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Wave energy offers immense potential as a renewable energy source. However, accurately estimating the Total
Absorbed Power (TAP) at various sites remains a significant challenge, requiring resource-intensive physical
modelling and numerical simulations to capture the complex hydrodynamic behaviour of Wave Energy Con-
verters (WECs) across different designs and wave conditions. To address this, we propose a novel, computa-
tionally efficient Machine Learning-Transfer Function (ML-TF) approach to estimate the TAP of Multi-Body
Floating WECs (MBFWEC). The methodology integrates frequency-domain and time-domain analyses to generate
a sparse dataset of MBFWEC responses under regular waves, which is used to train Machine Learning (ML)
models. Wave height, wave period, and Power Take-Off (PTO) damping are the key inputs for predicting the
Capture Width Ratio (CWR). Among the models tested, Multi-Layer Perceptron (MLP) model performed best (R2
= 0.995). This model was then used to derive a high-resolution CWR dataset, with error margins within +6.11
%, proving its reliability for out-of-range CWR predictions. To extend the model’s applicability to irregular wave
conditions, a Transfer Function (TF) was developed from the CWR dataset across a desired frequency range. The
TAP was subsequently estimated based on the TF, site-specific wave power spectra, and the converter’s effective
length. Validation using time-history simulations in uni-modal and bi-modal sea states showed excellent accu-
racy (4 % maximum error), while achieving an 80 % reduction in computational cost. The methodology was
further applied in a real-world case study using wave data from three locations in the northern Oman Sea, to
evaluate the region’s year-round power potential.

1. Introduction wave energy dynamics and the enhancement of wave energy applica-

tions [3].

Wave energy has gained significant attention as a renewable energy
source due to its high-power potential compared to other renewable
options such as wind, solar, and tidal energy. The global demand for
sustainable energy solutions further highlights the importance of marine
renewables. Projections suggest that by 2025, the share of wave energy
in the global energy market will surge to $107 million, marking a sub-
stantial increase from its $47 million value in 2023 [1]. However,
capturing and predicting wave energy remains a major challenge,
especially for large-scale commercial wave farm applications [2].
Additionally, managing and storing wave energy is complex due to the
irregular nature of wave climates in marine environments. Previous
studies have emphasized the urgent need for a deeper understanding of
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The design and optimization of Wave Energy Converters (WECs) are
intrinsically linked to the specific characteristics of their deployment
sites [4,5]. Since the efficiency of WEC energy capture mechanisms
depends on sea state conditions, such as wave heights and periods,
variations in these conditions can significantly influence WEC perfor-
mance. Typically, statistical representations of sea states are depicted
using scatter diagrams, with numerous cells representing the probability
of each sea state’s occurrence based on combinations of wave height and
period. Evaluating WEC suitability across diverse marine sites requires
assessing power performance against varying wave parameters. This
assessment is then used to generate either a power matrix or a Capture
Width Ratio (CWR) matrix, which describe the device’s power
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production or efficiency across different wave conditions. Comprehen-
sive evaluations of WEC performance often require considerable time
and resources, as the device must be adapted to accommodate the
variability of wave conditions [6]. Furthermore, the power absorption
efficiency of WECs is highly dependent on the performance of their
Power Take-Off (PTO) damping systems, which determine how effec-
tively the device converts wave motion into useable energy [7]. To fully
harness the potential of WECs, it is essential to optimize PTO damping
for each sea state condition. The large number of possible sea states
necessitates generating a power matrix with high resolution, resulting in
significant computational costs. Thus, developing an efficient method-
ology for generating the power matrix of WECs is crucial for advancing
their design and optimization.

Numerical simulation techniques, such as computational fluid dy-
namics (CFD), frequency-domain, and time-domain modeling, can be
employed to evaluate WEC performance under specific sea states and
device configurations. In CFD simulations, the fundamental fluid dy-
namics equations, such as the Navier-Stokes equations, are solved
numerically using either Lagrangian or Eulerian methods [8,9].
Although CFD modeling provides high-fidelity results, it is computa-
tionally expensive, limiting its use primarily to assessing WEC surviv-
ability rather than power output. Alternatively, frequency-domain and
time-domain approaches, both rooted in potential flow theory, are
widely utilized for assessing the power performance of WECs.
Frequency-domain modeling efficiently evaluates frequency-dependent
responses under linear conditions, while time-domain modeling cap-
tures nonlinear force components, providing more accurate power es-
timations. However, time-domain simulations require solving partial
differential equations at each time step, leading to higher computational
costs compared to frequency-domain approaches [10]. Although several
methods have been proposed to address accuracy and computational
cost issues [11,12], enhanced numerical approaches remain costly when
conducting comprehensive assessments of WEC potential across various
sea states and device configurations.

Over the past two decades, the development of various Machine
Learning (ML) techniques and tools has led to the creation of efficient
surrogate models that reduce computational costs. Recently, ML
methods have gained significant traction in power prediction tasks. For
instance, Zhou et al. [13] introduced Hybrid Physical-Machine Learning
(HPML) models, which combine physical modeling with ML techniques
to address power prediction challenges for wind turbines affected by
wake effects in wind farms. Ren et al. [14] proposed an active learning
Kriging approach for estimating spherical heaving point absorber (PA)
power matrices, demonstrating that the method requires less than
one-fifth of the simulations or experiments needed to construct the
power matrix of WECs across all sea states, achieving a mean absolute
percentage error of approximately 1 %.

Adibzade and Akbari [15] introduced a novel approach for evalu-
ating floating WECs in complex sea states. Their study developed a
Transfer Function (TF) across a range of wave frequencies to assess the
power absorption capacities of FWECs. By multiplying the developed TF
by the region-specific Mean Wave Power Spectrum (MWPS), the total
extracted power for each proposed configuration could be determined.
Since the TF is independent of sea states and relatively straightforward
to apply, it provides an efficient means of evaluating or tuning FWEC
devices for various regions, especially those with complex sea
conditions.

However, a critical limitation of the TF approach lies in its depen-
dence on a large number of high-fidelity numerical simulations to ach-
ieve sufficient frequency resolution across a wide range of PTO damping
values. To address this challenge, we propose a hybrid framework that
combines the physical interpretability of the TF method with the
generalization capabilities of supervised ML models. Instead of replacing
the TF with a purely data-driven model, our method enhances the TF
resolution by training ML algorithms on a sparse dataset of numerical
simulations. This integration allows for efficient estimation of power
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absorption over broad frequency and damping ranges with significantly
reduced computational cost. This study utilizes response data from
frequency-domain and time-domain modelling of a Multi-Body Floating
WEC (MBFWEC). The data is then employed in supervised ML tech-
niques, including Random Forest (RF), Gradient Boosted Regression
Trees (GBRT), and Multi-Layer Perceptron (MLP), to obtain a CWR
matrix. Frequency-domain modelling was conducted using ANSYS
AQWA, while time-domain modelling utilized WEC-Sim, incorporating
its batch run capability and the MATLAB Parallel Computing Toolbox
(PCT). The dataset comprises the device’s responses to a predefined set
of regular waves with a limited range of heights and periods. Subse-
quently, the CWR matrix was calculated, and the most effective ML
method was selected to develop the TF with the desired frequency res-
olution and PTO damping. The efficiency and accuracy of the proposed
ML-TF model were validated by comparing its results with those ob-
tained from direct simulations, ensuring reliable the Total Absorbed
Power (TAP) estimations for the MBFWEC under real-life conditions.
The total power absorption was then estimated using various sea states
recorded in 2016 in the northern part of the Oman Sea.

2. Methodology
2.1. ML-TF modelling framework

The Wave Energy Spectrum (WES) serves as a fundamental bench-
mark for characterizing sea conditions, representing the distribution of
wave energy across different frequencies within a specific geographical
area. By integrating the region-specific WES with the device-specific TF,
the TAP of a device under various sea states can be determined [15].
This process involves calculating the wave power spectrum from the
WES over the same frequency range as the TF. However, obtaining a
high-resolution TF typically requires extensive computational effort.
Therefore, employing a data-driven approach can significantly alleviate
this burden. In this study, we propose a novel Machine Learning—
Transfer Function (ML-TF) framework, which consists of four main
stages, as illustrated in Fig. 1.

In the first stage (Step 1 in Fig. 1), a dataset is generated through
numerical modeling to serve as input for the ML models in subsequent
steps. For this purpose, the hydrodynamic performance of the proposed
Multi-Body Floating Wave Energy Converter (MBFWEC) is evaluated
using potential flow theory through both frequency-domain and time-
domain modeling techniques. Frequency-domain analysis is conducted
using the ANSYS AQWA module, which extracts key hydrodynamic
coefficients such as excitation force, added mass, and radiation damp-
ing. These coefficients are then used to perform time-domain simula-
tions that capture the MBFWEC’s dynamic responses, including
nonlinear forces, over a specified time period. The time-domain
modeling is executed using WEC-Sim (Wave Energy Converter Simu-
lator), an open-source software integrated with MATLAB’s Parallel
Computing Toolbox (PCT). This allows for evaluating the MBFWEC’s
power generation capabilities under a predefined set of regular waves
with varying heights and periods (frequencies), creating a power win-
dow for each PTO damping setting. From these power windows, effi-
ciency metrics such as the CWR are calculated and serve as inputs for the
subsequent stages.

In the second stage (Step 2 in Fig. 1), supervised ML techniques,
including Random Forest (RF), Gradient Boosted Regression Trees
(GBRT), and Multi-Layer Perceptron (MLP), are employed to develop the
most effective data-driven model. These ML models use wave height,
frequency, and PTO damping as input features, with the CWR values as
the target variable. Once the ML models are optimized, the best-
performing model is selected to enhance the resolution of the CWR
window for the desired frequency and PTO damping levels. Through this
approach, a detailed assessment of MBFWEC efficiency across various
wave conditions is achieved, reducing the computational cost associated
with direct numerical simulations. The third stage involves the
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Fig. 1. Flowchart of the methodological approach developed in this study to determine the TAP using the ML-TF method.

development of TFs using the CWR windows obtained from the opti-
mized ML model for the targeted frequencies and PTO damping settings.
These TFs (discussed in Section 5.2) provide a more accurate and effi-
cient means of evaluating the power absorption capabilities of the
MBFWEC under diverse sea conditions. Finally, the fourth stage vali-
dates the efficiency and accuracy of the proposed ML-TF model by
comparing its results with those obtained from direct numerical simu-
lations. The TAP of the MBFWEC is calculated for region-specific single-
peak and double-peak Wave Energy Spectra, demonstrating the model’s
robustness in capturing device performance under complex sea states.

2.2. Frequency-domain analysis

The performance of a FWEC is influenced by a multitude of factors,
including its geometry, dimensions, and water depth, all of which
directly affect its hydrodynamic coefficients. These coefficients encom-
pass excitation force, added mass, and radiation damping. The excita-
tion force coefficient determines the force generated by incident waves,
crucially influencing the FWEC’s potential power output. Added mass
refers to the effective increase in weight of the floating member due to
the surrounding moving fluid. It directly affects the device’s response to
wave forces and its natural frequency of oscillation. Radiation damping
is the damping force resulting from waves generated by the FWEC itself
as it oscillates through the fluid. Radiation damping influences the
FWEC’s motion, and the energy loss associated with the generated
waves. Together, these hydrodynamic coefficients encapsulate the
complex interactions among the device’s components, significantly
impacting their motion and overall efficiency. The total response of each
component is determined by three primary factors: individual motion,
mutual interaction between the central body (CB) and the floats, and the
interference effects among floats in active degrees of freedom (DOFs).

The equation of motion of a floating body in frequency-domain,

idealizing it for a single active DOF is expressed as follows:

~0’mZ(0) = Fra(@) + Fis(0) + Fpro (@) + Fu(@) M
where z is a complex amplitude of the position, and m is the mass of the
body. Hydrodynamic force Fpq is defined as:

Fra(®) =Foe(0) + Fra(o) 2
where F,, and F,4 are excitation and radiation forces, respectively. Fe, is
the sum of Froude-Krylov and diffraction forces. The radiation force is
given by:

Fr(w)= —iw C(0)Z(w) + ©*An(0)Z(w) 3
where C(w) is the damping coefficient and An, (@) represents the added
mass. The hydrostatic force Fy; denotes the restoring force in the form of
buoyancy (or stiffness) of the system and is given as Eq. (4):

Fis(0) = — pgAwz()

4

where the hydrostatic force Fy is a function of displacement Z(w), g
denotes gravity, p is the density of water, and A,, is water plane (or wet
projected) area. The damping force induced by the PTO system which
enables the device to extract energy, as a function of float’s velocity Z(w)
and damping coefficient Cpy, in the active DOF, is given by:

()

The forces generated due to the presence of mooring cables are
computed as an additional linear stiffness coefficient K defined as:

Fro(®) = — o CpoZ (o)

Fu(w)= — KZ(w) 6)
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2.3. Time-domain analysis

To evaluate the time-domain responses of the MBFWEC system, we
employed WEC-Sim—an open-source and extensively validated tool
designed for the modeling of devices with hydrodynamic bodies, joints,
constraints, Power Take-Off (PTO) systems, and mooring components.
The WEC-Sim model used in this study was implemented in MATLAB/
SIMULINK, leveraging the capabilities of the Simscape Multibody dy-
namics solver. Hydrodynamic data for the MBFWEC, which includes
added mass, radiation damping, and wave excitation coefficients, were
obtained from ANSYS AQWA using the Boundary Element Method
(BEM). The BEM-derived hydrodynamic coefficients provide the de-
vice’s response to incident waves for a predefined set of wave fre-
quencies. Subsequently, this data is integrated into WEC-Sim to conduct
time-domain simulations that account for the coupling of FWECs with
PTOs and interactions with external bodies and forces [16].
Time-domain simulations are carried out by solving the governing
equations of motion for the FWEC with six Degrees of Freedom (DOFs).
These equations are formulated based on the methodology developed by
Cummins et al. [17] for linear time-domain analysis and are expressed
as:

t t

(M+AL)Z(t)+KZ(t) + /C,(t—r)Z'(r)dHCmtAé(t): /ﬂ(T)Fex(t*T)d‘[
+Fn 7 7
@

where M and A, represent the total dry mass and added mass matrix at
infinite frequency, respectively. K denotes the hydrostatic stiffness ma-
trix at still water level, Z and Z represent the time-dependent velocity
and acceleration vectors of bodies, respectively. The state space time-
invariant output matrix (C,) provides the total memory effect of the
radiation force, with 7 denoting the time shift of convolution terms
(radiation and excitation force). C,, stands for rotational damping co-
efficient [Nms/rad] and Ad indicates the relative pitch velocity between
CB and the float. F,, denotes the wave excitation by impulse response
function (IRF), 5 represents the free surface elevation, and F,, is the
mooring force vector. This comprehensive formulation accounts for the
intricate interactions between the MBFWEC and its surrounding marine
environment, enabling a robust prediction of the system’s dynamic
response under a wide array of wave conditions. Such detailed modeling
is essential for optimizing the performance of the MBFWEC and assess-
ing its stability and energy capture efficiency under real-world sea
states.

2.4. Supervised machine learning methods

This study implements three advanced supervised ML techniques,
including Random Forest (RF), Gradient Boosted Regression Trees
(GBRT), and Multi-layer Perceptron (MLP), to construct data-driven
models for predicting CWR. The primary advantage of supervised
learning is its ability to deliver highly accurate predictions on novel and
unseen data, leveraging prior knowledge of labeled datasets [18-20].
The selection of these algorithms is based on their distinct capabilities in
tackling various regression challenges and their proven success in prior
research within the field. RF is widely recognized for its robustness and
capacity to process large, high-dimensional datasets. By generating
numerous decision trees in parallel and combining their results, RF
effectively captures complex feature interactions and mitigates over-
fitting, making it highly reliable in diverse data environments [21]. In
contrast, GBRT employs a sequential ensemble approach, where each
tree is designed to correct the prediction errors of the preceding trees
[22,23]. This iterative learning process allows GBRT to identify and
adapt to subtle patterns in the data, thus enhancing predictive accuracy.
As a result, GBRT excels in applications where the data structure is
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intricate, and the relationships between variables are less straightfor-
ward [24]. MLP, a neural network-based approach, is particularly suited
for modeling non-linear relationships due to its complex architecture,
which comprises multiple interconnected layers of neurons. This deep
learning structure enables MLP to uncover intricate patterns and in-
teractions within the data that might be overlooked by traditional
tree-based models [25]. Moreover, MLP’s flexibility in adjusting its
structure (e.g., number of layers and neurons per layer) makes it
adaptable for a wide range of hydrodynamic and ocean engineering
problems. A comprehensive description of each ML model, including
error analysis and feature importance, is presented in the following.

2.4.1. Random Forest (RF)

RF is an advanced ensemble ML algorithm designed to enhance
predictive performance through the integration of multiple decision
trees. RF leverages the principles of bagging (bootstrap aggregation) and
the random subspace method to construct a robust predictive model
[26]. During the training phase, the algorithm builds multiple decision
trees, each using a randomly selected subset of the training data and
features. The final prediction is obtained by averaging the outputs of
these individual trees, thereby improving the model’s overall accuracy
and robustness [27]. The primary strength of RF lies in its ability to
handle high-dimensional datasets and its intrinsic capability to reduce
overfitting, which is a common limitation of single decision trees. By
combining the predictions from multiple trees, RF reduces variance and
increases stability, making it well-suited for diverse and complex data
scenarios. This ensemble approach also enables RF to effectively manage
noisy data and intricate interactions between features, rendering it a
versatile tool for applications requiring high predictive accuracy.

In practice, the RF model development process involves several
iterative steps to ensure optimal performance, as illustrated in Fig. 2 (a).
First, bootstrap samples are generated from the original dataset, and
individual decision trees are trained on these samples. During training,
various metrics are used to evaluate model accuracy and effectiveness. If
the model’s performance is unsatisfactory, hyperparameters such as the
number of trees, maximum tree depth, or feature selection criteria are
adjusted, and the process is repeated. This iterative refinement con-
tinues until the model achieves the desired balance between bias and
variance, resulting in a precise and reliable prediction model. Further
details on RF methodology and its foundational concepts can be found in
Ref. [27].

2.4.2. Gradient Boosted Regression Trees (GBRT)

Gradient Boosted Regression Trees (GBRT) is a powerful ML algo-
rithm that builds upon the decision tree framework, initially introduced
by Friedman [28]. The core principle behind GBRT is the concept of
gradient boosting, where a series of simple models, referred to as "weak
learners," are combined to create a strong predictive model. The algo-
rithm starts by constructing a base model where all data points are
assigned equal weights. After evaluating this initial model, GBRT iter-
atively adjusts by increasing the weights for instances that are mis-
classified while decreasing the weights for correctly classified instances.
This adaptive weighting mechanism allows the model to focus more on
the difficult-to-predict data points, enhancing its overall predictive
accuracy.

The iterative process of gradient boosting in GBRT is executed in a
stage-wise manner, refining the model at each step by sequentially
adding regression trees to minimize residual errors. The update of the
model at each stage m can be expressed as:

Fu(x) =Fp_1(x) + hn(x) (€]

where hy,(x) represents the basic function at stage m, often a small
regression tree of fixed size. Thus, the GBRT model is constructed by
adding these weak learners sequentially to the existing ensemble. Dur-
ing each iteration m, a new tree hy,(x) is fitted to the residuals from the
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Fig. 2. The conceptual diagram for (a) Random Forest (RF), (b) Multi-Layer Perceptron (MLP) algorithm.

previous model, mathematically described as:
hm(X) =y — Fpo1(x) (C)]

Here, y is the actual response, and Fn_1(x) represents the predictions
made by the previous iteration of the model. By focusing on these re-
siduals, the algorithm systematically corrects the errors from earlier
stages, thereby enhancing model accuracy over time. GBRT’s ability to
build models that learn complex patterns and relationships in the data
makes it particularly effective for regression tasks in hydrodynamics and
other engineering applications. Further theoretical insights and prac-
tical considerations regarding GBRT can be found in Friedman’s seminal
work [28].

2.4.3. Multi-Layer Perceptron (MLP)

The Multi-Layer Perceptron (MLP), a widely used variant of feed-
forward neural networks, is structured with three primary layers:
input, hidden, and output (Fig. 2 (b)). The fundamental building blocks
of an MLP include interconnected neurons, biases, and weights that
dictate the strength of the connections between neurons. In an MLP,
each connection between nodes is associated with a weight, while each
node, or neuron, has a designated bias. The learning process revolves
around optimizing these weights and biases through training, typically
utilizing algorithms like gradient descent. By iteratively refining these
parameters, the MLP minimizes prediction errors and achieves optimal
performance.

A distinctive feature of MLPs is the incorporation of activation
functions at each node, which introduces non-linearity to the network.
This non-linearity is crucial, as it enables the MLP to capture and model
intricate patterns within the input data, which would otherwise be un-
attainable using purely linear models. The mathematical representation
of an MLP Regressor (MLPR) is given by Ref. [29]:

YR = + Zuqraq (x) (10)
q

where ¢, represents the bias associated with the rih output neuron, ug
signifies the weight connecting the ¢ neuron in the hidden layer to the
™ neuron in the output layer. The activation function of the hidden
neuron, ay(x), is parameterized in terms of F as follows:

aq(x) _F<dq + vaq-xp> an
P

where d, stands for the bias of the ¢™ hidden neuron, x, is the input
parameter, and v, denotes the weight linking the p th neuron in the
input layer to the ¢ neuron in the hidden layer. Through the use of
these interconnected layers and non-linear activation functions, MLPs

are capable of modeling complex relationships in data, making them
highly effective for regression and classification tasks. Their adaptability
and capacity for learning complex mappings have been extensively
applied to diverse engineering problems, particularly where traditional
methods struggle to capture the underlying relationships in data [29].

2.4.4. Grid search cross validation

In this study, Grid Search Cross-Validation (GSCV) is employed to
optimize the hyperparameters of the ML models and ensure reliable and
consistent predictions of the CWR values. The GSCV technique system-
atically evaluates a predefined set of hyperparameters by training and
validating the model on multiple subsets of the dataset. By doing so, it
identifies the optimal combination of hyperparameters that yield the
highest model performance.

GSCV operates by dividing the entire dataset into K approximately
equal-sized folds, with each fold serving as a validation set once, while
the remaining folds are used for training the model. This process, known
as K-fold cross-validation, is repeated K times, with a different fold
utilized as the validation set during each iteration. This ensures that the
model is rigorously tested on every subset of the data, providing a
comprehensive evaluation of its generalization capability. The steps of
cross-validation are as follows: First, the dataset is randomly divided
into K folds of roughly equal-size. Then, the model is trained and eval-
uated K times. In each iteration, one fold is set aside as the validation set,
while the remaining K-1 folds are used to train the model. Subsequently,
performance metrics, specifically, Root Mean Squared Error (RMSE), are
calculated for each fold. Finally, the overall RMSE is obtained by aver-
aging the results across all K folds. The GridSearchCV class from the
Sklearn library is used for hyperparameter tuning across all ML models.

2.4.5. Evaluation metrics

The efficacy of the proposed ML-based predictive models is rigor-
ously assessed using a suite of comprehensive statistical error metrics,
including the Coefficient of Determination (RZ), Root Mean Square Error
(RMSE), Mean Absolute Error (MAE).

The Coefficient of Determination (Eq. (12)) is a statistical measure
that quantifies the proportion of variance in the dependent variable that
can be explained by the independent variables in a regression model. An
R? value approaching 1 indicates that the model effectively captures the
underlying variability in the dependent variable, while a value near
0 implies that the model explains little of the variation, indicating poor
predictive performance. This measure is particularly critical in wave
energy applications, where even modest prediction errors can have
significant implications for system reliability, performance forecasting,
and design optimization.
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2
RE_1_ Zi:ln(yi - YP:ed;> a12)
Y bi—y)

where y;, Ypreq,, ¥ are observed, predicted, and mean of all the observed
values, respectively.
The Root Mean Square Error (RMSE) is determined as the square root

of the average squared differences between predicted (yp,edl) and actual

(y) values. As RMSE penalizes larger errors more heavily, it is particu-
larly sensitive to significant deviations, making it an effective metric for
assessing prediction accuracy in applications where large errors are
especially detrimental, such as wave energy performance forecasting
and system reliability assessments.

RMSE = \ /%Z; (Yoreas —32) ’ a3)

Finally, the Mean Absolute Error (MAE) is computed as the average
absolute difference between the predicted and actual values. Unlike
RMSE, MAE treats all errors equally, regardless of their direction or
magnitude, providing a clear and intuitive measure of the average
prediction error in terms of its absolute value.

MAE = %Z:;l ‘J’pred, *)’i‘ a4

Together, these metrics offer a comprehensive framework for eval-
uating different aspects of model performance, ensuring a robust and
reliable assessment of the predictive capability of machine learning
models in estimating the total absorbed power of floating wave energy
converters.

3. Results and discussion
3.1. Numerical modeling and dataset

Single-body WECs, such as Point Absorbers (PAs), have a limited
operational efficiency due to their narrow frequency bandwidth for
wave energy capture. This narrow bandwidth necessitates continuous
adjustments to maintain resonance with changing sea conditions [30].
In contrast, MBFWECs overcome this limitation by exploiting the rela-
tive motion between multiple interconnected bodies. This design en-
ables a broader engagement with resonance frequencies, resulting in
increased power absorption across a more diverse range of wave fre-
quencies [31]. By distributing energy capture over a wider spectrum,
MBFWECs are capable of harvesting energy more effectively from varied
wave conditions. However, accurately modeling the complex in-
teractions between multiple bodies in an MBFWEC system, each with
multiple Degrees of Freedom (DOF), poses significant challenges [32].
Optimal energy conversion in these systems requires tailored damping

Wave Direction
—_—

Pre-Tensioned
Tethers

Sea Bed

(a)
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ratios for each DOF of each body, along with variations in damping
provided by the Power Take-Off (PTO) mechanism. Consequently, many
multi-body WECs often operate with only one active DOF.

The configuration of the MBFWEC investigated in this study is
depicted in Fig. 3. The system comprises a central, hollow cylindrical
body (Central Body, or CB) that is connected to four curved tubular
floats (F1-F4) via arms and hinge joints. This structural arrangement
allows the relative motion between the CB and the floats, which is
crucial for effective energy extraction. The hinge joints are aligned with
the local y-axis of the floats, enabling rotational motion about the pitch
angle. As the floats oscillate relative to the CB, the PTO system applies
controlled damping, thereby converting the kinetic energy into useful
power.

The CB is designed to be positively buoyant, ensuring it remains
afloat, while stability is achieved by positioning the center of gravity
below the center of buoyancy. To withstand extreme wave conditions
such as those encountered during storms, the system is equipped with a
“survival mode” in which vulnerable components can be fully sub-
merged and locked in place, preventing structural damage and ensuring
operational safety [33]. The geometric properties and design parameters

Table 1
Design parameters of the MBFWEC utilized in the numerical simulations of this
study.

Design and operational parameters MBFWEC
Water depth (m) 40
Density of seawater (kg/m®) 1025
Height of the CB (m) 33
Radius of the CB (m) 3
Height of the floats 14
Width of the floats 4
Weight-CB (KN) 8370
Buoyancy-CB (KN) 8526
Weight and Buoyancy-Floats (KN) 5341
Center of Gravity-CB [X Y Z] (m) [0, 0, —16]
Center of Gravity-Floats [X Y Z] (m) [10.33, 0, —5.5]
Draft-CB (m) 30
Draft-Floats (m) 11
Freeboard-CB (m) 3
Freeboard-Floats (m) 3
Inertia-CB (kg.m?) lex 7.90 x 107
lyy 7.90 x 107
L, 3.80 x 10°
Inertia-Floats (kg.m2) J . 1.46 x 107
lyy 8.73 x 10°
L, 7.50 x 10°
Length of the connecting arms (m) 6
Stiffness of mooring lines (KN/m) 3910
Pre-tension of each mooring line (KN) 39.1
Effective length of each float [parallel to wave] (m) 14.14
Effective length of each float [perp. to wave] (m) 5.76
Effective length of each configuration (m) 39.8

210 8 6 4 2 0 -2 4 6 -8-10-12

(b)

Fig. 3. Configuration of the MBFWEC: (a) schematic illustrating operational mechanisms; (b) plan view showing dimensions and scale.
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of the MBFWEC configuration examined in this study are detailed in
Table 1.

To determine the hydrodynamic coefficients of the MBFWEC,
frequency-domain simulations were conducted using the AQWA-LINE
module in ANSYS AQWA. This module solves the linearized potential
flow problem under the classical assumptions of incompressible,
inviscid, and irrotational fluid, combined with small-amplitude incident
waves. The simulation involves both diffraction and radiation analyses.
In the diffraction analysis, the structure is held fixed, while incident
waves interact with the device, generating scattered wave fields. For the
radiation problem, the device is allowed to oscillate in calm water
within each of its six degrees of freedom (surge, sway, heave, roll, pitch,
and yaw), producing corresponding radiated wave fields. The total hy-
drodynamic response is then obtained through the linear superposition
of these components.

The boundary conditions applied in the simulations follow classical
hydrodynamic theory and AQWA’s standard formulation. A no-flux
condition is enforced on the floating body’s surface to prevent normal
flow penetration, treating it as impermeable. On the free surface, a
linearized combination of kinematic and dynamic boundary conditions
is applied, consistent with the wave dispersion relation. The seabed is
modeled as a flat, impermeable surface, while the far-field boundary
employs the Sommerfeld radiation condition to ensure the proper
dissipation of outgoing waves and eliminate artificial reflections [34].

The geometry of the MBFWEC was discretized using an unstructured
quadrilateral panel mesh, as required by AQWA-LINE. Mesh refinement
was concentrated in regions of high curvature, structural connections,
and sharp edges where wave-body interactions are most sensitive. To
ensure mesh independence, a convergence study was conducted using
mesh densities ranging from 0.25 m to 0.5 m, with particular attention
to the Response Amplitude Operator (RAO) in heave. Based on this
analysis, a mesh size of 0.3 m was selected, as further refinement yielded
negligible changes (less than 2 % variation in hydrodynamic co-
efficients). Panels were defined with accurately oriented normal vectors
and centroid locations to facilitate precise evaluation of velocity po-
tential surface integrals and associated hydrodynamic pressures.

Fig. 4 (a) shows the surface mesh applied to the MBFWEC geometry
for the frequency-domain analyses, and Fig. 4 (b) presents the RAO
variation in heave DOF for the CB under different mesh densities ranging
from 0.25 m to 0.5 m.

Simulations were conducted over a frequency range of 0.01-0.8 Hz
to comprehensively evaluate the MBFWEC’s response under regular
wave conditions. Incident wave directions varied from —180° to 180° in
30° increments, ensuring thorough coverage of all relevant approach
angles. The primary outputs of the frequency-domain analysis include

(a)

RAO-Heave
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frequency- and direction-dependent wave excitation forces, radiation
damping coefficients, and added mass, which serve as essential inputs
for the subsequent dynamic response analysis of the MBFWEC.

In line with the assumptions inherent to linear wave theory and the
AQWA framework, viscous effects and nonlinearities were neglected.
The hydrodynamic centers and coordinate system were carefully aligned
with the body-fixed reference frame, adhering to AQWA’s standard
conventions to ensure the consistency and accuracy of the results. For
comparative analysis and to facilitate dimensionless representation, the
hydrodynamic coefficients were normalized using the following
expressions:

—~ F._

Fo="=% (15)
124

—~ A

Ay =" (16)
P

Gy = a7
P

where F/e\x, En, and 6,\,1 represent the normalized hydrodynamic exci-
tation force, added mass, and radiation damping coefficients, respec-
tively. In these equations, p denotes the water density, g is the
acceleration due to gravity, and w is the wave frequency. These
normalized coefficients correspond to the selected Degrees of Freedom
(DOFs) for the analysis. Although hydrodynamic coefficients are
computed for all DOFs of the MBFWEC system, only the heave and pitch
DOFs are considered active in the configuration analysed in this study.
Fig. 5 illustrates the normalized hydrodynamic coefficients computed
for the heave DOF, providing insights into the frequency-dependent
response characteristics of the system.

In WEC-Sim, each component of the MBFWEC is modeled using
Simulink blocks within the MATLAB environment. The various inter-
acting parts, such as floating members and the Central Body (CB), are
represented as distinct hydrodynamic bodies. Connections are estab-
lished between these components to facilitate multi-body interactions,
allowing the system to simulate complex dynamics within the MATLAB/
Simulink framework. The dynamic response of the MBFWEC is further
integrated with mooring blocks, constraint blocks, and rotational Power
Take-Off (PTO) blocks, which define linear PTO damping coefficients
and act as rotational hinges in the system.

The influence of regular waves on the hydrodynamic behaviour and
optimal settings of the PTO system can be effectively captured using this
modelling framework. However, predicting the performance of a

15.0
@ Mesh size (m)
O 025
12.5- o 03
0.4
10.0 1 o 05

7.5 1

5.0 1

2.5

0.0 1

005 010 015 020 025
Frequency (Hz)

(b)

Fig. 4. (a) Surface mesh generated on the MBFWEC geometry used in the frequency-domain analyses. (b) Variation of the RAO in heave for the CB under different

mesh densities ranging from 0.25 m to 0.5 m.
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Fig. 5. Computed hydrodynamic forces for MBFWEC (a) Normalized added mass, (b) Normalized radiation damping, and (c) Normalized excitation force.

Floating Wave Energy Converter (FWEC) under realistic sea conditions,
characterized by irregular and complex wave states, presents a signifi-
cant challenge. In this study, time-domain simulations were performed
to establish baseline data for ML models and ultimately develop a TF
capable of estimating the TAP generated by the device in response to
real sea waves. To achieve this, a predefined set of regular wave con-
ditions was constructed, encompassing a comprehensive range of wave
heights and periods. This dataset included 352 wave components,
comprising 16 distinct wave heights (spanning from 0.1 m to 1.6 m) and
22 different periods (ranging from 2 s to 20 s, along with additional
periods of 30 s, 40 s, and 50 s). Each wave component was simulated
independently for the MBFWEC using WEC-Sim’s batch run capability,
which enabled consecutive simulation of all 352 components. Further-
more, MATLAB’s parallel computing feature was employed to expedite
the simulations, leveraging multiple processor cores to execute simula-
tions simultaneously.

Each simulation was run for a duration of 500 s, using a time step of
0.005 s to ensure high-resolution results. The incident wave angle of
approach was maintained at a constant 180° for all scenarios. Conse-
quently, Float 3 (F3) was positioned as the first member, and Float 1 (F1)
as the last member facing the wavefront, while Floats 2 and 4 were
symmetrically placed as side floats, yielding identical modeling results
due to their symmetry relative to the approaching wave angle. The
entire MBFWEC configuration (Fig. 3) was subjected to six separate
batch runs, each corresponding to a different level of PTO damping,
ranging from 6 to 24 MNms/rad.

The PTO system employed in the MBFWEC device operates on a
rotational basis, harnessing energy through the relative pitch motion
between the CB and the floats. Consequently, the time-averaged power
output per float, under regular wave conditions, can be expressed as:

Pi= (18)

-

T
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where C,o (hereinafter C) is the rotational damping coefficient [Nms/
rad], and (éCB 76)«) is the relative velocity of pitch angle between the CB
and the floating body. Hence, with four floats, the total mean power
absorbed by the proposed MBFWEC can be determined as:

19)

The absorption length (L), also known as the Capture Width (CW) of
the device, represents the ratio of the mean power absorbed P (in W) by
the device to the power of the incident wave P,q,. (in W/m), and is
defined as follows [35]:

p

CW= (20)

P, wave

CW denotes the width of a wave crest fully absorbed by a WEC.
However, the CWR is more suitable for assessing a WEC’s hydrodynamic
efficacy. The CWR provides a measure of the percentage of wave power
that is effectively captured and converted by the device as waves
propagate through the system. It is mathematically expressed as:

cw

CWR =
Loy

*100 21)

where L.y represents the characteristic dimension encompassing the
width of all components actively engaged in the energy absorption
process from waves. For instance, when a platform incorporates multiple
WECs, performance is adjusted based on the number of installed WECs.
In such cases, the active width is defined as the width of each individual
WEC. Therefore, L can be determined as the sum of the effective length
of all floating members:

m
Ly =Y _ Lo, (22)
=1

where m denotes the number of floating members.

Fig. 6 illustrates the CWRs obtained for a sample batch run, corre-
sponding to a Power Take-Off (PTO) damping of 10 MN/m. The figure
provides a grid of values that represent the hydrodynamic efficiency of
the MBFWEC device for each wave height and period combination
within the predefined window. In the figure, red indicates regions of
higher efficiency, whereas blue signifies areas of lower efficiency.
Additionally, the CWR distributions were generated for five other PTO
damping values to create a comprehensive dataset for ML model
development. CWR windows for the other damping values are described
in the Supplementary Information (Fig. S1).

Following the outlined numerical modeling methodology, a total of
2112 simulations were performed (see Table 2). This includes six batch
runs, each consisting of 352 simulations, covering 16 different wave
heights and 22 periods for regular wave conditions. Each batch run,
executed using MATLAB’s Parallel Computing Toolbox (PCT) on an
Intel® Core™ i7-11700K processor, required 2420 s, resulting in a cu-
mulative simulation time of approximately 14,520 s (about 4 h). Fig. 7
presents the frequency distribution curve of the CWR values obtained
from all 2112 simulations, providing insight into the overall hydrody-
namic performance of the MBFWEC system.

3.2. Leveraging machine learning models

This section presents a comparative analysis of three ML models,
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CWR Matrix For PTO Damping of 10 MNms/Rad
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Fig. 6. Numerically generated CWR matrix for MBFWEC with PTO Damping of 10MNms/rad.

Table 2
Input ranges for wave height, wave period, and PTO damping used to generate
the database for ML.

Properties Input Range No. of Total No. of
Scenarios Simulation
Wave Height (m) 0.1-1.6 (0.1 m 16 2112
Interval)
Wave Period (s) 2-20 (1 s Interval) 22
30, 40,50 s
Damping (MNms/ 6-10-14-18-22-24 6
Rad)
600 -
500 -
> 400 -
[}
=
9]
=
@ 300 A
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0- u T T
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CWR Values

Fig. 7. Distribution of CWR values in the numerical modeling dataset, utilized
for ML models.

including RF, GBRT, and MLP, for predicting the CWR of the MBFWEC.
All models were developed and implemented using the Scikit-Learn li-
brary, adhering to the operational framework illustrated in Fig. 8. The
data obtained from the numerical simulations (see Table 2) was split
into input and output features. The input features consisted of wave
height (H), wave frequency (f), and PTO damping coefficients, while the
output feature was the CWR value of the MBFWEC.

During the preprocessing stage, scaling techniques were employed to
standardize the input features for all ML models. This step is crucial, as
unnormalized data can cause the algorithms to converge more slowly or,
in some cases, fail to converge entirely. To normalize the input data, the
MinMaxScaler class from Scikit-Learn was used. Once standardized, the
dataset was partitioned into training and testing sets, with 70 % of the
data used for training and the remaining 30 % reserved for testing,
ensuring an unbiased evaluation of model performance.

In the subsequent stage, hyperparameters were tuned to optimize the
performance of each ML model. Each algorithm type has a unique set of
hyperparameters that significantly influence its behaviour during
training. For the MLP model, hyperparameters like ‘hidden_layer sizes’
define the number of neurons in each hidden layer, directly affecting the
model’s capacity to capture complex patterns. The activation function,
such as ‘ReLU’, governs how the input signal is transformed as it passes
through the network. The optimization algorithm, specified by the
solver parameter, minimizes the loss function, with ‘adam’ being a
popular choice due to its adaptive learning rate. Additional parameters
like ‘batch size’, ‘learning rate’, and ‘max_iter’ control the frequency of
model updates, the step size during optimization, and the maximum
number of iterations, respectively.

Fig. 9 (a) illustrates the effect of varying ‘hidden_layer sizes’ on the
RMSE values for the MLP model. The results indicate that ‘hidden -
layer sizes’ significantly impact RMSE for both the training and testing
datasets, with the optimal configuration achieved at (80, 64). Further
analysis of ‘learning rate’ and ‘max_iter’ parameters is shown in Fig. 9 (b)
and 9 (c). It was observed that increasing the learning rate beyond 0.005
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3. Model Optimization
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Fig. 9. Variation in MLP model hyperparameters versus train and test RMSE for (a) ‘hidden_layer sizes’, (b) ‘learning rate’, and (c) ‘max_iter’.

had a minimal effect on the RMSE for both training and testing sets.
Similarly, increasing ‘max_iter’ from 50 to 300 reduced RMSE for both
datasets, with the optimal value identified at 200 iterations. Conse-
quently, the hyperparameter tuning space for ‘hidden layer sizes’, ‘lear-
ning rate’, and ‘max_iter’ was constrained to these specific ranges to
refine the model’s performance. Our evaluation indicated that varying
the activation functions and solvers did not result in substantial im-
provements. Therefore, ‘ReLU’ and ‘Adam’ were chosen as the activation
function and optimization solver, respectively. This choice, along with
the tuned hyperparameters listed in Table 3, mitigates the risk of over-
fitting while ensuring optimal model performance.

For the RF and GBRT models, hyperparameters play a pivotal role in
refining the model’s structure and ensuring accurate predictions. In
Random Forest (RF), the ‘n_estimators’ parameter represents the number
of decision trees in the ensemble, where a higher number typically im-
proves performance but increases computational overhead. The ‘Max -
depth’ parameter controls the depth of each tree, limiting how deeply
each tree is grown. This restriction prevents the model from capturing
too much detail and potentially overfitting the training data. Parameters
such as ‘min_sample_split’ and ‘min_sample_leaf’ ensure that each node and
leaf in the decision trees contain a minimum number of data samples,

10

adding robustness to the model and reducing overfitting by preventing
the creation of overly specific rules.

In GBRT, hyperparameters like ‘learning rate’ influence how much
each successive tree contributes to the final model. Lower learning rates
reduce overfitting and make the model more conservative, while higher
learning rates can accelerate convergence at the risk of overfitting. Pa-
rameters such as ‘subsample’ and ‘colsample bytree’ determine the frac-
tion of samples and features considered for each tree, respectively,
promoting generalization by introducing randomness and diversity in
tree construction. This stochastic element helps prevent any single
feature from dominating the model, ensuring a more balanced and
generalizable solution.

Fine-tuning these hyperparameters is crucial to achieving a balance
between model complexity and generalization, leading to optimal pre-
dictive performance. To this end, Grid Search Cross-Validation (GSCV)
was employed with a 5-fold cross-validation strategy to systematically
explore the best hyperparameter combinations for each model. This
approach ensures comprehensive coverage of the hyperparameter space
while simultaneously assessing model robustness by averaging perfor-
mance across multiple folds. This reduces the risk of overfitting and
provides a more reliable estimation of the model’s performance.
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Table 3
Summary of hyperparameters and optimal values for all the ML models tested in
this study.
Supervised Hyperparameters Best Values
Models
MLP ‘hidden_layer sizes’: (80, 64), (64, ‘hidden_layer _sizes’: (80,
32), (32, 16, 8) 64),
‘activation’: (‘relu’), ‘activation’: (‘relu’),
‘solver’: (adam), ‘solver’: (adam),
‘batch_size’: (32, 16, 8), ‘batch_size’: (16),
‘learning _rate’: (0.002, 0.003, 0.004, ‘learning_rate’: (0.005)
0.005, 0.006), ‘max_iter’: (200)
‘max_iter’: (50, 100, 150, 200, 300)
RF ‘n_estimators’: (40, 50, 60, 75), ‘n_estimators’: (50),
‘max_depth’: (5, 8, 10, 12, 15), ‘max_depth’: (10),
‘min_sample_split’: (4, 5, 8), ‘min_sample_split’: (5),
‘min_sample _leaf’: (4, 5, 6), ‘min_sample_leaf’: (5),
‘bootstrap’: (True, False) ‘bootstrap’: (True),
GBRT ‘n_estimators’: (40, 50, 60), ‘n_estimators’: (50),

‘max_depth’: (4, 5, 8, 10),
‘learning rate’: (0.001, 0.01, 0.1),
‘subsample’: (0.5, 0.8)
colsample_bytree’: (0.4, 0.8, 1),
*colsample_bylevel’: (0.4, 0.8, 1)

‘max_depth’: (5),
‘learning rate’: (0.01),
‘subsample’: (0.8),
colsample_bytree’: (0.4),
*colsample_bylevel’:

(1.0)

The details of the hyperparameters considered and the optimal
values selected by GSCV for each model are presented in Table 3.
Notably, a total of 1350, 1800, and 3240 fits were evaluated for MLP,
RF, and GBRT models, respectively, using the 5-fold cross-validation
method. These fits correspond to the unique hyperparameter combina-
tions explored for each model. The optimal set of hyperparameters for
each method was determined based on the configuration that resulted in
the lowest RMSE, reflecting the best predictive accuracy and general-
ization capability for the given dataset.

The primary objective of this section is to determine the most ac-
curate ML model for predicting the CWR of a MBFWEC under diverse sea
conditions. These conditions include variations in wave height, fre-
quency, and the device’s Power Take-Off (PTO) damping. Fig. 10 pre-
sents a comparative evaluation of the predictive performance of several
ML models, including MLP, GBRT, and RF, on an unseen test dataset. To
facilitate meaningful comparisons, the figures include + maximum error
lines, based on the maximum absolute error observed within the test set.

Among the evaluated models, the MLP demonstrates superior per-
formance, with predictions for the test data falling within a £6.11 %
error margin. By contrast, the GBRT model exhibits a maximum absolute
error of 20.3 %, and the RF model reports an error of 22.6 %. Addi-
tionally, the MLP shows enhanced prediction accuracy for CWR values
that are relatively rare and higher in magnitude, underscoring its ca-
pacity to generalize effectively to extreme or underrepresented data
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points.

To further elucidate the performance differences across the models, a
suite of statistical metrics was computed for each, both on the training
and the unseen test datasets. The results, summarized in Table 4, indi-
cate that the MLP outperforms the other models across all evaluated
metrics. The MLP achieves the highest coefficient of determination (Rz),
with values of 0.9976 on the training set and 0.9945 on the test set,
highlighting its ability to explain a substantial proportion of the variance
in the data. Moreover, the MLP exhibits the lowest Root Mean Square
Error (RMSE) and Mean Absolute Error (MAE), registering 1.1091 and
0.30605 on the training set, and 1.1697 and 0.41641 on the test set,
respectively. These results underscore the MLP’s superior accuracy and
minimal prediction errors in comparison to the other models. In
contrast, the RF model demonstrates lower R? values (0.99232 for the
training set and 0.98674 for the test set) and higher RMSE and MAE
scores (0.98786 and 0.35347 for the training set, and 1.80870 and
0.47994 for the test set). Similarly, the GBRT model underperforms
relative to the MLP, with R? values of 0.98936 (training) and 0.97907
(test), and higher RMSE and MAE values, 1.26951 and 0.576126, for the
training set, and 2.27244 and 0.79120 for the test set, respectively.

For a comprehensive comparative analysis, Fig. 11 presents a Taylor
diagram, as introduced by Taylor (2001), which visualizes the correla-
tion coefficient, standard deviation, and centered Root Mean Square
Error (cRMSE) for each model. While all three models exhibit
commendable performance, the MLP stands out with the highest cor-
relation and standard deviation closely aligned with the reference
values, indicating its superior fidelity to the actual data. The RF model
also performs well, with high correlation and a nearly matching stan-
dard deviation. The GBRT model, although slightly lower in correlation
and standard deviation, nonetheless displays robust predictive capa-
bility with minimal bias. Overall, the MLP model consistently demon-
strates the most reliable and accurate performance in predicting the
CWR values across a range of sea states and PTO damping values. Its
superior generalization, particularly in the prediction of higher CWR
values, positions the MLP as the preferred model for this task, offering

Table 4
Comparison of predictive ML-based models for modeling CWR values in training
and testing dataset.
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Supervised Models Dataset R? RMSE MAE
MLP Training Set 0.99676 1.1091 0.30605
Test Set 0.99545 1.1697 0.41641
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Fig. 10. Performance evaluation of supervised regression ML models for predicting CWR values (a) MLP, (b) RF, and (c) GBRT.
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Fig. 11. Comparison of ML-based models’ performance in predicting CWR.

significant potential for enhancing the predictive accuracy of WECs
under real-world conditions.

Permutation feature importance analysis was conducted to evaluate
the relative impact of different input features on the MLP model’s pre-
diction accuracy for the CWR. This method quantifies the importance of
each input by randomly shuffling the values of one feature at a time and
measuring the resulting degradation in model performance. A greater
drop in performance suggests that the model is more reliant on that
specific feature for making accurate predictions. As a model-agnostic
approach, permutation importance offers valuable insights into the
contribution of each input feature without relying on the underlying
structure of the model itself. As shown in Fig. 12, wave frequency
emerges as the most significant factor, displaying the highest impor-
tance score. This indicates that the model’s predictive performance is
highly sensitive to variations in wave frequency, with notable variability
in its impact. PTO damping, while less influential than wave frequency,
still exerts a consistent effect on the model’s predictions. In contrast,

Wave Height

Wave Frequency

Features

PTO Damping

200 300 400 500

0 100
Permutation Importance

Fig. 12. Feature importance analysis for the MLP method.
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wave height is identified as the least impactful feature, with a relatively
modest importance score and moderate variability in its influence. The
findings suggest that the MLP model can predict CWR values with suf-
ficient precision, even for previously unseen or out-of-range PTO
damping and wave height values. Moreover, to optimize the develop-
ment of future data-driven models, the input data can be further refined
by capturing wave frequency at a higher resolution, given its prominent
role in prediction accuracy, while wave height can be sampled with a
lower resolution due to its comparatively minimal impact. This targeted
approach to dataset construction would enhance the quality of inputs
and ultimately improve the model’s predictive capabilities. Overall,
while all three models, i.e. MLP, Random Forest, and GBRT, demon-
strated strong performance, the MLP method consistently exhibited su-
perior accuracy and reliability across multiple metrics. As a result, the
MLP model was selected for further exploration and to serve as the
foundation for the development of the CWR prediction window and the
proposed ML-TF approach. Its exceptional performance in capturing
complex patterns in the data highlights its suitability for this advanced
application.

3.3. Development of machine learning-transfer function (ML-TF) method

The TF concept, initially introduced by Adibzade and Akbari [15],
provides a critical framework for correlating the response of a FWEC in
regular wave conditions to its behavior in irregular wave environments.
The essence of the TF lies in approximating the FWEC’s performance
under complex, irregular sea states by examining its response to a range
of regular waves. By doing so, the TF enables the accurate prediction of
the device’s power absorption capabilities in real-world sea conditions,
which are inherently more variable and dynamic than idealized regular
waves. The TF is primarily dependent on wave frequency (or wave
period) and can be derived from the CWR matrix. It is computed as
follows:

™ CWRy,
TF; :MJ: 1,2,...n
m (23)
TF = [TFy, TF,, ..., TF,)

where m represents the number of wave heights considered in the CWR
matrix, and n denotes the number of wave frequencies.

This TF is instrumental in estimating the power absorption efficiency
of an FWEC device installed at a particular site. Real sea conditions are
often described using the Wave Energy Spectrum (WES) S(f), which
represents the distribution of wave energy across different frequencies.
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From this, the Wave Power Spectrum (WPS) P(f), denoting the distri-
bution of wave power over frequencies, is derived as follows:

P(f) = pgCs(f)S(f) 24
C,(f) represents the wave group celerity (m/s), determined as:
1 2kd
C— %tanh(kd) (1 + m) (25)

where k is the wave number, and d denotes the water depth.

Utilizing the TF offers an efficient approach to estimating the total
power generation of a MBFWEC. The TF, which remains constant across
varying sea conditions, can be multiplied by the Wave Power Spectrum
(WPS) P(f), derived from the target sea state, to calculate the TAP. This
process is mathematically expressed as:

TAP = ( / TF (f) x WPS(f) df) X Lgs (26)

where Ly denotes the cumulative effective length of all floating mem-
bers within the MBFWEC, defined as Ly = Zj"il Leffj, where m denotes

the number of floating members in the device.

By applying this equation, the TAP of the MBFWEC is computed
based on the specific TFs developed for different PTO damping levels.
These TFs are systematically compared to identify the most effective
PTO damping strategy for the given sea conditions, as defined by the
WPS. The effectiveness of different damping strategies allows for a
tailored response, ensuring optimal energy absorption under varying
wave conditions. A critical aspect of this method is ensuring that the
frequency resolution of the TF aligns precisely with that of the WPS, as
described in Eq. (26). The accuracy of the power prediction process is
heavily dependent on this match, as well as the detailed exploration of a
wide range of PTO damping settings. However, this approach introduces
significant computational challenges, particularly due to the need for
multiple simulations to accommodate the WPS resolution and the
diverse damping configurations. To mitigate these computational de-
mands, a data-driven model, specifically using the MLP method, is
employed to predict CWR matrices across a wide range of frequencies
and PTO damping settings. The MLP model’s predictive capabilities
allow for more efficient exploration of the parameter space while
maintaining high accuracy in estimating the device’s performance,
reducing the need for extensive numerical simulations.

Fig. 13 illustrates the CWR matrix predicted by the MLP model for a
PTO damping value of 8 MNms/rad, which was not included in the
model’s initial training dataset. Notably, the MLP model significantly
enhances the frequency-domain resolution of the CWR matrix. Using the
trained MLP, the CWR matrices were generated for a frequency range
between 0.02 and 0.49 Hz in 0.01 Hz increments, covering fourteen
distinct PTO damping values, spaced at 2 MNms/rad intervals.

Wave Height (m)

0.230.2

Predicted CWR Matrix Using MLP Method For PTO Damping of 8MNms/Rad

50.: E
Frequency (Hz)
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Fig. 14 presents the TFs derived from the predicted CWR matrices.
Panel (a) includes TFs for PTO damping values within the training
dataset; panel (b) shows TFs for values not included in the training but
within the same range; and panel (c) illustrates TFs for out-of-range
values. All TFs were calculated with a 0.01 Hz frequency resolution,
demonstrating the MLP model’s capacity to maintain high spectral res-
olution across a wide range of input conditions.

Achieving this 0.01 Hz frequency resolution over the specified ranges
of wave height and PTO damping through conventional numerical
simulations would require approximately 768 simulations per damping
value. For fourteen damping values, this results in a total of 10,752
simulations. In contrast, the proposed MLP-based surrogate model was
trained using only 2112 simulations and subsequently employed to
generate high-resolution outputs across the entire parameter space. This
represents an approximate 80 % reduction in computational cost. This
substantial efficiency gain underscores the practical value of the MLP
model as a surrogate tool for predicting FWEC performance. It enables
rapid, high-resolution analysis across a broad spectrum of operating
conditions, making it well-suited for design optimization, control
strategy development, and operational studies.

A comparative analysis was performed to evaluate the accuracy of
the ML-TF method by comparing it against direct time-history simula-
tions, a conventional approach for assessing the performance of FWECs.
The direct method involves solving time-domain equations to determine
the device’s response to irregular waves. This process begins by gener-
ating water level variations based on the WES. After this, the equations
of motion for the MBFWEC are resolved. In this study, two distinct WES
types were considered: a single-peak WES (WPS #1) and a double-peak
WES (WPS #2), as illustrated in Fig. 15. A 3600-s time series of sea
surface elevation was generated for each WES to simulate the irregular
wave conditions. To maintain consistency across the simulations, the
random wave phase was seeded, allowing the same random phase to be
replicated in each case.

The MBFWEC configuration was simulated under these irregular
wave conditions using four different PTO damping values, 8, 12, 16, and
20 MNms/rad, at a time step of 0.005 s. The computational cost of these
direct simulations varied depending on the complexity of the WES, the
binning of the wave spectrum (where the wave energy spectrum is
divided into bins of equal energy), and the PTO damping values, which
influence the hydrodynamic behaviour of the WEC. Despite the vari-
ability in computational demands, each simulation required between 3
and 4.5 h, with more complex WES cases and higher PTO damping
values demanding more time. In contrast, the ML-TF method offers a
more computationally efficient alternative. Using this approach, the
TAP for the same scenarios was calculated following Eq. (26). This
process, depicted in Fig. 15, involves multiplying the WPS by the TF and
the effective length (lg5) of the MBFWEC. The ML-TF method signifi-
cantly reduces computational costs while still delivering accurate power
predictions, as it bypasses the need for time-consuming direct

70
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20
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0.280.29

Fig. 13. Predicted CWR matrix using MLP method for PTO damping of 8MNms/rad.
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80

Fig. 14. TFs derived from the CWR matrices predicted using the MLP method: (a) TFs corresponding to PTO damping values included in the training dataset, (b) TFs
for damping values that were not included in the training dataset but fall within the input PTO damping range, and (c) TFs for out-of-range PTO damping values.
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Fig. 15. The procedural framework for developing the TAP function for a MBFWEC. This process is based on integrating the WPS with the TF across various PTO

damping scenarios.

simulations.

Table 5 presents the calculated TAP values obtained through both
the direct time-history simulations and the ML-TF method. The results
demonstrate that the proposed ML-TF method delivers highly accurate
estimates of TAP across both single-peak and double-peak WPS.
Remarkably, the maximum deviation between the two methods is less
than 4 %, underscoring the precision and reliability of the ML-TF
approach. This minor deviation indicates that the ML-TF method not
only reduces the computational burden associated with direct time-
history simulations but also maintains a high level of accuracy.

To further evaluate the accuracy of the ML-TF method in predicting
the TAP for sea states with PTO damping values not included in the
initial training dataset, we extended the comparative analysis to

14

damping values of 26, 28, 30, and 32 MNms/rad. TFs for these damping
values, predicted by the MLP model, are presented in Fig. 14 (c).
Table 6 compares the TAP results obtained from direct time-history
simulations with those estimated by the ML-TF method. The
maximum observed error between the two approaches is less than 8 %,
demonstrating the robustness and adaptability of the ML-TF method,
even for damping values outside the original dataset range. As previ-
ously discussed, the MLP model’s prediction and, by extension, the ML-
TF method’s accuracy, exhibits low sensitivity to changes in PTO
damping (as indicated in Fig. 12). The results of this extended
comparative analysis support that observation. However, it is important
to note that while the ML-TF method remains highly accurate, the error
tends to increase slightly as the damping values deviate further from
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Table 5

Comparison of the TAP computed using the Direct Time-Domain and the ML-TF
methods for damping values that were not included in the training dataset but
fall within the input PTO damping range.

Model  WPS PTO Damping TAPTime TAPy.- Error
MNms History TF (%)
( rad )
1 WPS 8 395.7 411.7 4.0
#1
2 WPS 12 405.7 420.7 3.7
#1
3 WPS 16 403.1 410.3 1.8
#1
4 WPS 20 392.7 392.8 0.03
#1
5 WPS 8 29.3 28.5 2.8
#2
6 WPS 12 29.8 29.4 1.4
#2
7 WPS 16 29.9 29.3 2.2
#2
8 WPS 20 29.9 28.9 3.4
#2
Table 6

Comparison of the TAP computed using the Direct Time-Domain and the ML-TF
methods for out-of-range PTO damping values.

Model  WPS PTO Damping TAPTime TAPpy. Error
MNms History TF (%)
( rad )
1 WPS 26 373.0 369.0 1.1
#1
2 WPS 28 366.2 360.1 1.7
#1
3 WPS 30 359.5 351.2 2.3
#1
4 WPS 32 352.9 343.1 2.8
#1
5 WPS 26 29.7 28.3 4.6
#2
6 WPS 28 29.6 28.0 5.5
#2
7 WPS 30 29.5 27.5 6.7
#2
8 WPS 32 29.4 27.0 8.0
#2

those within the original training dataset. Despite this, the deviation
remains within acceptable bounds, further validating the ML-TF
approach’s capability to generalize well to out-of-range damping
values while maintaining efficient and precise power prediction for the
MBFWEC system.

3.4. Application of ML-TF method for a case study of Oman sea

The ML-TF method for estimating the TAP was applied to a real-
world case study using wave data from the Makran region, situated in
the northern part of the Oman Sea. This region’s wave data was sourced
from wave measurements conducted in 2016 by the Iranian Port and
Maritime Organization (PMO). Nortek Acoustic Wave and Current
(AWAQ) instruments were deployed at multiple stations along the
southern coastal area of Balochistan province to monitor wave condi-
tions. Specifically, data from seven stations (illustrated in Fig. 16) pro-
vided detailed insight into various sea states. For the purposes of this
case study, we focused on wave data from three key stations: Meydani,
Pozm, and Pasabandar. These locations were chosen because they offer
broad coverage of the Makran coastline. Detailed information on the
selected stations is provided in Table 7.

The AWAC instruments gathered sea surface elevation and wave
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particle velocity data (u, v) at intervals of 1024 s per hour. Nortek’s
Storm V1.14 software was then employed to process this data and derive
the WES S(f) for each observed sea state, which formed the foundation
for this study. The Oman Sea, as depicted in Fig. 16, is subject to two
distinct wave systems, one originating from the west and the other from
the south. These systems create complex wave conditions, making the
region an ideal location to evaluate the performance and robustness of
the ML-TF approach. Data collection in the Makran region began in
February 2016 and continued through November/December, allowing
the dataset to capture the region’s varying climatic conditions, which
are heavily influenced by the monsoon seasons [36].

The South-West (summer) monsoon, lasting from June to September,
is associated with the highest wave energy in the region, characterized
by strong wave activity and intense sea states. Conversely, the post-
monsoon period (October to January) and the pre-monsoon period
(February to May) are defined by calmer conditions and lower wave
energy. This temporal variation provided a comprehensive dataset to
evaluate the TAP predictions under a wide range of sea states using the
ML-TF method. The case study demonstrates the versatility and effec-
tiveness of the ML-TF method in real-world applications, showcasing its
ability to accurately estimate the TAP across varying climatic conditions
and wave energy spectra. By leveraging the MLP-predicted TFs and
wave data from the Oman Sea, the method proved highly capable of
capturing the dynamic behaviour of FWEC systems under realistic and
complex sea conditions. This underscores its potential for broader
application in coastal energy projects.

A total of 209 sea state samples were analysed to estimate the TAP of
the proposed MBFWEC across three locations: Meydani, Pozm, and
Pasabandar. The selected wave conditions encompassed a broad spec-
trum of spectral characteristics, including uni-modal, bi-modal, and
multi-modal sea states, corresponding to single-peak, double-peak, and
multi-peak WES profiles, respectively. Utilizing ten distinct TFs, each
corresponding to a specific PTO damping value, the ML-TF approach
was applied across all sea state samples to produce high-resolution TAP
predictions. This approach facilitated a detailed examination of the
power absorption performance of the MBFWEC under a wide range of
sea state complexities and PTO configurations, providing insights into its
operational robustness and adaptability across diverse marine
environments.

Fig. 17 presents the TAP results for all analysed sea states, organized
chronologically by date, across the full range of PTO damping levels.
This figure provides a comprehensive overview of the system’s perfor-
mance over time and across varying energy regimes. A clear seasonal
pattern is evident: TAP values are consistently higher during the South-
West monsoon season (June to September), with the most pronounced
increases observed at the Pasabandar station. This enhancement corre-
sponds to the seasonal arrival of long-period swell waves from the
Arabian Sea and Oman Sea, which significantly elevate the regional
wave energy potential. These swell waves, characterized by higher
group velocities (Cy), contribute to enhanced energy capture efficiency
by promoting stronger and more coherent wave-body interactions. In
contrast, the Meydani station, dominated by shorter-period, wind-
driven waves from the Persian Gulf, exhibits lower TAP values despite
experiencing similar or even higher significant wave heights. This
reduced performance stems from the lower C, associated with local
wind-generated waves, which carry less energy per unit wave height
compared to swell-dominated conditions. The Pozm station displays
intermediate behavior, with TAP values reflecting the combined influ-
ence of both swell- and wind-dominated sea states throughout the year.

Fig. 17 also highlights the system’s sensitivity to PTO damping. For
each sea state, the TAP curves exhibit distinct peaks, identifying the
optimal damping value for maximum energy absorption. Two primary
trends emerge from the analysis. First, during low-energy periods
(typically February—-May and October-January), the optimal TAP is
achieved at higher PTO damping values, approximately 24 MN m s/rad.
Second, during the South-West monsoon season, when sea states are
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Table 7
Summary of wave data measurement stations.
Station Name Depth Latitude Longitude Measurement
No. (m) (DMS) (DMS) period
1 Meydani 30 25° 16 59° 11" 45" Feb-Nov 2016
37"
2 Pozm 30 25° 13 60° 15' 02" Feb-Dec 2016
36"
3 Pasabandar 30 24° 56' 61° 18 74" Feb-Dec 2016
36"

more energetic, lower damping values near 10 MN m s/rad yield supe-
rior performance. These transitions are clearly reflected in the damping-
specific TAP profiles presented in the figure. The ability to accurately
identify and adapt to seasonal variations in optimal damping is essential
for maximizing energy capture and operational efficiency throughout
the year. This finding underscores the importance of adaptive PTO
control strategies in enhancing the long-term performance of wave en-
ergy converters across diverse sea states.

4. Conclusion

This study presents a novel ML-TF approach for accurately esti-
mating the TAP of FWECs under complex sea conditions. The proposed
methodology integrates physics-based numerical modelling with su-
pervised ML, enabling robust TAP predictions while achieving a sub-
stantial reduction in computational cost. This efficiency facilitates
extensive scenario modelling, detailed performance assessment, and
optimization of FWECs across diverse operational and environmental
conditions.

The proposed process begins with frequency-domain modelling
based on potential flow theory to extract hydrodynamic coefficients.
These are followed by time-domain simulations using WEC-Sim to
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Fig. 16. Location of wave data measurement stations along the Makran coast in the northern part of the Oman Sea.

capture the FWEC’s dynamic response under a range of regular wave
conditions. The resulting CWR matrices form the training dataset for ML
algorithms, including Random Forest (RF), Gradient Boosted Regression
Trees (GBRT), and Multi-Layer Perceptron (MLP). The optimized MLP
model generates high-resolution CWR windows across a range of PTO
damping values and frequencies. These outputs are used to construct
TFs, which enable efficient and accurate TAP estimations across arbi-
trary sea states by incorporating region-specific wave energy spectra
(WES).

Compared to conventional numerical simulation methods, the
ML-TF framework achieves an approximate 80 % reduction in compu-
tational cost while maintaining high predictive accuracy. Validation
against direct time-history simulations under both single-peak and
double-peak sea states yielded maximum errors of less than 4 % for in-
range PTO damping values, and under 8 % for extrapolated values.
These results confirm the model’s robustness and generalizability, even
when predicting beyond the original training set. Key advantages of the
ML-TF approach include its hybrid nature, which retains the physical
interpretability of TFs while leveraging the predictive capabilities of ML.
Moreover, it enables the generation of high-resolution outputs from
relatively sparse datasets, making it an efficient and practical surrogate
model for FWEC performance prediction.

Application of the model to the northern Oman Sea, utilizing 209
observed sea states, revealed important regional performance insights.
Ten distinct TFs were developed for various PTO damping levels to es-
timate TAP and identify optimal damping strategies. Among the sites
studied, Pasabandar exhibited the highest power potential, particularly
during the summer monsoon when long-period swell waves dominate.
In contrast, Meydani, predominantly influenced by shorter-period,
wind-generated waves, demonstrated lower energy availability, while
Pozm displayed intermediate performance reflecting a blend of wave
climates. Analysis further confirmed that swell-dominated sea states
yield higher energy capture efficiency, whereas low-energy conditions
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Fig. 17. TAP of the proposed MBFWEC across different sea states, categorized by occurrence date at (a) Meydani, (b) Pozm, and (c) Pasabandar stations.
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benefit from higher PTO damping values, while high-energy conditions
favour lower damping.

Noted limitations of the proposed framework include its dependence
on the quality and diversity of the training dataset, reduced accuracy
when extrapolating far beyond the trained PTO damping or wave fre-
quency ranges, and the assumption of unidirectional sea states in its
current implementation. Future research will aim to extend the ML-TF
approach to incorporate wave directionality, a factor known to signifi-
cantly influence TAP, as demonstrated in prior studies. While modelling
broadband, directionally distributed irregular waves poses substantial
computational challenges, integrating ML into this context offers sub-
stantial potential to enhance efficiency. Expanding the framework to
account for directional spreading will allow for a more comprehensive
and realistic evaluation of FWEC performance under naturally occurring
sea conditions.

CRediT authorship contribution statement
Mohammadreza Torabbeigi: Writing — original draft, Visualiza-

tion, Validation, Software, Methodology, Investigation, Formal analysis,
Data curation, Conceptualization. Mohammad Adibzade: Writing —

Nomenclature

Renewable Energy 259 (2026) 125011

original draft, Visualization, Software, Methodology, Formal analysis,
Data curation. Arash Baharifar: Writing — original draft, Visualization,
Methodology, Data curation. Soroush Abolfathi: Writing — review &
editing, Writing — original draft, Visualization, Validation, Supervision,
Resources, Project administration, Methodology, Investigation, Funding
acquisition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

The authors would like to thank Dr Hassan Akbari for their support
and advise throughout this study. SA acknowledges resources and sup-
port from the Scientific Computing Research Technology Platform
(SCRTP) at the University of Warwick and the Natural Environment
Research Council (NE/S007350/1).

CWR
DOF
FWEC
GBRT
MAE
MBFWEC
MLP

ML

Capture Width Ratio

Degree of Freedom

Floating Wave Energy Converter
Gradient Boosted Regression Tree
Mean Absolute Error

Multi Body Floating Wave Energy Converter
Multi-Layer Perceptron

Machine Learning

Power Take-Off

Coefficient of Determination
Relative Absolute Error

Random Forest

Root Mean Square Error

Total Absorbed Power

Transfer Function

Wave Energy Converter

Wave Energy Spectrum

Wave Power Spectrum

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.renene.2025.125011.

References
[1] V. Manimegalai, V. Rukkumani, A. Gayathri, P. Pandiyan, V. Mohanapriya, An

overview of global renewable energy resources, Renew. Energy Al Sustain. Dev. 2

(2.4) (2023) 2-5.

H.H.H. Aly, A novel deep learning intelligent clustered hybrid models for wind

speed and power forecasting, Energy 213 (2020) 118773.

A. Azam, et al., Wave energy evolution: knowledge structure, advancements,

challenges and future opportunities, Renew. Sustain. Energy Rev. 205 (2024)

114880, https://doi.org/10.1016/j.rser.2024.114880.

M. O’connor, T. Lewis, G. Dalton, Techno-economic performance of the Pelamis P1

and Wavestar at different ratings and various locations in Europe, Renew. Energy

50 (2013) 889-900.

A. De Andres, J. Maillet, J. Hals Todalshaug, P. Moller, D. Bould, H. Jeffrey,

Techno-economic related metrics for a wave energy converters feasibility

assessment, Sustainability 8 (11) (2016) 1109.

M. Adibzade, H. Akbari, Fully spectral approach to evaluate the performance of

floating wave energy converters in directional complex sea states, Ocean Eng. 306

(2024) 117999, https://doi.org/10.1016/j.oceaneng.2024.117999.

J. Tan, H. Polinder, A.J. Laguna, P. Wellens, S.A. Miedema, The influence of sizing

of wave energy converters on the techno-economic performance, J. Mar. Sci. Eng. 9

(1) (2021) 52.

[2]

[3]

[4]

[5]

[6]

[7]

18

[8] S. Chandrasekaran, V.V.S. Sricharan, Numerical study of bean-float wave energy
converter with float number parametrization using WEC-Sim in regular waves with
the Levelized Cost of Electricity assessment for Indian sea states, Ocean Eng. 237
(2021) 109591.

B. Tagliafierro, et al., A numerical study of a taut-moored point-absorber wave
energy converter with a linear power take-off system under extreme wave
conditions, Appl. Energy 311 (2022) 118629.

J. Tan, H. Polinder, A.J. Laguna, S. Miedema, The application of the spectral
domain modeling to the power take-off sizing of heaving wave energy converters,
Appl. Ocean Res. 122 (2022) 103110.

R. Suchithra, K. Ezhilsabareesh, A. Samad, Development of a reduced order wave
to wire model of an OWC wave energy converter for control system analysis, Ocean
Eng. 172 (2019) 614-628.

Y. Wei, A. Bechlenberg, M. van Rooij, B. Jayawardhana, A.I. Vakis, Modelling of a
wave energy converter array with a nonlinear power take-off system in the
frequency domain, Appl. Ocean Res. 90 (2019) 101824.

H. Zhou, Y. Qiu, Y. Feng, J. Liu, Power prediction of wind turbine in the wake using
hybrid physical process and machine learning models, Renew. Energy 198 (2022)
568-586.

C. Ren, J. Tan, Y. Xing, ALK-PE: an efficient active learning Kriging approach for
wave energy converter power matrix estimation, Ocean Eng. 286 (2023) 115566.
M. Adibzade, H. Akbari, Spectral approach to evaluate multi-body floating wave
energy converters in complex sea states, Ocean Eng. 286 (2023) 115567.

[91

[10]

[11]

[12]

[13]

[14]

[15]


https://doi.org/10.1016/j.renene.2025.125011
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref1
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref1
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref1
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref2
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref2
https://doi.org/10.1016/j.rser.2024.114880
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref4
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref4
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref4
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref5
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref5
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref5
https://doi.org/10.1016/j.oceaneng.2024.117999
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref7
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref7
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref7
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref8
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref8
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref8
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref8
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref9
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref9
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref9
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref10
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref10
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref10
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref11
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref11
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref11
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref12
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref12
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref12
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref13
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref13
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref13
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref14
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref14
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref15
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref15

M. Torabbeigi et al.

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

D. Ogden, et al., Review of WEC-Sim development and applications, Int. Mar.
Energy J. 5 (NREL/JA-5700-83366) (2022).

W.E. Cummins, others, The Impulse Response Function and Ship Motions, 1962.
T. Jiang, J.L. Gradus, A.J. Rosellini, Supervised machine learning: a brief primer,
Behav. Ther. 51 (5) (2020) 675-687.

K. Khosravi, A.A. Farooque, M. Karbasi, et al., Enhanced water quality prediction
model using advanced hybridized resampling alternating tree-based and deep
learning algorithms, Environ. Sci. Pollut. Res. 32 (2025) 6405-6424. https://doi.
org/10.1007/s11356-025-36062-7.

P. Kent, S. Abolfathi, H. Al Ali, T. Sedighi, O. Chatrabgoun, A. Daneshkhah,
Resilient coastal protection infrastructures: probabilistic sensitivity analysis of
wave overtopping using Gaussian process surrogate models, Sustainability 16 (20)
(2024) 9110. https://doi.org/10.3390/5u16209110.

M.A. Habib, J.J. O’Sullivan, S. Abolfathi, M. Salauddin, Enhanced wave
overtopping simulation at vertical breakwaters using machine learning algorithms,
PLoS One 18 (8) (2023) e0289318.

M. Riazi, S.M. Bateni, C. Jun, A.A. Farooque, K. Khosravi, S. Abolfathi, Enhancing
rainfall-runoff simulation in data-poor watersheds: integrating remote sensing and
hybrid decomposition for hydrologic modelling, Water Res. Manag. (2025) 1-26.
M.A. Habib, S. Abolfathi, J.J. O’Sullivan, P.R. Brooks, M. Salauddin, Advancing
wave overtopping prediction at eco-engineered Seawalls: Integrating laboratory
experiments and machine learning, Ocean Eng 340 (2025) 122284.

B.-L. Dang, H. Nguyen-Xuan, M. Abdel Wahab, An effective approach for VARANS-
VOF modelling interactions of wave and perforated breakwater using gradient
boosting decision tree algorithm, Ocean Eng. 268 (2023) 113398, https://doi.org/
10.1016/j.oceaneng.2022.113398.

19

[25]

[26]

[27]
[28]

[29]

[30]

[31]
[32]
[33]
[34]
[35]

[36]

Renewable Energy 259 (2026) 125011

C. Chen, W. He, H. Zhou, Y. Xue, M. Zhu, A comparative study among machine
learning and numerical models for simulating groundwater dynamics in the Heihe
River Basin, northwestern China, Sci. Rep. 10 (1) (2020) 3904.

K. Khosravi, N. Attar, S.M. Bateni, C. Jun, D. Kim, M.J. Safari, S. Heddam,

A. Farooque, S. Abolfathi, Daily river flow simulation using ensemble disjoint
aggregating M5-Prime model, Heliyon 10 (20) (2024).

L. Breiman, Random forests, Mach. Learn. 45 (2001) 5-32.

J.H. Friedman, Greedy function approximation: a gradient boosting machine, Ann.
Stat. (2001) 1189-1232.

D. Sarkar, R. Bali, T. Ghosh, Hands-On Transfer Learning with Python: Implement
Advanced Deep Learning and Neural Network Models Using Tensorflow and Keras,
Packt Publishing Ltd, 2018.

J.V. Ringwood, G. Bacelli, F. Fusco, Energy-maximizing control of wave-energy
converters: the development of control system technology to optimize their
operation, IEEE Control Syst. Mag. 34 (5) (2014) 30-55.

J. Falnes, Wave-Energy Conversion Through Relative Motion Between Two single-
mode Oscillating Bodies, 1999.

M.J. French, R.H. Bracewell, PS Frog a point-absorber Wave Energy Converter
Working in a pitch/surge Mode, 1987.

S. Chandrasekaran, V.V.S. Sricharan, Numerical analysis of a new multi-body
floating wave energy converter with a linear power take-off system, Renew. Energy
159 (2020) 250-271.

ANSYS Inc, ANSYS AQWA User’s Manual, 2023. Canonsburg, PA.

K. Budar, J. Falnes, A resonant point absorber of ocean-wave power, Nature 256
(5517) (1975) 478-479.

M. Adibzade, M. Shafieefar, H. Akbari, R. Panahi, Multi-peaked directional wave
spectra based on extensive field measurement data in the Gulf of Oman, Ocean Eng.
230 (2021) 109057.


http://refhub.elsevier.com/S0960-1481(25)02675-8/sref16
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref16
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref17
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref18
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref18
https://doi.org/10.1007/s11356-025-36062-7
https://doi.org/10.1007/s11356-025-36062-7
https://doi.org/10.3390/su16209110
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref19
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref19
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref19
http://refhub.elsevier.com/S0960-1481(25)02675-8/optK3kD8hMCXt
http://refhub.elsevier.com/S0960-1481(25)02675-8/optK3kD8hMCXt
http://refhub.elsevier.com/S0960-1481(25)02675-8/optK3kD8hMCXt
http://refhub.elsevier.com/S0960-1481(25)02675-8/optnCjEqTuGCA
http://refhub.elsevier.com/S0960-1481(25)02675-8/optnCjEqTuGCA
http://refhub.elsevier.com/S0960-1481(25)02675-8/optnCjEqTuGCA
https://doi.org/10.1016/j.oceaneng.2022.113398
https://doi.org/10.1016/j.oceaneng.2022.113398
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref21
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref21
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref21
http://refhub.elsevier.com/S0960-1481(25)02675-8/optIPO5W5lDWo
http://refhub.elsevier.com/S0960-1481(25)02675-8/optIPO5W5lDWo
http://refhub.elsevier.com/S0960-1481(25)02675-8/optIPO5W5lDWo
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref22
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref23
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref23
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref24
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref24
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref24
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref25
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref25
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref25
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref26
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref26
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref27
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref27
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref28
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref28
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref28
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref29
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref30
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref30
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref31
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref31
http://refhub.elsevier.com/S0960-1481(25)02675-8/sref31

	A novel machine learning-transfer function approach for estimating power absorption in floating wave energy converters
	1 Introduction
	2 Methodology
	2.1 ML-TF modelling framework
	2.2 Frequency-domain analysis
	2.3 Time-domain analysis
	2.4 Supervised machine learning methods
	2.4.1 Random Forest (RF)
	2.4.2 Gradient Boosted Regression Trees (GBRT)
	2.4.3 Multi-Layer Perceptron (MLP)
	2.4.4 Grid search cross validation
	2.4.5 Evaluation metrics


	3 Results and discussion
	3.1 Numerical modeling and dataset
	3.2 Leveraging machine learning models
	3.3 Development of machine learning-transfer function (ML-TF) method
	3.4 Application of ML-TF method for a case study of Oman sea

	4 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Nomenclature
	Appendix A Supplementary data
	References


