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ABSTRACT 
 
WEC-Sim is a midfidelity numerical tool for modeling wave energy 
conversion devices.  The code uses the MATLAB SimMechanics 
package to solve multibody dynamics and models wave interactions 
using hydrodynamic coefficients derived from frequency-domain 
boundary-element methods.  This paper presents the new modeling 
features introduced in the latest release of WEC-Sim.  The first feature 
discussed is the conversion of the fluid memory kernel to a state-space 
approximation.  This is a substantial computational benefit after the 
hydrodynamic body-to-body coefficients are introduced and the 
number of interactions increases exponentially with each additional 
body.  The final features to be introduced is the ability to calculate the 
wave excitation forces based on the instantaneous incident wave angle 
allowing the device to weathervane and importation of a user defined 
wave elevation time series.  A review of the hydrodynamic theory for 
each feature is provided and successful implementation is verified 
using test cases. 
 
KEY WORDS:  Wave energy converter; open source; modeling 
software.  
 
 INTRODUCTION 
 

During the past decade there has been a renewed interest from 
both the commercial and governmental sectors in the development of 
marine and hydrokinetic energy.  However, wave energy converters 
(WECs) remain at early stages of development and have not yet proven 
to be commercially viable.  Given the relatively few full-scale device 
deployments, WEC development is highly dependent on numerical 
modeling tools to drive innovative designs and advanced control 
strategies.  Conventional seakeeping software has a difficult time 
modeling new multibody WECs.  These complications arise because of 
the various links between bodies and the additional degrees of freedom 
required to model the power extraction process. 

WEC modeling tools are currently being developed by several 
companies.  These include WaveDyn distributed by Det Norske Veritas 
– Germanischer Lloyd (DNV-GL) (Mackay, Cruz, Livingstone, and 
Arnold, 2013), OrcaFlex distributed by Orcina (Orcina, 2014), Aqwa 
distributed by ANSYS, and INWAVE distributed by INNOSEA 
(Combourieu, Maxime, Francois, Barbarit, 2014).  However, it is 

desirable to develop open-source modeling tools to establish a 
collaborative research community that can play a role in accelerating 
the pace of technology development.  To assist the fledgling U.S. 
marine and hydrokinetic industry, the U.S. Department of Energy 
(LaBonte, et. al., 2013) has funded a joint initiative between the 
National Renewable Energy Laboratory (NREL) and Sandia National 
Laboratories (SNL) to develop a comprehensive wave energy modeling 
tool to assist both the research and industry communities.  The joint 
effort between NREL and SNL lead to the release of WEC-Sim-v1.0 
(Yu, Lawson, Ruehl, Michelen, Tom, 2014) in the summer of 2014.  
The code was developed in the MATLAB/SIMULINK (MATLAB, 
2014) environment using the multibody dynamics solver 
SimMechanics with preliminary code verification performed in (Ruehl, 
Michelen, Kanner, Lawson, and Yu, 2014; Yu, Li, Hallet, and 
Hotimsky, 2014).  At the moment, WEC-Sim is best suited to handle 
rigid multibody dynamics allowing for multiple linkages; however, 
overtopping and oscillating water column WEC concepts cannot be 
easily modeled.  

This paper provides an overview of the additional modeling 
capabilities included in WEC-Sim-v1.1 released in March 2015.  The 
first module described is the realization of the fluid memory kernel in 
state-space form.  This ability will help reduce computational time once 
hydrodynamic body-to-body interactions are introduced.  The final 
hydrodynamic feature described is the weathervaning capability due to 
the wave excitation force calculation based on the instantaneous 
incident wave angle.  The hydrodynamic theory for each feature is 
provided before results from test cases are used to verify succesful 
implementation within WEC-Sim. 

 
STATE-SPACE REPRESENTATION OF THE IMPULSE 
RESPONSE FUNCTION 
 
 In linear water wave theory, the instantaneous wave radiation 
force, commonly known as the Cummins equation (Cummins, 1962), 
can be written as: 
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where μ∞ is the added mass at infinite frequency, λ∞ is the wave 



damping at infinite frequency, Kr  is a causal function known as the 
radiation impulse-response function, and ζ is the six-degrees-of-
freedom vector of body motion.  The convolution term in Eq. (1) 
captures the effect that the changes in momentum of the fluid at a 
particular time affect the motion at future instances, which can be 
thought of as a fluid memory effect.  The relations between the time- 
and frequency-domain coefficients were derived in Ogilve (1964) as 
follows: 
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where μ(σ) and λ(σ) are the frequency dependent hydrodynamic 
radiation coefficients commonly known as the added mass and wave-
damping. 

The radiation impulse response function can be calculated by 
taking the inverse Fourier transform of the hydrodynamic radiation 
coefficients, as found by 
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where the frequency response of the convolution will be given by 
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Where j is the imaginary unit √-1.  For most single floating bodies λ∞= 
0 and Eq. (5) converges significantly faster than Eq. (4).  The 
hydrodynamic coefficients are solely a function of geometry and the 
frequency-dependent added mass and wave-damping values can be 
obtained from boundary element solvers such as WAMIT (Lee, 1995) 
and NEMOH (Barbarit, 2014). 

It is highly desirable to represent the convolution integral shown 
in Eq. (1) in state-space form (Yu, 1996).  This has been shown to 
dramatically increase computational speeds and allow for conventional 
control methods, which rely on linear state-space models, to be used.  
An approximation will need to be made as Kr is obtained from a set of 
partial differential equations where as a linear state-space model is 
constructed from a set of ordinary differential equations.  In general it 
is desired to make the following approximation 
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where Ar, Br, Cr, Dr being the time-invariant state, input, output, and 
feed-through matrices; Xr is the vector of states that describe the 
convolution kernel as time progresses; and ζ is the input to the system. 

The impulse-response of a single-input state-space model 

represented by: 
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is the same as the unforced response (u = 0) with the initial states set to 
Br.  The impulse response of a continuous system with a nonzero Dr 
matrix is infinite at t = 0, therefore the lower continuity value of CrBr is 
reported at t = 0; however, if a Dr matrix results from a given 
realization method it can be artificially set to 0 with minimal effect on 
the system response.  The general solution to a linear-time invariant 
system is given by: 
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where rAe  is called the matrix exponential and the calculation of Kr 
follows: 
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Laplace Transform and Transfer Function 
 
The Laplace transform is a common integral transform in mathematics.  
It is a linear operator of a function that transforms f(t) to a function F(s) 
with complex argument, s, which is calculated from the integral: 
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where the derivative of f(t) has the following Laplace transform: 
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Consider a linear input-output system described by the following 
differential equation 
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where y is the output and u the input.  After taking the Laplace 
transform of Eq. (13), the differential equation is now described by two 
polynomials 
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where A(s) is the characteristic polynomial of the system.  The 
polynomials can be inserted into Eq. (13) leading to: 
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where G(s) is the transfer function.  If the state input, output, and feed-
through matrices are known, the transfer function of the system can be 

 



calculated from 
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The frequency response of the system can be obtained by substituting 
jσ for s, over the frequency range of interest, where the magnitude and 
phase of G(jσ) can be calculated with results commonly presented in a 
Bode plot. 
 
Realization Theory – Frequency Domain 
 
Currently, WEC-Sim allows for the state-space realization of the 
hydrodynamic radiation coefficients either in the frequency- (FD) or 
time-domain (TD); however, the frequency domain realization requires 
the Signal Processing Toolbox distributed by MATLAB.  In this 
analysis the frequency response, Kr(jσ), of the impulse-response 
function is used to best fit a rational transfer function G(s), which is 
then converted to a state-space model.  The general form of a single-
input, single-output transfer function of order n and relative degree n-m 
is given by 
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WEC-Sim utilizes a nonlinear least-squares solver to estimate the 
parameters of γ.  The estimation can only be made after the order and 
relative degree of G(s) are decided, at which point the following least-
squares minimization can be performed 
 

( ) ( )
( )∑ −=

i
ri jB

jAjKw
2

* min arg
σ
σσg

g
 (19) 

 
where wi is an individual weighting value for each frequency.  An 
alternative that linearizes Eq. (19), proposed by Taghipour, Perez, and 
Moan (2008), requires the weights to be chosen as 
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which reduces the problem to 
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However, depending on the data to be fitted the transfer function may 
be unstable, because stability is not a constraint used in the 
minimization.  If this occurs, the unstable poles are reflected about the 
imaginary axis.  The relative order of the transfer function can be 
determined from the initial value theorem 
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For the above limit to be finite and nonzero the relative order of the 
transfer function must be one (n = m + 1). 
 
 

Realization Theory – Time Domain 
 
This methodology consists of finding the minimal order of the system 
and the discrete time state matrices (Ad, Bd, Cd, Dd) from samples of the 
impulse-response function.  This problem is easier to handle for a 
discrete-time system, because the impulse-response function is given 
by the Markov parameters of the system 
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where tk = kΔt for k = 0,1,2, … and Δt is the sampling period.  The 
above equation does not include the feed-through matrix as it results in 
an infinite value at t=0 and is removed to keep the causality of the 
system. 
      The most common algorithm to obtain the realization is to perform 
a singular value decomposition (SVD) on the Hankel matrix of the 
impulse-response function as proposed in Kung (1978).  The order of 
the system and corresponding state-space parameters are determined 
from the number of significant Hankel singular values.  Performing an 
SVD produces: 
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where H is the Hankel matrix, and Σ is a diagonal matrix containing the 
Hankel singular values in descending order.  Examination of the 
Hankel singular values reveals there are generally only a small number 
of significant states, and model reduction can be performed without a 
significant loss in accuracy (Taghipour, Perez, and Moan, 2008; 
Kristiansen, Hijulstad, and Egeland, 2005).  Further detail about the 
SVD method and calculation of the state-space parameters will not be 
discussed in this paper, and the reader is referred to (Kung, 1978; 
Taghipour, Perez, and Moan, 2008; Kristiansen, Hijulstad, and 
Egeland, 2005). 
 
Quality of Realization 
 
WEC-Sim evaluates the quality of the resulting state-space model via 
the frequency response when using the frequency-domain realization 
and the corresponding impulse-response for the time-domain 
realization.  To evaluate these responses the coefficient of 
determination, R2, is computed according to 
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where rK~ represents the resulting hydrodynamic values from the state-

space model and rK is the mean value of the reference (true) values.  
The summations are performed across all frequencies to provide a 
measure of the variability of the function that is captured by the model. 

Application of state-space realization 
 
A truncated vertical cylindrical floater has been chosen as the sample 
geometry to compare the frequency- and time-domain realizations.  The 

 



floater geometric parameters and tank dimensions are found in Table 1 
and the hydrodynamic radiation coefficients were calculated from 
Yeung (1981).  The hydrodynamic coefficients were obtained between 
0.05 rad/s and − 11 rad/s at 0.05 rad spacing. 

In this example, an R2 threshold of 0.99 was set and the resulting 
realizations for the impulse-response function and the frequency-
dependent radiation coefficients are found in Fig. 1 and Fig. 2.  In this 
example the time-domain characterization outperforms the frequency-
domain regression, and the major difference appears in the wave-
damping estimation.  It was found that the time-domain 
characterization had better stability than the frequency-domain 
regression, because it does not require reflection of the unstable poles 
about the imaginary axis.  WEC-Sim users should check the quality of 
the hydrodynamic data with the custom WEC-Sim MATLAB functions 
that perform the realizations without running full simulations.  These 
codes allow users to set various fitting parameters using an iterative 
interface that plots how the fit changes with increasing state-space 
order.  The user can fine tune the input parameters in WEC-Sim so the 
desired performance is achieved. 

 
Table 1. Floater geometric parameters and tank dimensions. 

D (diameter) = 2 a  
= 0.273 m 

d (draft)  
= 0.613 m 

h (tank depth)  
= 1.46 m 

 

 
Fig. 1. Comparison of Kr to time- and frequency- domain realizations 

 
HYDRODYNAMIC CROSS COUPLING FORCES 
 

For a single floating body, the time-domain representation of the 
radiation forces is given by Eq. 1, because it is dependent only on its 
own motion.  However, most WECs consist of multiple floating bodies 
that can be in very close proximity, and as a result additional 
interaction forces arise.  These forces are generated as the motion of 
nearby floating bodies alters the local wave field.  Unique to floating-
body hydrodynamics are the forces felt by one body because of the 
motion of “n” additional bodies.  This is reflected in the off diagonal 
terms of the added mass and wave-damping matrices which generate a 
force on Body 1 because of the acceleration and velocity of bodies 2 
through n.  Because of the reciprocity relationship (Newman, 1977), a 
consequence of applying Green’s Second Identity, the cross diagonal 
hydrodynamic coefficients are equal 

 

 (27) 

 

Thus a symmetry check can be performed on the numerical values 
obtained from boundary element solvers such as WAMIT and 
NEMOH. 

 

 
Fig. 2. Frequency response of time- & frequency-domain realizations 

 
Response Amplitude Operator (RAO) 
 

It is common practice to calculate the response amplitude operator 
to access the performance of a WEC.  For an incident wave of 
amplitude A and frequency σ the response of the floating body is given 
by ζi: 
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 (29) 
 
where k is the wave number and ξi is the complex amplitude of motion 
for the i-th direction.  The resulting harmonic motion, when allowing 
six degrees of freedom for all floating bodies, can be described by the 
following coupled system of differential equations:  

 

 (30) 

 
where Iik is the generalized inertia matrix for all floating bodies, Λik is 
the generalized wave damping matrix, Μik is the generalized added 
mass matrix, Cik is the restoring matrix, and Fi is the complex amplitude 
of the wave-exciting force for all floating bodies.  The full description 
of the matrices can be found in (Newman, 1977) or another 
introductory hydrodynamic textbook. 
 
Validation of a Generic 5 Body WEC 
 

A generic set of five identical point absorbers were chosen to 
validate WEC-Sim’s ability to handle multibody interactions.  For 
demonstration purposes all bodies will be constrained to heave 
allowing one to simplify Eq. (30), though extending the equation of 
motion to consider additional degrees of freedom is easily achieved.  

 



The Simulink model constructed for this task can be seen in Fig. 3. 
 

 
Fig. 3. Simulink model used during validation procedure.  The body, 
constraint, pto, and cross coupling blocks are custom built and appear 
in the Simulink library. 
 
Inclusion of Linear Power-Take-Off System 
 
In order to extract any power from the incident waves a power-take-off 
(PTO) system is required, predominantly either a hydraulic or electrical 
generator.  The most generic form for the PTO reaction force is given 
by 
 

 (31) 
 
where ζrel is the relative motion between the floating bodies of which 
the PTO is attached.  However, for this test case each point absorber is 
attached to a fixed submerged body.  Thus, the relative velocity will 
reduce to the velocity of each body.  The generator spring, damping, 
and inertia force coefficients are given by Cg, Bg, and μg, respectively.  
In the frequency domain, adding the PTO force contribution to Eq. 
(30), while ignoring Cg and μg gives 
 

 (32) 

 

 (33) 

 
where Xi is the wave-exciting force per unit amplitude wave.  
Subscripts 3 and 9 denote the first two bodies and three additional 
equations are necessary to complete the entire system. The above 
system of equations can be solved to obtain the complex amplitudes of 
motion (ξ3, ξ9, ξ15, ξ21, ξ27) from basic matrix algebra: 
 

 (34) 

 
The results provide theoretical values to verify WEC-Sim ensuring 
proper implementation.  

The time-domain corollary of Eqs. (32) and (33) is given by the 
following coupled equations of motion 
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 (36) 

 
These are implemented in WEC-Sim for the first two bodies.  These are 
the general form for each of the other three bodies and it can be seen 
that five convolution integrals need to be solved per each equation.  
Without use of the state-space approximation the computational time 
increases dramatically with each interacting body especially if other 
modes of motion, such as surge and pitch, are included.   

The comparisons of the frequency-domain to the time-domain 
solution are provided in Fig. 4 - Fig. 6.    The magnitude of the heave 
response amplitude operator, Fig. 4, shows very good agreement 
between the frequency- and time-domain solutions with very little 
variation between bodies.  The summation of the RAOs across all 
bodies, Fig. 5, also shows very good agreement and provides a metric 
to indicate that the power absorption is relatively equal between both 
methods.  The phase of the RAO provided in Fig. 6, has a significant 
amount of oscillations for the outer bodies in the high frequency regime  

 



 
Fig. 4. Comparison between the frequency- and time-domain 
calculations of the coupled heave motion with Bg = 300 kN/(m/s). 
 

 
Fig. 5. Comparison of the summed heave motion of the five floating 
bodies between the frequency- and time-domain coupled calculations. 

 
yet WEC-Sim is still capable of capturing these effects.  A comparison 
between the uncoupled and coupled equations of motion can be found 
in Fig. 7, which shows that when neglecting coupling effects the 
absorbed power can be reduced by up to 20 percent in the most 
energetic states. 
 
WAVE DIRECTIONALITY, WEATHERVANING, and USER 
DEFINED WAVE ELEVATION 
 
One issue that arises in the design of WECs is the performance 
sensitivity with respect to the wave heading.  It can be shown that an 
asymmetric wave energy converter can have an extraction efficiency up 
to unity (Madhi, Sinclair, Yeung, 2013) but the device must be 
perpendicular to the oncoming wave crest.  This may be an appropriate 
assumption if the device is deployed near shore; however in deep water 
the device will be subjected to oblique waves likely leading to 
performance degradation.  Furthermore, WECs deployed in deep water 
will generally rely on mooring lines to provide rotational stiffness 
thereby allowing the body to yaw where performance can again suffer.  
Therefore, it is important to have the modeling tools available to allow 

the WEC to weathervane.  

 
Fig. 6. Comparison of the coupled phase of the five floating bodies 
between the frequency- and time-domain calculations. 

 
Fig. 7. Ratio of the uncoupled-to-coupled time averaged power. 
 

The incident wave potential, ϕI, when accounting for a variable 
wave heading, is given by: 

 

 (37) 

 
where g is the gravitational acceleration, A is the wave amplitude, k is 
the wave number, h is the water depth, and β is the wave heading 
measured counter clockwise from the positive x-axis.   

As the wave heading rotates the only hydrodynamic coefficients 
that will change are the exciting forces as the radiation forces are 
strictly body motion dependent.  Most boundary element methods can 
be set to output the wave exciting forces for a given number of incident 
wave angles.  However, when the body is free to rotate the incident 
wave angle becomes the difference between the wave heading and the 
yaw angle of the body.  Following WAMIT® notion, β ranges from 0 – 
360 degrees and a 2π correction must be made if the yaw angle exceeds 
the wave heading as follows 

 



 

 (38) 

 
where α is the incident wave angle and ξ6 is the yaw angle of the body 
measured counter clockwise from the positive x-axis. 
 For demonstration purposes a horizontal half cylinder with a 
radius, r, of 1 m and a length, L, of 10 m was chosen as the frontal area 
changes with wave heading.  The half cylinder is assumed to have a 
uniform density equal to the fluid density.   
 The half cylinder was initial set along the y-axis and was impinged 
upon by a regular wave with a heading of 22.5 degrees, amplitude of 1 
m, and period, T, of 10 s.  A wave ramp duration equal to five times the 
wave period was implemented in order to reduce any impulse effects.   
The body motion was restricted only to yaw and no external springs 
were included for yaw stiffness.  The results from the simulation can be 
seen in Fig. 8 and Fig. 9 which plot the body yaw and wave exciting 
force time history, respectively.  As the dynamic model is linear the 
yaw time history exhibits the typical response of damped second order 
system with a constant set point.  The body yaws from its initial 
position overshooting the wave heading before dropping into a 
decaying oscillation.  The overshoot is due to the system being 
underdamped despite the addition of a nonlinear drag term.  As seen in 
Fig. 9, the yaw wave exciting force drops to zero as the yaw angle 
crosses the heading with smaller oscillations associated with the wave 
period.  In this sense the exciting force acts as a restoring coefficient 
based on the difference between yaw angle and wave heading.    
 

 
Fig. 8: Yaw time history over wave heading under regular waves.   
 

Often during tank or sea trials, custom time series are measured 
and can now be imported into WEC-Sim for validation purposes.  In 
order for the user to import a custom wave time series the excitation 
force kernel must be constructed.  The wave exciting force time series 
is then obtained by convolving the excitation force kernel with the 
wave elevation as follows 
 

 (39) 

 
The excitation force kernel is calculated by taking the inverse Fourier 
transform of the frequency dependent wave exciting force coefficients 

 

 
Fig. 9: Yaw exciting force time history under regular wave excitation. 
 

 (40) 

 
Since Ke is real the following identity can be used, Xi(-σ)= Xi

*(σ), 
where * is this case denotes the complex conjugate.  This simplifies Eq. 
(41) to 
 

 (41) 

where and denote the real and imaginary components, 
respectively.  The half cylinder surge exciting force kernel is plotted in 
Fig. 10, which is noncausal because of the time history before t = 0.  
The high frequency oscillations are a result of low resolution of X1 in 
the high frequency regime; however, the oscillations are outside of 
typical wave frequencies and are filtered out after the convolution. 
Equation (40) produces the same surge exciting force when compared 
to linear superposition theory verifying proper implementation within 
WEC-Sim. 
 

 
Fig. 10: Surge exciting force kernel for the half cylinder and an 
irregular surge wave exciting force time history that compares the 
convolution calculation to the traditional linear superposition theory.   

 



 
CONCLUSIONS 
 
The work presented in this paper highlights several of the new 
modeling capabilities included in the latest WEC-Sim-v1.1 release.  
This includes conversion of the fluid memory kernel to state-space 
form.  Simulations showed that over the operating range of frequencies 
the state-space representation was able to adequately reproduce the 
hydrodynamic radiation coefficients; however, a relatively high R2 may 
need to be set.  Because many wave energy converters consist of two or 
more excited bodies the ability to model the body-to-body 
hydrodynamics were added to WEC-Sim.  This is an important feature 
to consider during the design process as the effects can lead to reduced 
floater motion thereby decreasing annual energy production.  
Combined with the state space representation significant reductions in 
computational time were observed compared to the default convolution 
integral calculation.  Finally, the hydrodynamic theory allowing a WEC 
to weathervane and account for wave directionality was presented.  
Implementation was performed by interpolation of the excitation forces 
based on the instantaneous incident wave heading.  This capability was 
included as WECs deployed in the open ocean at times will be subject 
to oblique waves where the resulting motions and power performance 
must be evaluated.  Furthermore, the theory to calculate the wave 
excitation force from a user defined wave elevation was provided.  The 
test case showed the convolution method provided accurate forces, 
when compared to traditional frequency based methods, which allows 
custom time series measured during tank tests to be used for validation 
purposes   
 The release of WEC-Sim-v1.1 also includes a module to calculate 
the instantaneous nonlinear hydrostatic and hydrodynamic forces as 
described in (Lawson, Yu, Nelessen, Ruehl, Michelen, 2014).  
Furthermore, WEC-Sim now boasts the ability to handle Morison 
elements.  However, the fluid particle velocity is calculated assuming 
the incident wave potential passes undisturbed through the WEC device 
which is physically unrealistic, but highlights the limitations with mid- 
fidelity codes.  Calculation of the instantaneous fluid velocity and local 
wave field would require the use of high fidelity numerical codes 
resulting in large increases in computational time and unnecessary for 
preliminary design iterations.  The modeling capabilities of WEC-Sim-
v1.1 have significantly increased and is now more competitive with 
other code developers.  Though WEC-Sim was constructed to assist 
developers with limited hydrodynamic backgrounds as model 
complexities increase the user must take additional care in the quality 
of the hydrodynamic characterization since model performance 
becomes more sensitive to the given inputs. 
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