper I).
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Figure 5.4. Optimal damping factor for each sea state. Obtained with the numerical
simulation (from Paper II).

Figure 5.5. Power matrix from the numerical simulation, using the optimal damping
values (from Paper II).

5.2 Optimal damping control
The numerical obtained matrix in Figure 5.4 shows the optimal damping factor
for each sea state. It can be seen that the optimal damping increases with the
wave energy period but decreases with the wave height. The corresponding
power is plotted in Figure 5.1. The absorbed power is increasing with the wave
height. Regarding the wave energy period, the maximum depends on the wave
height: for significant wave heights equal or higher than Hs = 1.75, Te = 4.5 s
is the energy period leading to the highest power absorption, while for smaller
significant wave heights Te = 5.5 s is optimal. The power matrix obtained in
the wave tank shows a much lower energy absorption and the trends are not
as clear, see Figure 5.6. However, here it can also be seen that the power
increases with the wave height, but a optimal wave energy period can hardly
be seen.

5.3 Collaborative Damping
The absorbed power in both test runs of the CL learning in the numerical
simulation can be seen in Figure 5.7. In the first test, while using only one
learnable WEC, but three cWECs, the learnable WEC absorbs neglectable
more power than the constant WECs. However, while having two learnable
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Figure 5.6. Power matrix from the wave tank experiments, using the optimal damping
values (from Paper II).
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Figure 5.7. Absorbed power during the evaluation wave. The first run was done with
four constant damping and one learnable WEC, while the second run was done using
two constant dampings and two learnable WECs (from Paper IV).

WECs, the power absorption of the best performing lWEC could be increased
to 1.3% more than the best performing constant damping WEC. The second
WEC was limited by its exploration function, what explains the lower power
absorption.

Figure 5.8 shows how the chosen damping factor of the WEC when fed with
the recorded force data from the evaluation wave sequence during the wave
tank tests (orange curve). It is compared to actual winning damping factor (so
the damping factor leading to the highest power absorption) for each interval
(blue curve).

5.4 Collaborative Latching
5.4.1 Numerical Simulation
With help of the numerical simulation the trained policy of the WEC could
be examined in detail for the evaluation wave. Figure 5.9 shows the absorbed
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Figure 5.9. In blue the performance of a damping sweep of different latching constant
in the evaluation wave is plotted. The absorbed power is set in relation to the absorbed
power of the lWEC (100%). The orange dots mark the constant latching times of the
cWECs used during learning, while the grey diamonds indicates the latching times the
lWEC learned to apply (from Paper V).

power for different constant latching times (blue curve) in relation to the ab-
sorbed power by the lWEC. The orange dots indicates the constant latching
times that were used during the learning phase and the grey diamonds indicate
the latching times applied by the lWEC during the evaluation test sequence. A
time series of the latching time absorbing the most power for each latch period
during the evaluation sequence is plotted in Figure 5.10 a), while the diagram
in b) shows the same data plotted over the mean wave period. In both cases
the glowing blue dots indicate the choice of the lWEC.

The lWEC was than compared to the linear latching time in the evaluation
wave sequence, see Figure 5.11. The chosen latching time, marked as circles
is plotted over the mean wave period. The radius of each circles corresponds
to the absorbed power, a yellow dot inside the circle indicates that this latching
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Figure 5.10. The orange dots mark the latching time that absorbed the most power
during a latch period in the evaluation wave. In a) the data is plotted over the duration
of the wave sequence, while in b) the same data is plotted over the mean wave period.
The glowing blue dots indicates the chosen latching time of the lWEC (from Paper
V).

time absorbed most power for this wave. The data obtained from the run with
the linear latching time had to be matched with the run of the lWEC. Due to
the different radiated waves, both runs differ slightly, resulting in small errors
while matching both time series, causing that a few points of the linear latching
time are outside the line.

The lWEC, the cWEC which absorbed the most power in the evaluation
wave (1.25 s latching) and the linear WEC were than used to simulate 15 sea
states to form a small power matrix in Figure 5.12. They were all compared to
a WEC without latching, but otherwise same characteristics.

5.4.2 Experimental wave tank tests
Instead of the evaluation wave sequence two sea states with different wave
energy periods (Te = 4.5 s and Te = 7.5 s; Hs = 1.26 m for both) are used for
the wave tank test evaluation. The results in the absorbed power for all three
strategies in each sea states as well as the total absorbed power is plotted in
Figure 5.13. The values are referenced to the mean value of each category.
The short latching time absorbed about 6% more power in the Te = 4.5 s sea
state, and 4% less in the Te = 7.5 s sea state compared to the long latching
time. For the total absorbed power, both constant latching times absorb the
same amount of power, because during the Te = 7.5 s sea state more power is
absorbed than in the Te = 4.5 s sea state.

44



0 1.6 3.2 4.8 6.4   8  9.6         11.2
0

0.5

1

1.5

2

2.5

mean wave period [s]

la
tc

hi
ng

 ti
m

e 
[s

]

Figure 5.11. Chosen latching times of the lWEC (orange) and the linear WEC (blue)
during the evaluation wave plotted over the mean wave period. The radius of the
circles correspond to the absorbed power, while a yellow dot indicates which latching
time was beneficial for the specific latch period (from Paper V).

 a)                                                                                                                      b)
Te [s] 3.5 5.5 7.5 9.5                       Te [s]                      3.5 5.5 7.5 9.5

0.75 111% 188% 195% 182% 0.75 147% 186% 224% 235%
1.75 88% 135% 156% 160% 1.75 119% 133% 163% 182%
2.75 71% 109% 127% 138% 2.75 101% 111% 126% 147%
3.75 103% 118% 123% 3.75 104% 117% 126%

c)
      Te [s]                      3.5 5.5 7.5 9.5 a) Constant latch time: 1.25 seconds

0.75 142% 178% 217% 215% b) Linear latchin  
1.75 113% 137% 162% 177% c) CL-ANN
2.75 91% 116% 127% 143%
3.75 106% 116% 125%

Reference: identical WEC without latching
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g time

Figure 5.12. Power matrices of a WEC with 0.25 s constant latching time, linear
latching time WEC and the lWEC (from Paper V).
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Figure 5.13. Absorbed power during the wave tank test of the lWEC and two WECs
with constant latching times of 0.25 s and 1.25 s. The results are plotted for the two
different sea states, as well as the total absorbed power during both sea states. The
reference for each sea state is the mean absorbed power of all three strategies in this
sea state (from Paper V).
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6. Discussion

6.1 Optimized natural frequency
In both the numerical results in Figure 5.1 and the experimental results in Fi-
gure 5.2 it can be seen that a higher inertia can increase the power absorption
significantly. For the simulated power matrix in Figure 5.1 the power absorp-
tion is up to two times higher compared to a device without added inertia. The
four power matrices show furthermore, how well the absorption characteristic
of the device can be tuned with the inertia and the damping factor: The latter
has a big influence on the capture bandwidth, while with the inertia the WEC
can be tuned for a specific wave period. In contrast to the consideration on the
single body WEC in section 2.2.1, the wave height has a significant influence
on the absorbed power: When the line is slack, buoy and translator/rotor can
move independent and so both will have different oscillation frequencies as
when the line is tensioned.

The large differences between Figure 5.2 and 5.1 are explained with the line
elasticity and the elasticity introduced by the structure guiding the rope (see
Figure 5.3).

6.2 Optimal damping control
The power absorption in the simulation in Figure 5.5 is approximately 5 times
higher than what was measured during the wave tank experiments (see Figure
5.6). Reasons for this are

• Friction in the generator as a result of a not ideally centred load was
present during all tests, leading to deformation of the translator and so
to a non-uniformly distributed friction. This could be partly compen-
sated with a force opposing the friction and post processing Kalman
filtering.

• The generator needs some time to ramp down the generator force,
which results in similar effects as static friction

• The elasticity of the line may have played a role as the results of the
optimal natural frequency tests have shown in Figure 5.3.

Especially the friction may explain why the influence of the energy period is
not as clear in Figure 5.6 as it in in Figure 5.5. During the wave tank test, the
equilibrium position of the translator, which shifted slightly between the tests,
mostly because the line was lengthening in the beginning, had a significant
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influence on the absorbed power: If the equilibrium position was on a part
with high friction the force to move the translator was significantly higher
than on a position with low friction. The influence of the wave height however
can be clearly seen in both Figures.

Remarkable about the optimal damping distribution (Figure 5.4) is, that the
damping varies much more for the lower than for the higher significant wave
height: For Hs = 0.75 m the highest damping is 3.5 higher than the lowest
damping, while in the Hs = 2.75 m this ratio shrinks to 2.5. The absorbed
power (from the simulation) however, changes only by 2.4% for the lower
wave height, but by 31.3% for the higher one. Since the absorbed power is
approximately 15 times higher for Hs = 2.75 than for Hs = 0.75, it may be
suitable for real WECs to focus on sea states with higher significant wave
heights when adjusting their damping.

6.3 Collaborative Learning
Comparing experimental results of both, damping and latching, CL strategies
Figure 5.7 and 5.13, it can be seen that the lWEC hardly absorbs more than
the best cWEC. For the collaborative damping (Figure 5.7) it can be seen, that
the damping factor has only a very low influence on the power absorption:
While the highest damping factor is 2.5 time the lowest, the power absorption
between the extremes differs only by 8.6 %. Under this aspect, even a small
increase in the power absorption of the CL lWEC of up to 1.6 % compare to
the best cWEC is remarkable.

For the different latching times, the differences in the absorbed power in
the evaluation sequence (see Figure 5.9) are in general more obvious: In the
tested range from 0 s to 3 s latching time, the absorbed power varies by more
than 50%. But even here is the advantage of the lWEC over the cWEC with
about 2% very small. Plotting the absorbed power of the lWEC for several
sea states, as done in the power matrix in Figure 5.12, the advantage of the
lWEC strategy becomes clearly visible: Compared to the 1.25 s cWEC, the
lWEC is beneficial in 12 out of 15 sea state (with one draw), and absorbs
up to 30 % more power, while the cWEC absorbs at most 6% more power.
Using the total absorbed power during the evaluations sequence is only a weak
indicator for the quality of a control. The results of both CL strategies suggest
let assume that also it consists of a wide range of sea states, at the end there
is one dominating latching time/damping factor, reducing the visibility of the
adaptive control advantage.

6.3.1 lWEC compared to linear latching time
A special focus should be put on how the lWEC is choosing its latching time.
Therefore it is compared with the linear latching time WEC. Figure 5.11 plots
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the chosen latching time for both strategies. The lWEC uses just two latching
times: Between a mean wave period of 3.2 s and 4.8 s it is most likely that a
latching time of 0.5 s is chosen, while for all other cases the 1.5 s latching time
is more lickely. An explanation of this strategy is given in the following:

• ANNs are separating problems via (hyper)planes, making them inef-
ficient for linear regression.

• The chosen latching time are nearly always lower than the latching
times chosen by the lWEC. A longer latching time may result in a
higher absorption if the prediction is correct or the wave has a longer
period than predicted. But it may result in a much lower or no power
absorption if the wave is shorter than predicted. So a smaller latching
time can be seen as a conservative approach. The highest power ab-
sorption of all waves can be seen for the linear latching time, however,
these are only a few latching periods. For most latching periods, the
power absorption between the strategies is more or less equal.

• For mean wave periods below 3.2 s the high latching time is chosen,
what is contrary to the conservative approach claimed above. Two ex-
planation for this behaviour should be given: a) the available training
data for mean wave periods below 3.2 s could be too less to train the
network correctly; b) the WEC can only absorb insignificant amount
of power from waves below 3.2 s, it therefore concentrates on waves
with higher period that may occur inbetween these waves.

As can be seen in the power matrix in Figure 5.12, the differences in absorbed
power between lWEC and linear latching WEC are small: Also the linear
latching WEC absorbs more power in 12 of the 15 sea states, the benefits are
small (between 0.6% and 11%).

6.3.2 Wave tank tests
As can be seen in Figure 5.13 the lWEC is in each sea state 2% better than
the average of all WECs it was learning from. Comparing it in the Te = 7.5 s/
Hs = 1.25 m case with the tl = 1.25 s cWEC, the benefit of the lWEC is with
1% significantly smaller than in the same sea state of the numerical simulation
(3%, see the power matrix in Figure 5.12). This might be caused by the larger
buoy in the wave tank experiments, but also by the imperfect latching of the
active PTO, which lowers the advantage of latching in general: In both sea
states the difference between 0.25 s and 1.25 s latching times is just about
4%. In relation to this even the 3% advantage in power absorption over both
cWECs is significant.

From Figure 5.8 it can be seen that the the ANN used to learn to distin-
guish between both damping factors. However, it usually prefers the higher
damping.
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7. Conclusion

Four different ways to optimize the power absorption for a WEC were presen-
ted, of whom two are designed for arrays of similar devices. Each strategy has
its own advantage.

When the PTO inertia and damping factor can be adapted in the design
process, the WEC can be tuned to fit a specific sea state. If the wave climate
is close to this state, the WEC will be able to have a good capture width also
without control and may even detune itself in storms. But due to the non-linear
behaviour of the system caused by the slack line the advantage of a high PTO
inertia decreases when the wave height increases. During the wave tank test
the elasticity of the line caused furthermore a higher optimal wave period than
expected.

Changing the generator damping of a converter can be achieved for most
WEC designs. The ratio the damping has to change within two wave periods
decreases if the significant wave height increases. If the most of the wave
energy may be captured with sea states with higher significant wave heights,
also the damping factors the WEC has to support can be decreased.

In the collaborative learning, either the oscillation period (by using latching
control in CL latching) and the generator damping factor (in CL damping)
were adjustable. By evaluating different strategies at the same time it is able
to finding suitable control parameter. It therefore needs neither a model of the
WEC nor information about the future sea state, but is able to select a suitable
control parameter based on easily obtainable data (force sensor data for CL
damping and translator position for CL latching). While the absorbed power
for the CL damping was the same (‘static’ test) or slightly higher (‘dynamic’
test) than a constant damping factor, the Cl latching was able to increase the
power absorption significantly.

50



8. Future work

The collaborative learning approach tested in this thesis may be extended in
several ways. The ANN used for the CL latching that was presented in Pa-
per V uses just the mean wave period as input, also the latching time is wave
height dependent as well. Having two inputs would be a small change that
could increase the quality of the control a lot. Furthermore the used ANN is
very small, using a deep convolution neural network with the surface eleva-
tion as time sequence input could lead to an improved ability to forecast the
correct optimal latching time. See therefore also [42], where an ANN is used
to forecast waves.

An inherent drawback of the CL as presented here, is that it only focuses
on WECs in a row and does not consider interaction between WECs at all.
But to increase the total power absorption in a farm, the interactions may have
a significant influence. While exchanging wave information between rows
could simplify the estimation of the best control parameter (see for example
[43]) and while considering the influence of control betweens row the power
absorption could increase further.
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9. Summary of Papers

Paper I
Performance of a Direct-Driven Wave Energy Point Absorber with High

Inertia Rotatory Power Take-off

In this manuscript the problem of designing a simple but accurate physical
scale PTO model of a direct-driven floating point wave energy converter is
addressed, by presenting a new PTO design that is able to absorb in some
sea states significantly more power than a direct-driven linear generator. The
physical model presented here simulates an alternating rotatory generator, the
nearly ideal constant damping of the PTO is achieved by using an eddy current
break. The characteristics of this PTO type, especially the high inertia, are
examined using numerical simulations and 1:10 wave tank tests.
The author developed the physical PTO and the numerical model, performed
the numerical tests and participated in the planning and performing of the
physical wave tank test at Plymouth University’s COAST lab.

Paper II
Optimal Constant Damping Control of a Point Absorber with Linear Ge-

nerator In Different Sea States: Comparision of Simulation and Scale

Test

A direct driven WEC with sea state optimized damping factor is used in this
paper to get a power matrix with 41 sea state. Therefore the optimal dam-
ping factor is obtained via a damping sweep in a numerical simulation. The
so obtained damping factors are then used in the numerical simulation and in
1:10 scale wave tank tests to get the power matrix.
The author developed the control system for the physical PTO, performed the
numerical tests and participated in the planning and performing of the physical
wave tank test at Plymouth University’s COAST lab.
Presented by the author at the 12th European Wave and Tidal Energy Confe-
rence in Cork, Ireland, 2017.
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Paper III
Multi-parameter optimization of hybrid arrays point absorber Wave Energy

Converters

The paper investigates the optimization of the impact of the presence of dif-
ferent sized WECs in an array. Three different cases and cost functions are
investigated. In the first case the optimal WECs sizes (two different possible
WEC sizes) for a 6x6 WEC layout were investigated. In the second scenario
the WECs were given (6 small ones, 6 large ones) and the best position in a
6x6 grid were searched. In the third scenario, three WEC parameter (buoy ra-
dius and draft and PTO damping) were optimized for a 2x2 array. The optimal
layouts suggest that WECs of the same type should be ordered in rows parallel
to the wave front and that the optimal generator damping relies barley on the
position of the WEC in the array.
The author was part of the project team and reviewed the paper.

Paper IV
A model free control based on machine learning for energy converters in

an array", Submitted to Big Data And Cognitive Computing

The paper addresses the problem of finding the optimal control parameters for
different situations (states) for energy converters working in an array. It the-
refore presents a new approach using an artificial neural network that learns
during operation while observing the control strategies and energy absorption
of all converters in the array and by that learning the best strategy for each
situation. This approach is evaluated for wave energy converter with the help
of a numerical simulation and a physical 1:10 scale test in a wave tank.
The author developed the control system of the physical PTO and the numeri-
cal model, performed the numerical tests and participated in the planning and
performing of the physical wave tank test at Plymouth University’s COAST
lab.

Paper V
Experimental and numerical collaborative latching control of wave energy

converter arrays

In this paper the problem of robust latching control of wave energy conver-
ters (WECs) in irregular sea states is addressed by introducing a model free,
machine learning based collaborative learning strategy for wave energy con-
verters in arrays.
This strategy parallelize the machine learning and solves the problem of fin-
ding an evaluation function for the learning algorithm. As learnable element a
shallow artificial neural network is used. A numerical simulation and a wave
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tank test both performed with an array consisting of five WECs showed that
the collaborative learning can increase the power absorption compared to a
constant latching time WEC and is robust enough to handle the irregularities
of the wave tank test.
The author developed the control system for the physical PTO performed the
numerical and physical wave tank test. .
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10. Svensk sammanfattning

Vågkraft kan bli en viktig del från framtidens elektriska energikälla. Men
därför kostnaden per producerat energienheten måste minskas. En väg att min-
ska kostnaden är att förbättra effektiviteten med ett avancerat styrsystem. Den
här avhandlingen tester olika kontrollstrategier för att hitta en bra strategi för
vågkraftverk i parker. Alla strategier testas med en numerisk simulering och
ett fysiskt test med en 1:10 skalmodell i en våg bassäng.

Först är en elektrisk vågkraft konverter (WEC) med optimerad naturlig frek-
vens men utan styrsystem är testad. WECen absorberar hög effekt i ett litet
område med de vanligaste vågklimatet. Storlek på området kan varieras med
generatorns dämpning och bästa vågperiod kan ändras med WECens tröghet.

En generator med optimal dämpningsfaktor testas, för att en justerbar gene-
rator dämpning är relativt lätt att implementerar. Numerisk simulering visade
att optimal dämpningsfaktor beror på vågperiod och minskar när våghöjden
ökar. Beroende av effekten från våghöjd kan ses i numerisk simulation och fy-
siksals test, men beroende av effekten från vågperiod kan ses bara i numerisk
simulation.

Därefter, en modell oberoende strategi (som kallas CL) för vågkraftkonver-
ter i arrayer är presenterat och testad för att styra (1) generator dämpnings-
faktor och (2) latching tid. Resultat är att den CL kontrollerade generatorn
dämpning endast visar små fördelar med absorberat energi. Men med en CL
optimerat latching tid, absorberat effekten ökas mer som 100% i vissa vågkli-
mat.
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