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A B S T R A C T

Wave energy offers immense potential as a renewable energy source. However, accurately estimating the Total 
Absorbed Power (TAP) at various sites remains a significant challenge, requiring resource-intensive physical 
modelling and numerical simulations to capture the complex hydrodynamic behaviour of Wave Energy Con
verters (WECs) across different designs and wave conditions. To address this, we propose a novel, computa
tionally efficient Machine Learning-Transfer Function (ML-TF) approach to estimate the TAP of Multi-Body 
Floating WECs (MBFWEC). The methodology integrates frequency-domain and time-domain analyses to generate 
a sparse dataset of MBFWEC responses under regular waves, which is used to train Machine Learning (ML) 
models. Wave height, wave period, and Power Take-Off (PTO) damping are the key inputs for predicting the 
Capture Width Ratio (CWR). Among the models tested, Multi-Layer Perceptron (MLP) model performed best (R2 

= 0.995). This model was then used to derive a high-resolution CWR dataset, with error margins within ±6.11 
%, proving its reliability for out-of-range CWR predictions. To extend the model’s applicability to irregular wave 
conditions, a Transfer Function (TF) was developed from the CWR dataset across a desired frequency range. The 
TAP was subsequently estimated based on the TF, site-specific wave power spectra, and the converter’s effective 
length. Validation using time-history simulations in uni-modal and bi-modal sea states showed excellent accu
racy (4 % maximum error), while achieving an 80 % reduction in computational cost. The methodology was 
further applied in a real-world case study using wave data from three locations in the northern Oman Sea, to 
evaluate the region’s year-round power potential.

1. Introduction

Wave energy has gained significant attention as a renewable energy 
source due to its high-power potential compared to other renewable 
options such as wind, solar, and tidal energy. The global demand for 
sustainable energy solutions further highlights the importance of marine 
renewables. Projections suggest that by 2025, the share of wave energy 
in the global energy market will surge to $107 million, marking a sub
stantial increase from its $47 million value in 2023 [1]. However, 
capturing and predicting wave energy remains a major challenge, 
especially for large-scale commercial wave farm applications [2]. 
Additionally, managing and storing wave energy is complex due to the 
irregular nature of wave climates in marine environments. Previous 
studies have emphasized the urgent need for a deeper understanding of 

wave energy dynamics and the enhancement of wave energy applica
tions [3].

The design and optimization of Wave Energy Converters (WECs) are 
intrinsically linked to the specific characteristics of their deployment 
sites [4,5]. Since the efficiency of WEC energy capture mechanisms 
depends on sea state conditions, such as wave heights and periods, 
variations in these conditions can significantly influence WEC perfor
mance. Typically, statistical representations of sea states are depicted 
using scatter diagrams, with numerous cells representing the probability 
of each sea state’s occurrence based on combinations of wave height and 
period. Evaluating WEC suitability across diverse marine sites requires 
assessing power performance against varying wave parameters. This 
assessment is then used to generate either a power matrix or a Capture 
Width Ratio (CWR) matrix, which describe the device’s power 
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production or efficiency across different wave conditions. Comprehen
sive evaluations of WEC performance often require considerable time 
and resources, as the device must be adapted to accommodate the 
variability of wave conditions [6]. Furthermore, the power absorption 
efficiency of WECs is highly dependent on the performance of their 
Power Take-Off (PTO) damping systems, which determine how effec
tively the device converts wave motion into useable energy [7]. To fully 
harness the potential of WECs, it is essential to optimize PTO damping 
for each sea state condition. The large number of possible sea states 
necessitates generating a power matrix with high resolution, resulting in 
significant computational costs. Thus, developing an efficient method
ology for generating the power matrix of WECs is crucial for advancing 
their design and optimization.

Numerical simulation techniques, such as computational fluid dy
namics (CFD), frequency-domain, and time-domain modeling, can be 
employed to evaluate WEC performance under specific sea states and 
device configurations. In CFD simulations, the fundamental fluid dy
namics equations, such as the Navier–Stokes equations, are solved 
numerically using either Lagrangian or Eulerian methods [8,9]. 
Although CFD modeling provides high-fidelity results, it is computa
tionally expensive, limiting its use primarily to assessing WEC surviv
ability rather than power output. Alternatively, frequency-domain and 
time-domain approaches, both rooted in potential flow theory, are 
widely utilized for assessing the power performance of WECs. 
Frequency-domain modeling efficiently evaluates frequency-dependent 
responses under linear conditions, while time-domain modeling cap
tures nonlinear force components, providing more accurate power es
timations. However, time-domain simulations require solving partial 
differential equations at each time step, leading to higher computational 
costs compared to frequency-domain approaches [10]. Although several 
methods have been proposed to address accuracy and computational 
cost issues [11,12], enhanced numerical approaches remain costly when 
conducting comprehensive assessments of WEC potential across various 
sea states and device configurations.

Over the past two decades, the development of various Machine 
Learning (ML) techniques and tools has led to the creation of efficient 
surrogate models that reduce computational costs. Recently, ML 
methods have gained significant traction in power prediction tasks. For 
instance, Zhou et al. [13] introduced Hybrid Physical-Machine Learning 
(HPML) models, which combine physical modeling with ML techniques 
to address power prediction challenges for wind turbines affected by 
wake effects in wind farms. Ren et al. [14] proposed an active learning 
Kriging approach for estimating spherical heaving point absorber (PA) 
power matrices, demonstrating that the method requires less than 
one-fifth of the simulations or experiments needed to construct the 
power matrix of WECs across all sea states, achieving a mean absolute 
percentage error of approximately 1 %.

Adibzade and Akbari [15] introduced a novel approach for evalu
ating floating WECs in complex sea states. Their study developed a 
Transfer Function (TF) across a range of wave frequencies to assess the 
power absorption capacities of FWECs. By multiplying the developed TF 
by the region-specific Mean Wave Power Spectrum (MWPS), the total 
extracted power for each proposed configuration could be determined. 
Since the TF is independent of sea states and relatively straightforward 
to apply, it provides an efficient means of evaluating or tuning FWEC 
devices for various regions, especially those with complex sea 
conditions.

However, a critical limitation of the TF approach lies in its depen
dence on a large number of high-fidelity numerical simulations to ach
ieve sufficient frequency resolution across a wide range of PTO damping 
values. To address this challenge, we propose a hybrid framework that 
combines the physical interpretability of the TF method with the 
generalization capabilities of supervised ML models. Instead of replacing 
the TF with a purely data-driven model, our method enhances the TF 
resolution by training ML algorithms on a sparse dataset of numerical 
simulations. This integration allows for efficient estimation of power 

absorption over broad frequency and damping ranges with significantly 
reduced computational cost. This study utilizes response data from 
frequency-domain and time-domain modelling of a Multi-Body Floating 
WEC (MBFWEC). The data is then employed in supervised ML tech
niques, including Random Forest (RF), Gradient Boosted Regression 
Trees (GBRT), and Multi-Layer Perceptron (MLP), to obtain a CWR 
matrix. Frequency-domain modelling was conducted using ANSYS 
AQWA, while time-domain modelling utilized WEC-Sim, incorporating 
its batch run capability and the MATLAB Parallel Computing Toolbox 
(PCT). The dataset comprises the device’s responses to a predefined set 
of regular waves with a limited range of heights and periods. Subse
quently, the CWR matrix was calculated, and the most effective ML 
method was selected to develop the TF with the desired frequency res
olution and PTO damping. The efficiency and accuracy of the proposed 
ML-TF model were validated by comparing its results with those ob
tained from direct simulations, ensuring reliable the Total Absorbed 
Power (TAP) estimations for the MBFWEC under real-life conditions. 
The total power absorption was then estimated using various sea states 
recorded in 2016 in the northern part of the Oman Sea.

2. Methodology

2.1. ML-TF modelling framework

The Wave Energy Spectrum (WES) serves as a fundamental bench
mark for characterizing sea conditions, representing the distribution of 
wave energy across different frequencies within a specific geographical 
area. By integrating the region-specific WES with the device-specific TF, 
the TAP of a device under various sea states can be determined [15]. 
This process involves calculating the wave power spectrum from the 
WES over the same frequency range as the TF. However, obtaining a 
high-resolution TF typically requires extensive computational effort. 
Therefore, employing a data-driven approach can significantly alleviate 
this burden. In this study, we propose a novel Machine Learning–
Transfer Function (ML-TF) framework, which consists of four main 
stages, as illustrated in Fig. 1.

In the first stage (Step 1 in Fig. 1), a dataset is generated through 
numerical modeling to serve as input for the ML models in subsequent 
steps. For this purpose, the hydrodynamic performance of the proposed 
Multi-Body Floating Wave Energy Converter (MBFWEC) is evaluated 
using potential flow theory through both frequency-domain and time- 
domain modeling techniques. Frequency-domain analysis is conducted 
using the ANSYS AQWA module, which extracts key hydrodynamic 
coefficients such as excitation force, added mass, and radiation damp
ing. These coefficients are then used to perform time-domain simula
tions that capture the MBFWEC’s dynamic responses, including 
nonlinear forces, over a specified time period. The time-domain 
modeling is executed using WEC-Sim (Wave Energy Converter Simu
lator), an open-source software integrated with MATLAB’s Parallel 
Computing Toolbox (PCT). This allows for evaluating the MBFWEC’s 
power generation capabilities under a predefined set of regular waves 
with varying heights and periods (frequencies), creating a power win
dow for each PTO damping setting. From these power windows, effi
ciency metrics such as the CWR are calculated and serve as inputs for the 
subsequent stages.

In the second stage (Step 2 in Fig. 1), supervised ML techniques, 
including Random Forest (RF), Gradient Boosted Regression Trees 
(GBRT), and Multi-Layer Perceptron (MLP), are employed to develop the 
most effective data-driven model. These ML models use wave height, 
frequency, and PTO damping as input features, with the CWR values as 
the target variable. Once the ML models are optimized, the best- 
performing model is selected to enhance the resolution of the CWR 
window for the desired frequency and PTO damping levels. Through this 
approach, a detailed assessment of MBFWEC efficiency across various 
wave conditions is achieved, reducing the computational cost associated 
with direct numerical simulations. The third stage involves the 
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development of TFs using the CWR windows obtained from the opti
mized ML model for the targeted frequencies and PTO damping settings. 
These TFs (discussed in Section 5.2) provide a more accurate and effi
cient means of evaluating the power absorption capabilities of the 
MBFWEC under diverse sea conditions. Finally, the fourth stage vali
dates the efficiency and accuracy of the proposed ML-TF model by 
comparing its results with those obtained from direct numerical simu
lations. The TAP of the MBFWEC is calculated for region-specific single- 
peak and double-peak Wave Energy Spectra, demonstrating the model’s 
robustness in capturing device performance under complex sea states.

2.2. Frequency-domain analysis

The performance of a FWEC is influenced by a multitude of factors, 
including its geometry, dimensions, and water depth, all of which 
directly affect its hydrodynamic coefficients. These coefficients encom
pass excitation force, added mass, and radiation damping. The excita
tion force coefficient determines the force generated by incident waves, 
crucially influencing the FWEC’s potential power output. Added mass 
refers to the effective increase in weight of the floating member due to 
the surrounding moving fluid. It directly affects the device’s response to 
wave forces and its natural frequency of oscillation. Radiation damping 
is the damping force resulting from waves generated by the FWEC itself 
as it oscillates through the fluid. Radiation damping influences the 
FWEC’s motion, and the energy loss associated with the generated 
waves. Together, these hydrodynamic coefficients encapsulate the 
complex interactions among the device’s components, significantly 
impacting their motion and overall efficiency. The total response of each 
component is determined by three primary factors: individual motion, 
mutual interaction between the central body (CB) and the floats, and the 
interference effects among floats in active degrees of freedom (DOFs).

The equation of motion of a floating body in frequency-domain, 

idealizing it for a single active DOF is expressed as follows: 

− ω2mz(ω) = Fhd(ω) + Fhs(ω) + Fpto(ω) + Fm(ω) (1) 

where z is a complex amplitude of the position, and m is the mass of the 
body. Hydrodynamic force Fhd is defined as: 

Fhd(ω)= Fex(ω) + Frd(ω) (2) 

where Fex and Frd are excitation and radiation forces, respectively. Fex is 
the sum of Froude-Krylov and diffraction forces. The radiation force is 
given by: 

Frd(ω)= − iω C(ω)z(ω) + ω2Am(ω)z(ω) (3) 

where C(ω) is the damping coefficient and Am(ω) represents the added 
mass. The hydrostatic force Fhs denotes the restoring force in the form of 
buoyancy (or stiffness) of the system and is given as Eq. (4): 

Fhs(ω)= − ρgAwz(ω) (4) 

where the hydrostatic force Fhs is a function of displacement z(ω), g 
denotes gravity, ρ is the density of water, and Aw is water plane (or wet 
projected) area. The damping force induced by the PTO system which 
enables the device to extract energy, as a function of float’s velocity ż(ω)

and damping coefficient Cpto in the active DOF, is given by: 

Fpto(ω)= − iω Cptoż(ω) (5) 

The forces generated due to the presence of mooring cables are 
computed as an additional linear stiffness coefficient K defined as: 

Fm(ω)= − K z(ω) (6) 

Fig. 1. Flowchart of the methodological approach developed in this study to determine the TAP using the ML-TF method.
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2.3. Time-domain analysis

To evaluate the time-domain responses of the MBFWEC system, we 
employed WEC-Sim—an open-source and extensively validated tool 
designed for the modeling of devices with hydrodynamic bodies, joints, 
constraints, Power Take-Off (PTO) systems, and mooring components. 
The WEC-Sim model used in this study was implemented in MATLAB/ 
SIMULINK, leveraging the capabilities of the Simscape Multibody dy
namics solver. Hydrodynamic data for the MBFWEC, which includes 
added mass, radiation damping, and wave excitation coefficients, were 
obtained from ANSYS AQWA using the Boundary Element Method 
(BEM). The BEM-derived hydrodynamic coefficients provide the de
vice’s response to incident waves for a predefined set of wave fre
quencies. Subsequently, this data is integrated into WEC-Sim to conduct 
time-domain simulations that account for the coupling of FWECs with 
PTOs and interactions with external bodies and forces [16]. 
Time-domain simulations are carried out by solving the governing 
equations of motion for the FWEC with six Degrees of Freedom (DOFs). 
These equations are formulated based on the methodology developed by 
Cummins et al. [17] for linear time-domain analysis and are expressed 
as: 

(M+A∞)Z̈(t)+KZ(t)+
∫t

− ∞

Cr(t − τ)Ż(τ)dτ+CrotΔθ̇(t)=
∫t

− ∞

η(τ)Fex(t − τ)dτ

+Fm

(7) 

where M and A∞ represent the total dry mass and added mass matrix at 
infinite frequency, respectively. K denotes the hydrostatic stiffness ma
trix at still water level, Ż and Z̈ represent the time-dependent velocity 
and acceleration vectors of bodies, respectively. The state space time- 
invariant output matrix (Cr) provides the total memory effect of the 
radiation force, with τ denoting the time shift of convolution terms 
(radiation and excitation force). Crot stands for rotational damping co
efficient [Nms/rad] and Δθ̇ indicates the relative pitch velocity between 
CB and the float. Fex denotes the wave excitation by impulse response 
function (IRF), η represents the free surface elevation, and Fm is the 
mooring force vector. This comprehensive formulation accounts for the 
intricate interactions between the MBFWEC and its surrounding marine 
environment, enabling a robust prediction of the system’s dynamic 
response under a wide array of wave conditions. Such detailed modeling 
is essential for optimizing the performance of the MBFWEC and assess
ing its stability and energy capture efficiency under real-world sea 
states.

2.4. Supervised machine learning methods

This study implements three advanced supervised ML techniques, 
including Random Forest (RF), Gradient Boosted Regression Trees 
(GBRT), and Multi-layer Perceptron (MLP), to construct data-driven 
models for predicting CWR. The primary advantage of supervised 
learning is its ability to deliver highly accurate predictions on novel and 
unseen data, leveraging prior knowledge of labeled datasets [18–20]. 
The selection of these algorithms is based on their distinct capabilities in 
tackling various regression challenges and their proven success in prior 
research within the field. RF is widely recognized for its robustness and 
capacity to process large, high-dimensional datasets. By generating 
numerous decision trees in parallel and combining their results, RF 
effectively captures complex feature interactions and mitigates over
fitting, making it highly reliable in diverse data environments [21]. In 
contrast, GBRT employs a sequential ensemble approach, where each 
tree is designed to correct the prediction errors of the preceding trees 
[22,23]. This iterative learning process allows GBRT to identify and 
adapt to subtle patterns in the data, thus enhancing predictive accuracy. 
As a result, GBRT excels in applications where the data structure is 

intricate, and the relationships between variables are less straightfor
ward [24]. MLP, a neural network-based approach, is particularly suited 
for modeling non-linear relationships due to its complex architecture, 
which comprises multiple interconnected layers of neurons. This deep 
learning structure enables MLP to uncover intricate patterns and in
teractions within the data that might be overlooked by traditional 
tree-based models [25]. Moreover, MLP’s flexibility in adjusting its 
structure (e.g., number of layers and neurons per layer) makes it 
adaptable for a wide range of hydrodynamic and ocean engineering 
problems. A comprehensive description of each ML model, including 
error analysis and feature importance, is presented in the following.

2.4.1. Random Forest (RF)
RF is an advanced ensemble ML algorithm designed to enhance 

predictive performance through the integration of multiple decision 
trees. RF leverages the principles of bagging (bootstrap aggregation) and 
the random subspace method to construct a robust predictive model 
[26]. During the training phase, the algorithm builds multiple decision 
trees, each using a randomly selected subset of the training data and 
features. The final prediction is obtained by averaging the outputs of 
these individual trees, thereby improving the model’s overall accuracy 
and robustness [27]. The primary strength of RF lies in its ability to 
handle high-dimensional datasets and its intrinsic capability to reduce 
overfitting, which is a common limitation of single decision trees. By 
combining the predictions from multiple trees, RF reduces variance and 
increases stability, making it well-suited for diverse and complex data 
scenarios. This ensemble approach also enables RF to effectively manage 
noisy data and intricate interactions between features, rendering it a 
versatile tool for applications requiring high predictive accuracy.

In practice, the RF model development process involves several 
iterative steps to ensure optimal performance, as illustrated in Fig. 2 (a). 
First, bootstrap samples are generated from the original dataset, and 
individual decision trees are trained on these samples. During training, 
various metrics are used to evaluate model accuracy and effectiveness. If 
the model’s performance is unsatisfactory, hyperparameters such as the 
number of trees, maximum tree depth, or feature selection criteria are 
adjusted, and the process is repeated. This iterative refinement con
tinues until the model achieves the desired balance between bias and 
variance, resulting in a precise and reliable prediction model. Further 
details on RF methodology and its foundational concepts can be found in 
Ref. [27].

2.4.2. Gradient Boosted Regression Trees (GBRT)
Gradient Boosted Regression Trees (GBRT) is a powerful ML algo

rithm that builds upon the decision tree framework, initially introduced 
by Friedman [28]. The core principle behind GBRT is the concept of 
gradient boosting, where a series of simple models, referred to as "weak 
learners," are combined to create a strong predictive model. The algo
rithm starts by constructing a base model where all data points are 
assigned equal weights. After evaluating this initial model, GBRT iter
atively adjusts by increasing the weights for instances that are mis
classified while decreasing the weights for correctly classified instances. 
This adaptive weighting mechanism allows the model to focus more on 
the difficult-to-predict data points, enhancing its overall predictive 
accuracy.

The iterative process of gradient boosting in GBRT is executed in a 
stage-wise manner, refining the model at each step by sequentially 
adding regression trees to minimize residual errors. The update of the 
model at each stage m can be expressed as: 

Fm(x)= Fm− 1(x) + hm(x) (8) 

where hm(x) represents the basic function at stage m, often a small 
regression tree of fixed size. Thus, the GBRT model is constructed by 
adding these weak learners sequentially to the existing ensemble. Dur
ing each iteration m, a new tree hm(x) is fitted to the residuals from the 
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previous model, mathematically described as: 

hm(x)= y − Fm− 1(x) (9) 

Here, y is the actual response, and Fm− 1(x) represents the predictions 
made by the previous iteration of the model. By focusing on these re
siduals, the algorithm systematically corrects the errors from earlier 
stages, thereby enhancing model accuracy over time. GBRT’s ability to 
build models that learn complex patterns and relationships in the data 
makes it particularly effective for regression tasks in hydrodynamics and 
other engineering applications. Further theoretical insights and prac
tical considerations regarding GBRT can be found in Friedman’s seminal 
work [28].

2.4.3. Multi-Layer Perceptron (MLP)
The Multi-Layer Perceptron (MLP), a widely used variant of feed- 

forward neural networks, is structured with three primary layers: 
input, hidden, and output (Fig. 2 (b)). The fundamental building blocks 
of an MLP include interconnected neurons, biases, and weights that 
dictate the strength of the connections between neurons. In an MLP, 
each connection between nodes is associated with a weight, while each 
node, or neuron, has a designated bias. The learning process revolves 
around optimizing these weights and biases through training, typically 
utilizing algorithms like gradient descent. By iteratively refining these 
parameters, the MLP minimizes prediction errors and achieves optimal 
performance.

A distinctive feature of MLPs is the incorporation of activation 
functions at each node, which introduces non-linearity to the network. 
This non-linearity is crucial, as it enables the MLP to capture and model 
intricate patterns within the input data, which would otherwise be un
attainable using purely linear models. The mathematical representation 
of an MLP Regressor (MLPR) is given by Ref. [29]: 

fMLPR(x)= cr +
∑

q
uqraq(x) (10) 

where cr represents the bias associated with the rth output neuron, uqr 

signifies the weight connecting the qth neuron in the hidden layer to the 
rth neuron in the output layer. The activation function of the hidden 
neuron, aq(x), is parameterized in terms of F as follows: 

aq(x)= F

(

dq +
∑

p
vpq.xp

)

(11) 

where dq stands for the bias of the qth hidden neuron, xp is the input 
parameter, and vpq denotes the weight linking the p th neuron in the 
input layer to the qth neuron in the hidden layer. Through the use of 
these interconnected layers and non-linear activation functions, MLPs 

are capable of modeling complex relationships in data, making them 
highly effective for regression and classification tasks. Their adaptability 
and capacity for learning complex mappings have been extensively 
applied to diverse engineering problems, particularly where traditional 
methods struggle to capture the underlying relationships in data [29].

2.4.4. Grid search cross validation
In this study, Grid Search Cross-Validation (GSCV) is employed to 

optimize the hyperparameters of the ML models and ensure reliable and 
consistent predictions of the CWR values. The GSCV technique system
atically evaluates a predefined set of hyperparameters by training and 
validating the model on multiple subsets of the dataset. By doing so, it 
identifies the optimal combination of hyperparameters that yield the 
highest model performance.

GSCV operates by dividing the entire dataset into K approximately 
equal-sized folds, with each fold serving as a validation set once, while 
the remaining folds are used for training the model. This process, known 
as K-fold cross-validation, is repeated K times, with a different fold 
utilized as the validation set during each iteration. This ensures that the 
model is rigorously tested on every subset of the data, providing a 
comprehensive evaluation of its generalization capability. The steps of 
cross-validation are as follows: First, the dataset is randomly divided 
into K folds of roughly equal-size. Then, the model is trained and eval
uated K times. In each iteration, one fold is set aside as the validation set, 
while the remaining K-1 folds are used to train the model. Subsequently, 
performance metrics, specifically, Root Mean Squared Error (RMSE), are 
calculated for each fold. Finally, the overall RMSE is obtained by aver
aging the results across all K folds. The GridSearchCV class from the 
Sklearn library is used for hyperparameter tuning across all ML models.

2.4.5. Evaluation metrics
The efficacy of the proposed ML-based predictive models is rigor

ously assessed using a suite of comprehensive statistical error metrics, 
including the Coefficient of Determination (R2), Root Mean Square Error 
(RMSE), Mean Absolute Error (MAE).

The Coefficient of Determination (Eq. (12)) is a statistical measure 
that quantifies the proportion of variance in the dependent variable that 
can be explained by the independent variables in a regression model. An 
R2 value approaching 1 indicates that the model effectively captures the 
underlying variability in the dependent variable, while a value near 
0 implies that the model explains little of the variation, indicating poor 
predictive performance. This measure is particularly critical in wave 
energy applications, where even modest prediction errors can have 
significant implications for system reliability, performance forecasting, 
and design optimization. 

Fig. 2. The conceptual diagram for (a) Random Forest (RF), (b) Multi-Layer Perceptron (MLP) algorithm.
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R2 =1 −

∑n
i=1

(
yi − ypredi

)2

∑n
i=1(yi − y)2 (12) 

where yi, ypredi , y are observed, predicted, and mean of all the observed 
values, respectively.

The Root Mean Square Error (RMSE) is determined as the square root 

of the average squared differences between predicted (ypredi

)
and actual 

(y) values. As RMSE penalizes larger errors more heavily, it is particu
larly sensitive to significant deviations, making it an effective metric for 
assessing prediction accuracy in applications where large errors are 
especially detrimental, such as wave energy performance forecasting 
and system reliability assessments. 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1

(
ypredi − yi

)2
√

(13) 

Finally, the Mean Absolute Error (MAE) is computed as the average 
absolute difference between the predicted and actual values. Unlike 
RMSE, MAE treats all errors equally, regardless of their direction or 
magnitude, providing a clear and intuitive measure of the average 
prediction error in terms of its absolute value. 

MAE=
1
n
∑n

i=1

⃒
⃒
⃒ypredi − yi

⃒
⃒
⃒ (14) 

Together, these metrics offer a comprehensive framework for eval
uating different aspects of model performance, ensuring a robust and 
reliable assessment of the predictive capability of machine learning 
models in estimating the total absorbed power of floating wave energy 
converters.

3. Results and discussion

3.1. Numerical modeling and dataset

Single-body WECs, such as Point Absorbers (PAs), have a limited 
operational efficiency due to their narrow frequency bandwidth for 
wave energy capture. This narrow bandwidth necessitates continuous 
adjustments to maintain resonance with changing sea conditions [30]. 
In contrast, MBFWECs overcome this limitation by exploiting the rela
tive motion between multiple interconnected bodies. This design en
ables a broader engagement with resonance frequencies, resulting in 
increased power absorption across a more diverse range of wave fre
quencies [31]. By distributing energy capture over a wider spectrum, 
MBFWECs are capable of harvesting energy more effectively from varied 
wave conditions. However, accurately modeling the complex in
teractions between multiple bodies in an MBFWEC system, each with 
multiple Degrees of Freedom (DOF), poses significant challenges [32]. 
Optimal energy conversion in these systems requires tailored damping 

ratios for each DOF of each body, along with variations in damping 
provided by the Power Take-Off (PTO) mechanism. Consequently, many 
multi-body WECs often operate with only one active DOF.

The configuration of the MBFWEC investigated in this study is 
depicted in Fig. 3. The system comprises a central, hollow cylindrical 
body (Central Body, or CB) that is connected to four curved tubular 
floats (F1-F4) via arms and hinge joints. This structural arrangement 
allows the relative motion between the CB and the floats, which is 
crucial for effective energy extraction. The hinge joints are aligned with 
the local y-axis of the floats, enabling rotational motion about the pitch 
angle. As the floats oscillate relative to the CB, the PTO system applies 
controlled damping, thereby converting the kinetic energy into useful 
power.

The CB is designed to be positively buoyant, ensuring it remains 
afloat, while stability is achieved by positioning the center of gravity 
below the center of buoyancy. To withstand extreme wave conditions 
such as those encountered during storms, the system is equipped with a 
“survival mode” in which vulnerable components can be fully sub
merged and locked in place, preventing structural damage and ensuring 
operational safety [33]. The geometric properties and design parameters 

Fig. 3. Configuration of the MBFWEC: (a) schematic illustrating operational mechanisms; (b) plan view showing dimensions and scale.

Table 1 
Design parameters of the MBFWEC utilized in the numerical simulations of this 
study.

Design and operational parameters MBFWEC

Water depth (m) 40
Density of seawater (kg/m3) 1025
Height of the CB (m) 33
Radius of the CB (m) 3
Height of the floats 14
Width of the floats 4
Weight-CB (KN) 8370
Buoyancy-CB (KN) 8526
Weight and Buoyancy-Floats (KN) 5341
Center of Gravity-CB [X Y Z] (m) [0, 0, − 16]
Center of Gravity-Floats [X Y Z] (m) [10.33, 0, − 5.5]
Draft-CB (m) 30
Draft-Floats (m) 11
Freeboard-CB (m) 3
Freeboard-Floats (m) 3
Inertia-CB (kg.m2) lxx 7.90 × 107

lyy 7.90 × 107

lzz 3.80 × 106

Inertia-Floats (kg.m2) lxx 1.46 × 107

lyy 8.73 × 106

lzz 7.50 × 106

Length of the connecting arms (m) 6
Stiffness of mooring lines (KN/m) 3910
Pre-tension of each mooring line (KN) 39.1
Effective length of each float [parallel to wave] (m) 14.14
Effective length of each float [perp. to wave] (m) 5.76
Effective length of each configuration (m) 39.8
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of the MBFWEC configuration examined in this study are detailed in 
Table 1.

To determine the hydrodynamic coefficients of the MBFWEC, 
frequency-domain simulations were conducted using the AQWA-LINE 
module in ANSYS AQWA. This module solves the linearized potential 
flow problem under the classical assumptions of incompressible, 
inviscid, and irrotational fluid, combined with small-amplitude incident 
waves. The simulation involves both diffraction and radiation analyses. 
In the diffraction analysis, the structure is held fixed, while incident 
waves interact with the device, generating scattered wave fields. For the 
radiation problem, the device is allowed to oscillate in calm water 
within each of its six degrees of freedom (surge, sway, heave, roll, pitch, 
and yaw), producing corresponding radiated wave fields. The total hy
drodynamic response is then obtained through the linear superposition 
of these components.

The boundary conditions applied in the simulations follow classical 
hydrodynamic theory and AQWA’s standard formulation. A no-flux 
condition is enforced on the floating body’s surface to prevent normal 
flow penetration, treating it as impermeable. On the free surface, a 
linearized combination of kinematic and dynamic boundary conditions 
is applied, consistent with the wave dispersion relation. The seabed is 
modeled as a flat, impermeable surface, while the far-field boundary 
employs the Sommerfeld radiation condition to ensure the proper 
dissipation of outgoing waves and eliminate artificial reflections [34].

The geometry of the MBFWEC was discretized using an unstructured 
quadrilateral panel mesh, as required by AQWA-LINE. Mesh refinement 
was concentrated in regions of high curvature, structural connections, 
and sharp edges where wave-body interactions are most sensitive. To 
ensure mesh independence, a convergence study was conducted using 
mesh densities ranging from 0.25 m to 0.5 m, with particular attention 
to the Response Amplitude Operator (RAO) in heave. Based on this 
analysis, a mesh size of 0.3 m was selected, as further refinement yielded 
negligible changes (less than 2 % variation in hydrodynamic co
efficients). Panels were defined with accurately oriented normal vectors 
and centroid locations to facilitate precise evaluation of velocity po
tential surface integrals and associated hydrodynamic pressures.

Fig. 4 (a) shows the surface mesh applied to the MBFWEC geometry 
for the frequency-domain analyses, and Fig. 4 (b) presents the RAO 
variation in heave DOF for the CB under different mesh densities ranging 
from 0.25 m to 0.5 m.

Simulations were conducted over a frequency range of 0.01–0.8 Hz 
to comprehensively evaluate the MBFWEC’s response under regular 
wave conditions. Incident wave directions varied from − 180◦ to 180◦ in 
30◦ increments, ensuring thorough coverage of all relevant approach 
angles. The primary outputs of the frequency-domain analysis include 

frequency- and direction-dependent wave excitation forces, radiation 
damping coefficients, and added mass, which serve as essential inputs 
for the subsequent dynamic response analysis of the MBFWEC.

In line with the assumptions inherent to linear wave theory and the 
AQWA framework, viscous effects and nonlinearities were neglected. 
The hydrodynamic centers and coordinate system were carefully aligned 
with the body-fixed reference frame, adhering to AQWA’s standard 
conventions to ensure the consistency and accuracy of the results. For 
comparative analysis and to facilitate dimensionless representation, the 
hydrodynamic coefficients were normalized using the following 
expressions: 

F̂ex =
Fex

ρg
(15) 

Âm =
Am

ρ (16) 

Ĉrd =
Crd

ρω (17) 

where F̂ex , Âm , and Ĉrd represent the normalized hydrodynamic exci
tation force, added mass, and radiation damping coefficients, respec
tively. In these equations, ρ denotes the water density, g is the 
acceleration due to gravity, and ω is the wave frequency. These 
normalized coefficients correspond to the selected Degrees of Freedom 
(DOFs) for the analysis. Although hydrodynamic coefficients are 
computed for all DOFs of the MBFWEC system, only the heave and pitch 
DOFs are considered active in the configuration analysed in this study. 
Fig. 5 illustrates the normalized hydrodynamic coefficients computed 
for the heave DOF, providing insights into the frequency-dependent 
response characteristics of the system.

In WEC-Sim, each component of the MBFWEC is modeled using 
Simulink blocks within the MATLAB environment. The various inter
acting parts, such as floating members and the Central Body (CB), are 
represented as distinct hydrodynamic bodies. Connections are estab
lished between these components to facilitate multi-body interactions, 
allowing the system to simulate complex dynamics within the MATLAB/ 
Simulink framework. The dynamic response of the MBFWEC is further 
integrated with mooring blocks, constraint blocks, and rotational Power 
Take-Off (PTO) blocks, which define linear PTO damping coefficients 
and act as rotational hinges in the system.

The influence of regular waves on the hydrodynamic behaviour and 
optimal settings of the PTO system can be effectively captured using this 
modelling framework. However, predicting the performance of a 

Fig. 4. (a) Surface mesh generated on the MBFWEC geometry used in the frequency-domain analyses. (b) Variation of the RAO in heave for the CB under different 
mesh densities ranging from 0.25 m to 0.5 m.
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Floating Wave Energy Converter (FWEC) under realistic sea conditions, 
characterized by irregular and complex wave states, presents a signifi
cant challenge. In this study, time-domain simulations were performed 
to establish baseline data for ML models and ultimately develop a TF 
capable of estimating the TAP generated by the device in response to 
real sea waves. To achieve this, a predefined set of regular wave con
ditions was constructed, encompassing a comprehensive range of wave 
heights and periods. This dataset included 352 wave components, 
comprising 16 distinct wave heights (spanning from 0.1 m to 1.6 m) and 
22 different periods (ranging from 2 s to 20 s, along with additional 
periods of 30 s, 40 s, and 50 s). Each wave component was simulated 
independently for the MBFWEC using WEC-Sim’s batch run capability, 
which enabled consecutive simulation of all 352 components. Further
more, MATLAB’s parallel computing feature was employed to expedite 
the simulations, leveraging multiple processor cores to execute simula
tions simultaneously.

Each simulation was run for a duration of 500 s, using a time step of 
0.005 s to ensure high-resolution results. The incident wave angle of 
approach was maintained at a constant 180◦ for all scenarios. Conse
quently, Float 3 (F3) was positioned as the first member, and Float 1 (F1) 
as the last member facing the wavefront, while Floats 2 and 4 were 
symmetrically placed as side floats, yielding identical modeling results 
due to their symmetry relative to the approaching wave angle. The 
entire MBFWEC configuration (Fig. 3) was subjected to six separate 
batch runs, each corresponding to a different level of PTO damping, 
ranging from 6 to 24 MNms/rad.

The PTO system employed in the MBFWEC device operates on a 
rotational basis, harnessing energy through the relative pitch motion 
between the CB and the floats. Consequently, the time-averaged power 
output per float, under regular wave conditions, can be expressed as: 

Pi =
1
T

∫T

0

Crot
(
θ̇CB − θ̇f

)2dT (18) 

where Crot (hereinafter C) is the rotational damping coefficient [Nms/ 
rad], and 

(
θ̇CB − θ̇f

)
is the relative velocity of pitch angle between the CB 

and the floating body. Hence, with four floats, the total mean power 
absorbed by the proposed MBFWEC can be determined as: 

P=
∑4

i=1
Pi (19) 

The absorption length (Lb), also known as the Capture Width (CW) of 
the device, represents the ratio of the mean power absorbed P (in W) by 
the device to the power of the incident wave Pwave (in W/m), and is 
defined as follows [35]: 

CW=
P

Pwave
(20) 

CW denotes the width of a wave crest fully absorbed by a WEC. 
However, the CWR is more suitable for assessing a WEC’s hydrodynamic 
efficacy. The CWR provides a measure of the percentage of wave power 
that is effectively captured and converted by the device as waves 
propagate through the system. It is mathematically expressed as: 

CWR=
CW
Leff

*100 (21) 

where Leff represents the characteristic dimension encompassing the 
width of all components actively engaged in the energy absorption 
process from waves. For instance, when a platform incorporates multiple 
WECs, performance is adjusted based on the number of installed WECs. 
In such cases, the active width is defined as the width of each individual 
WEC. Therefore, leff can be determined as the sum of the effective length 
of all floating members: 

leff =
∑m

j=1
Leff j (22) 

where m denotes the number of floating members.
Fig. 6 illustrates the CWRs obtained for a sample batch run, corre

sponding to a Power Take-Off (PTO) damping of 10 MN/m. The figure 
provides a grid of values that represent the hydrodynamic efficiency of 
the MBFWEC device for each wave height and period combination 
within the predefined window. In the figure, red indicates regions of 
higher efficiency, whereas blue signifies areas of lower efficiency. 
Additionally, the CWR distributions were generated for five other PTO 
damping values to create a comprehensive dataset for ML model 
development. CWR windows for the other damping values are described 
in the Supplementary Information (Fig. S1).

Following the outlined numerical modeling methodology, a total of 
2112 simulations were performed (see Table 2). This includes six batch 
runs, each consisting of 352 simulations, covering 16 different wave 
heights and 22 periods for regular wave conditions. Each batch run, 
executed using MATLAB’s Parallel Computing Toolbox (PCT) on an 
Intel® Core™ i7-11700K processor, required 2420 s, resulting in a cu
mulative simulation time of approximately 14,520 s (about 4 h). Fig. 7
presents the frequency distribution curve of the CWR values obtained 
from all 2112 simulations, providing insight into the overall hydrody
namic performance of the MBFWEC system.

3.2. Leveraging machine learning models

This section presents a comparative analysis of three ML models, 

Fig. 5. Computed hydrodynamic forces for MBFWEC (a) Normalized added mass, (b) Normalized radiation damping, and (c) Normalized excitation force.
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including RF, GBRT, and MLP, for predicting the CWR of the MBFWEC. 
All models were developed and implemented using the Scikit-Learn li
brary, adhering to the operational framework illustrated in Fig. 8. The 
data obtained from the numerical simulations (see Table 2) was split 
into input and output features. The input features consisted of wave 
height (H), wave frequency (f), and PTO damping coefficients, while the 
output feature was the CWR value of the MBFWEC.

During the preprocessing stage, scaling techniques were employed to 
standardize the input features for all ML models. This step is crucial, as 
unnormalized data can cause the algorithms to converge more slowly or, 
in some cases, fail to converge entirely. To normalize the input data, the 
MinMaxScaler class from Scikit-Learn was used. Once standardized, the 
dataset was partitioned into training and testing sets, with 70 % of the 
data used for training and the remaining 30 % reserved for testing, 
ensuring an unbiased evaluation of model performance.

In the subsequent stage, hyperparameters were tuned to optimize the 
performance of each ML model. Each algorithm type has a unique set of 
hyperparameters that significantly influence its behaviour during 
training. For the MLP model, hyperparameters like ‘hidden_layer_sizes’ 
define the number of neurons in each hidden layer, directly affecting the 
model’s capacity to capture complex patterns. The activation function, 
such as ‘ReLU’, governs how the input signal is transformed as it passes 
through the network. The optimization algorithm, specified by the 
solver parameter, minimizes the loss function, with ‘adam’ being a 
popular choice due to its adaptive learning rate. Additional parameters 
like ‘batch_size’, ‘learning_rate’, and ‘max_iter’ control the frequency of 
model updates, the step size during optimization, and the maximum 
number of iterations, respectively.

Fig. 9 (a) illustrates the effect of varying ‘hidden_layer_sizes’ on the 
RMSE values for the MLP model. The results indicate that ‘hidden_
layer_sizes’ significantly impact RMSE for both the training and testing 
datasets, with the optimal configuration achieved at (80, 64). Further 
analysis of ‘learning_rate’ and ‘max_iter’ parameters is shown in Fig. 9 (b) 
and 9 (c). It was observed that increasing the learning rate beyond 0.005 

Fig. 6. Numerically generated CWR matrix for MBFWEC with PTO Damping of 10MNms/rad.

Table 2 
Input ranges for wave height, wave period, and PTO damping used to generate 
the database for ML.

Properties Input Range No. of 
Scenarios

Total No. of 
Simulation

Wave Height (m) 0.1–1.6 (0.1 m 
Interval)

16 2112

Wave Period (s) 2-20 (1 s Interval) 22
30, 40, 50 s

Damping (MNms/ 
Rad)

6-10-14-18-22-24 6

Fig. 7. Distribution of CWR values in the numerical modeling dataset, utilized 
for ML models.
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had a minimal effect on the RMSE for both training and testing sets. 
Similarly, increasing ‘max_iter’ from 50 to 300 reduced RMSE for both 
datasets, with the optimal value identified at 200 iterations. Conse
quently, the hyperparameter tuning space for ‘hidden_layer_sizes’, ‘lear
ning_rate’, and ‘max_iter’ was constrained to these specific ranges to 
refine the model’s performance. Our evaluation indicated that varying 
the activation functions and solvers did not result in substantial im
provements. Therefore, ‘ReLU’ and ‘Adam’ were chosen as the activation 
function and optimization solver, respectively. This choice, along with 
the tuned hyperparameters listed in Table 3, mitigates the risk of over
fitting while ensuring optimal model performance.

For the RF and GBRT models, hyperparameters play a pivotal role in 
refining the model’s structure and ensuring accurate predictions. In 
Random Forest (RF), the ‘n_estimators’ parameter represents the number 
of decision trees in the ensemble, where a higher number typically im
proves performance but increases computational overhead. The ‘Max_
depth’ parameter controls the depth of each tree, limiting how deeply 
each tree is grown. This restriction prevents the model from capturing 
too much detail and potentially overfitting the training data. Parameters 
such as ‘min_sample_split’ and ‘min_sample_leaf’ ensure that each node and 
leaf in the decision trees contain a minimum number of data samples, 

adding robustness to the model and reducing overfitting by preventing 
the creation of overly specific rules.

In GBRT, hyperparameters like ‘learning_rate’ influence how much 
each successive tree contributes to the final model. Lower learning rates 
reduce overfitting and make the model more conservative, while higher 
learning rates can accelerate convergence at the risk of overfitting. Pa
rameters such as ‘subsample’ and ‘colsample_bytree’ determine the frac
tion of samples and features considered for each tree, respectively, 
promoting generalization by introducing randomness and diversity in 
tree construction. This stochastic element helps prevent any single 
feature from dominating the model, ensuring a more balanced and 
generalizable solution.

Fine-tuning these hyperparameters is crucial to achieving a balance 
between model complexity and generalization, leading to optimal pre
dictive performance. To this end, Grid Search Cross-Validation (GSCV) 
was employed with a 5-fold cross-validation strategy to systematically 
explore the best hyperparameter combinations for each model. This 
approach ensures comprehensive coverage of the hyperparameter space 
while simultaneously assessing model robustness by averaging perfor
mance across multiple folds. This reduces the risk of overfitting and 
provides a more reliable estimation of the model’s performance.

Fig. 8. Implementation of the supervised regression ML within the Framework of MBFWEC.

Fig. 9. Variation in MLP model hyperparameters versus train and test RMSE for (a) ‘hidden_layer_sizes’, (b) ‘learning_rate’, and (c) ‘max_iter’.
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The details of the hyperparameters considered and the optimal 
values selected by GSCV for each model are presented in Table 3. 
Notably, a total of 1350, 1800, and 3240 fits were evaluated for MLP, 
RF, and GBRT models, respectively, using the 5-fold cross-validation 
method. These fits correspond to the unique hyperparameter combina
tions explored for each model. The optimal set of hyperparameters for 
each method was determined based on the configuration that resulted in 
the lowest RMSE, reflecting the best predictive accuracy and general
ization capability for the given dataset.

The primary objective of this section is to determine the most ac
curate ML model for predicting the CWR of a MBFWEC under diverse sea 
conditions. These conditions include variations in wave height, fre
quency, and the device’s Power Take-Off (PTO) damping. Fig. 10 pre
sents a comparative evaluation of the predictive performance of several 
ML models, including MLP, GBRT, and RF, on an unseen test dataset. To 
facilitate meaningful comparisons, the figures include ± maximum error 
lines, based on the maximum absolute error observed within the test set.

Among the evaluated models, the MLP demonstrates superior per
formance, with predictions for the test data falling within a ±6.11 % 
error margin. By contrast, the GBRT model exhibits a maximum absolute 
error of 20.3 %, and the RF model reports an error of 22.6 %. Addi
tionally, the MLP shows enhanced prediction accuracy for CWR values 
that are relatively rare and higher in magnitude, underscoring its ca
pacity to generalize effectively to extreme or underrepresented data 

points.
To further elucidate the performance differences across the models, a 

suite of statistical metrics was computed for each, both on the training 
and the unseen test datasets. The results, summarized in Table 4, indi
cate that the MLP outperforms the other models across all evaluated 
metrics. The MLP achieves the highest coefficient of determination (R2), 
with values of 0.9976 on the training set and 0.9945 on the test set, 
highlighting its ability to explain a substantial proportion of the variance 
in the data. Moreover, the MLP exhibits the lowest Root Mean Square 
Error (RMSE) and Mean Absolute Error (MAE), registering 1.1091 and 
0.30605 on the training set, and 1.1697 and 0.41641 on the test set, 
respectively. These results underscore the MLP’s superior accuracy and 
minimal prediction errors in comparison to the other models. In 
contrast, the RF model demonstrates lower R2 values (0.99232 for the 
training set and 0.98674 for the test set) and higher RMSE and MAE 
scores (0.98786 and 0.35347 for the training set, and 1.80870 and 
0.47994 for the test set). Similarly, the GBRT model underperforms 
relative to the MLP, with R2 values of 0.98936 (training) and 0.97907 
(test), and higher RMSE and MAE values, 1.26951 and 0.576126, for the 
training set, and 2.27244 and 0.79120 for the test set, respectively.

For a comprehensive comparative analysis, Fig. 11 presents a Taylor 
diagram, as introduced by Taylor (2001), which visualizes the correla
tion coefficient, standard deviation, and centered Root Mean Square 
Error (cRMSE) for each model. While all three models exhibit 
commendable performance, the MLP stands out with the highest cor
relation and standard deviation closely aligned with the reference 
values, indicating its superior fidelity to the actual data. The RF model 
also performs well, with high correlation and a nearly matching stan
dard deviation. The GBRT model, although slightly lower in correlation 
and standard deviation, nonetheless displays robust predictive capa
bility with minimal bias. Overall, the MLP model consistently demon
strates the most reliable and accurate performance in predicting the 
CWR values across a range of sea states and PTO damping values. Its 
superior generalization, particularly in the prediction of higher CWR 
values, positions the MLP as the preferred model for this task, offering 

Table 3 
Summary of hyperparameters and optimal values for all the ML models tested in 
this study.

Supervised 
Models

Hyperparameters Best Values

MLP ‘hidden_layer_sizes’: (80, 64), (64, 
32), (32, 16, 8) 
‘activation’: (‘relu’), 
‘solver’: (adam), 
‘batch_size’: (32, 16, 8), 
‘learning_rate’: (0.002, 0.003, 0.004, 
0.005, 0.006), 
‘max_iter’: (50, 100, 150, 200, 300)

‘hidden_layer_sizes’: (80, 
64), 
‘activation’: (‘relu’), 
‘solver’: (adam), 
‘batch_size’: (16), 
‘learning_rate’: (0.005) 
‘max_iter’: (200)

RF ‘n_estimators’: (40, 50, 60, 75), 
‘max_depth’: (5, 8, 10, 12, 15), 
‘min_sample_split’: (4, 5, 8), 
‘min_sample_leaf’: (4, 5, 6), 
‘bootstrap’: (True, False)

‘n_estimators’: (50), 
‘max_depth’: (10), 
‘min_sample_split’: (5), 
‘min_sample_leaf’: (5), 
‘bootstrap’: (True),

GBRT ‘n_estimators’: (40, 50, 60), 
‘max_depth’: (4, 5, 8, 10), 
‘learning_rate’: (0.001, 0.01, 0.1), 
‘subsample’: (0.5, 0.8) 
colsample_bytree’: (0.4, 0.8, 1), 
’colsample_bylevel’: (0.4, 0.8, 1)

‘n_estimators’: (50), 
‘max_depth’: (5), 
‘learning_rate’: (0.01), 
‘subsample’: (0.8), 
colsample_bytree’: (0.4), 
’colsample_bylevel’: 
(1.0)

Fig. 10. Performance evaluation of supervised regression ML models for predicting CWR values (a) MLP, (b) RF, and (c) GBRT.

Table 4 
Comparison of predictive ML-based models for modeling CWR values in training 
and testing dataset.

Supervised Models Dataset R2 RMSE MAE

MLP Training Set 0.99676 1.1091 0.30605
Test Set 0.99545 1.1697 0.41641

RF Training Set 0.99232 1.28786 0.35347
Test Set 0.98674 1.80870 0.47994

GBRT Training Set 0. 98936 1.26951 0.576126
Test Set 0.97907 2.27244 0.79120

M. Torabbeigi et al.                                                                                                                                                                                                                             Renewable Energy 259 (2026) 125011 

11 



significant potential for enhancing the predictive accuracy of WECs 
under real-world conditions.

Permutation feature importance analysis was conducted to evaluate 
the relative impact of different input features on the MLP model’s pre
diction accuracy for the CWR. This method quantifies the importance of 
each input by randomly shuffling the values of one feature at a time and 
measuring the resulting degradation in model performance. A greater 
drop in performance suggests that the model is more reliant on that 
specific feature for making accurate predictions. As a model-agnostic 
approach, permutation importance offers valuable insights into the 
contribution of each input feature without relying on the underlying 
structure of the model itself. As shown in Fig. 12, wave frequency 
emerges as the most significant factor, displaying the highest impor
tance score. This indicates that the model’s predictive performance is 
highly sensitive to variations in wave frequency, with notable variability 
in its impact. PTO damping, while less influential than wave frequency, 
still exerts a consistent effect on the model’s predictions. In contrast, 

wave height is identified as the least impactful feature, with a relatively 
modest importance score and moderate variability in its influence. The 
findings suggest that the MLP model can predict CWR values with suf
ficient precision, even for previously unseen or out-of-range PTO 
damping and wave height values. Moreover, to optimize the develop
ment of future data-driven models, the input data can be further refined 
by capturing wave frequency at a higher resolution, given its prominent 
role in prediction accuracy, while wave height can be sampled with a 
lower resolution due to its comparatively minimal impact. This targeted 
approach to dataset construction would enhance the quality of inputs 
and ultimately improve the model’s predictive capabilities. Overall, 
while all three models, i.e. MLP, Random Forest, and GBRT, demon
strated strong performance, the MLP method consistently exhibited su
perior accuracy and reliability across multiple metrics. As a result, the 
MLP model was selected for further exploration and to serve as the 
foundation for the development of the CWR prediction window and the 
proposed ML-TF approach. Its exceptional performance in capturing 
complex patterns in the data highlights its suitability for this advanced 
application.

3.3. Development of machine learning-transfer function (ML-TF) method

The TF concept, initially introduced by Adibzade and Akbari [15], 
provides a critical framework for correlating the response of a FWEC in 
regular wave conditions to its behavior in irregular wave environments. 
The essence of the TF lies in approximating the FWEC’s performance 
under complex, irregular sea states by examining its response to a range 
of regular waves. By doing so, the TF enables the accurate prediction of 
the device’s power absorption capabilities in real-world sea conditions, 
which are inherently more variable and dynamic than idealized regular 
waves. The TF is primarily dependent on wave frequency (or wave 
period) and can be derived from the CWR matrix. It is computed as 
follows: 

TFj =

∑m
i=1CWRHij

m
, j = 1, 2,…, n

TF = [TF1,TF2,…,TFn]

(23) 

where m represents the number of wave heights considered in the CWR 
matrix, and n denotes the number of wave frequencies.

This TF is instrumental in estimating the power absorption efficiency 
of an FWEC device installed at a particular site. Real sea conditions are 
often described using the Wave Energy Spectrum (WES) S(f), which 
represents the distribution of wave energy across different frequencies. 

Fig. 11. Comparison of ML-based models’ performance in predicting CWR.

Fig. 12. Feature importance analysis for the MLP method.
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From this, the Wave Power Spectrum (WPS) P(f), denoting the distri
bution of wave power over frequencies, is derived as follows: 

P(f)= ρgCg(f)S(f) (24) 

Cg(f) represents the wave group celerity (m/s), determined as: 

Cg =
1
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
g
k

tanh(kd)
√ (

1+
2kd

sinh(2kd)

)

(25) 

where k is the wave number, and d denotes the water depth.
Utilizing the TF offers an efficient approach to estimating the total 

power generation of a MBFWEC. The TF, which remains constant across 
varying sea conditions, can be multiplied by the Wave Power Spectrum 
(WPS) P(f), derived from the target sea state, to calculate the TAP. This 
process is mathematically expressed as: 

TAP=

(∫

TF (f)×WPS(f) df
)

× leff (26) 

where leff denotes the cumulative effective length of all floating mem
bers within the MBFWEC, defined as leff =

∑m
j=1 Leff j, where m denotes 

the number of floating members in the device.
By applying this equation, the TAP of the MBFWEC is computed 

based on the specific TFs developed for different PTO damping levels. 
These TFs are systematically compared to identify the most effective 
PTO damping strategy for the given sea conditions, as defined by the 
WPS. The effectiveness of different damping strategies allows for a 
tailored response, ensuring optimal energy absorption under varying 
wave conditions. A critical aspect of this method is ensuring that the 
frequency resolution of the TF aligns precisely with that of the WPS, as 
described in Eq. (26). The accuracy of the power prediction process is 
heavily dependent on this match, as well as the detailed exploration of a 
wide range of PTO damping settings. However, this approach introduces 
significant computational challenges, particularly due to the need for 
multiple simulations to accommodate the WPS resolution and the 
diverse damping configurations. To mitigate these computational de
mands, a data-driven model, specifically using the MLP method, is 
employed to predict CWR matrices across a wide range of frequencies 
and PTO damping settings. The MLP model’s predictive capabilities 
allow for more efficient exploration of the parameter space while 
maintaining high accuracy in estimating the device’s performance, 
reducing the need for extensive numerical simulations.

Fig. 13 illustrates the CWR matrix predicted by the MLP model for a 
PTO damping value of 8 MNms/rad, which was not included in the 
model’s initial training dataset. Notably, the MLP model significantly 
enhances the frequency-domain resolution of the CWR matrix. Using the 
trained MLP, the CWR matrices were generated for a frequency range 
between 0.02 and 0.49 Hz in 0.01 Hz increments, covering fourteen 
distinct PTO damping values, spaced at 2 MNms/rad intervals.

Fig. 14 presents the TFs derived from the predicted CWR matrices. 
Panel (a) includes TFs for PTO damping values within the training 
dataset; panel (b) shows TFs for values not included in the training but 
within the same range; and panel (c) illustrates TFs for out-of-range 
values. All TFs were calculated with a 0.01 Hz frequency resolution, 
demonstrating the MLP model’s capacity to maintain high spectral res
olution across a wide range of input conditions.

Achieving this 0.01 Hz frequency resolution over the specified ranges 
of wave height and PTO damping through conventional numerical 
simulations would require approximately 768 simulations per damping 
value. For fourteen damping values, this results in a total of 10,752 
simulations. In contrast, the proposed MLP-based surrogate model was 
trained using only 2112 simulations and subsequently employed to 
generate high-resolution outputs across the entire parameter space. This 
represents an approximate 80 % reduction in computational cost. This 
substantial efficiency gain underscores the practical value of the MLP 
model as a surrogate tool for predicting FWEC performance. It enables 
rapid, high-resolution analysis across a broad spectrum of operating 
conditions, making it well-suited for design optimization, control 
strategy development, and operational studies.

A comparative analysis was performed to evaluate the accuracy of 
the ML-TF method by comparing it against direct time-history simula
tions, a conventional approach for assessing the performance of FWECs. 
The direct method involves solving time-domain equations to determine 
the device’s response to irregular waves. This process begins by gener
ating water level variations based on the WES. After this, the equations 
of motion for the MBFWEC are resolved. In this study, two distinct WES 
types were considered: a single-peak WES (WPS #1) and a double-peak 
WES (WPS #2), as illustrated in Fig. 15. A 3600-s time series of sea 
surface elevation was generated for each WES to simulate the irregular 
wave conditions. To maintain consistency across the simulations, the 
random wave phase was seeded, allowing the same random phase to be 
replicated in each case.

The MBFWEC configuration was simulated under these irregular 
wave conditions using four different PTO damping values, 8, 12, 16, and 
20 MNms/rad, at a time step of 0.005 s. The computational cost of these 
direct simulations varied depending on the complexity of the WES, the 
binning of the wave spectrum (where the wave energy spectrum is 
divided into bins of equal energy), and the PTO damping values, which 
influence the hydrodynamic behaviour of the WEC. Despite the vari
ability in computational demands, each simulation required between 3 
and 4.5 h, with more complex WES cases and higher PTO damping 
values demanding more time. In contrast, the ML-TF method offers a 
more computationally efficient alternative. Using this approach, the 
TAP for the same scenarios was calculated following Eq. (26). This 
process, depicted in Fig. 15, involves multiplying the WPS by the TF and 
the effective length (leff) of the MBFWEC. The ML-TF method signifi
cantly reduces computational costs while still delivering accurate power 
predictions, as it bypasses the need for time-consuming direct 

Fig. 13. Predicted CWR matrix using MLP method for PTO damping of 8MNms/rad.
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simulations.
Table 5 presents the calculated TAP values obtained through both 

the direct time-history simulations and the ML-TF method. The results 
demonstrate that the proposed ML-TF method delivers highly accurate 
estimates of TAP across both single-peak and double-peak WPS. 
Remarkably, the maximum deviation between the two methods is less 
than 4 %, underscoring the precision and reliability of the ML-TF 
approach. This minor deviation indicates that the ML-TF method not 
only reduces the computational burden associated with direct time- 
history simulations but also maintains a high level of accuracy.

To further evaluate the accuracy of the ML-TF method in predicting 
the TAP for sea states with PTO damping values not included in the 
initial training dataset, we extended the comparative analysis to 

damping values of 26, 28, 30, and 32 MNms/rad. TFs for these damping 
values, predicted by the MLP model, are presented in Fig. 14 (c).

Table 6 compares the TAP results obtained from direct time-history 
simulations with those estimated by the ML-TF method. The 
maximum observed error between the two approaches is less than 8 %, 
demonstrating the robustness and adaptability of the ML-TF method, 
even for damping values outside the original dataset range. As previ
ously discussed, the MLP model’s prediction and, by extension, the ML- 
TF method’s accuracy, exhibits low sensitivity to changes in PTO 
damping (as indicated in Fig. 12). The results of this extended 
comparative analysis support that observation. However, it is important 
to note that while the ML-TF method remains highly accurate, the error 
tends to increase slightly as the damping values deviate further from 

Fig. 14. TFs derived from the CWR matrices predicted using the MLP method: (a) TFs corresponding to PTO damping values included in the training dataset, (b) TFs 
for damping values that were not included in the training dataset but fall within the input PTO damping range, and (c) TFs for out-of-range PTO damping values.

Fig. 15. The procedural framework for developing the TAP function for a MBFWEC. This process is based on integrating the WPS with the TF across various PTO 
damping scenarios.
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those within the original training dataset. Despite this, the deviation 
remains within acceptable bounds, further validating the ML-TF 
approach’s capability to generalize well to out-of-range damping 
values while maintaining efficient and precise power prediction for the 
MBFWEC system.

3.4. Application of ML-TF method for a case study of Oman sea

The ML-TF method for estimating the TAP was applied to a real- 
world case study using wave data from the Makran region, situated in 
the northern part of the Oman Sea. This region’s wave data was sourced 
from wave measurements conducted in 2016 by the Iranian Port and 
Maritime Organization (PMO). Nortek Acoustic Wave and Current 
(AWAC) instruments were deployed at multiple stations along the 
southern coastal area of Balochistan province to monitor wave condi
tions. Specifically, data from seven stations (illustrated in Fig. 16) pro
vided detailed insight into various sea states. For the purposes of this 
case study, we focused on wave data from three key stations: Meydani, 
Pozm, and Pasabandar. These locations were chosen because they offer 
broad coverage of the Makran coastline. Detailed information on the 
selected stations is provided in Table 7.

The AWAC instruments gathered sea surface elevation and wave 

particle velocity data (u, v) at intervals of 1024 s per hour. Nortek’s 
Storm V1.14 software was then employed to process this data and derive 
the WES S(f) for each observed sea state, which formed the foundation 
for this study. The Oman Sea, as depicted in Fig. 16, is subject to two 
distinct wave systems, one originating from the west and the other from 
the south. These systems create complex wave conditions, making the 
region an ideal location to evaluate the performance and robustness of 
the ML-TF approach. Data collection in the Makran region began in 
February 2016 and continued through November/December, allowing 
the dataset to capture the region’s varying climatic conditions, which 
are heavily influenced by the monsoon seasons [36].

The South-West (summer) monsoon, lasting from June to September, 
is associated with the highest wave energy in the region, characterized 
by strong wave activity and intense sea states. Conversely, the post- 
monsoon period (October to January) and the pre-monsoon period 
(February to May) are defined by calmer conditions and lower wave 
energy. This temporal variation provided a comprehensive dataset to 
evaluate the TAP predictions under a wide range of sea states using the 
ML-TF method. The case study demonstrates the versatility and effec
tiveness of the ML-TF method in real-world applications, showcasing its 
ability to accurately estimate the TAP across varying climatic conditions 
and wave energy spectra. By leveraging the MLP-predicted TFs and 
wave data from the Oman Sea, the method proved highly capable of 
capturing the dynamic behaviour of FWEC systems under realistic and 
complex sea conditions. This underscores its potential for broader 
application in coastal energy projects.

A total of 209 sea state samples were analysed to estimate the TAP of 
the proposed MBFWEC across three locations: Meydani, Pozm, and 
Pasabandar. The selected wave conditions encompassed a broad spec
trum of spectral characteristics, including uni-modal, bi-modal, and 
multi-modal sea states, corresponding to single-peak, double-peak, and 
multi-peak WES profiles, respectively. Utilizing ten distinct TFs, each 
corresponding to a specific PTO damping value, the ML–TF approach 
was applied across all sea state samples to produce high-resolution TAP 
predictions. This approach facilitated a detailed examination of the 
power absorption performance of the MBFWEC under a wide range of 
sea state complexities and PTO configurations, providing insights into its 
operational robustness and adaptability across diverse marine 
environments.

Fig. 17 presents the TAP results for all analysed sea states, organized 
chronologically by date, across the full range of PTO damping levels. 
This figure provides a comprehensive overview of the system’s perfor
mance over time and across varying energy regimes. A clear seasonal 
pattern is evident: TAP values are consistently higher during the South- 
West monsoon season (June to September), with the most pronounced 
increases observed at the Pasabandar station. This enhancement corre
sponds to the seasonal arrival of long-period swell waves from the 
Arabian Sea and Oman Sea, which significantly elevate the regional 
wave energy potential. These swell waves, characterized by higher 
group velocities (Cg), contribute to enhanced energy capture efficiency 
by promoting stronger and more coherent wave-body interactions. In 
contrast, the Meydani station, dominated by shorter-period, wind- 
driven waves from the Persian Gulf, exhibits lower TAP values despite 
experiencing similar or even higher significant wave heights. This 
reduced performance stems from the lower Cg associated with local 
wind-generated waves, which carry less energy per unit wave height 
compared to swell-dominated conditions. The Pozm station displays 
intermediate behavior, with TAP values reflecting the combined influ
ence of both swell- and wind-dominated sea states throughout the year.

Fig. 17 also highlights the system’s sensitivity to PTO damping. For 
each sea state, the TAP curves exhibit distinct peaks, identifying the 
optimal damping value for maximum energy absorption. Two primary 
trends emerge from the analysis. First, during low-energy periods 
(typically February–May and October–January), the optimal TAP is 
achieved at higher PTO damping values, approximately 24 MN m s/rad. 
Second, during the South-West monsoon season, when sea states are 

Table 5 
Comparison of the TAP computed using the Direct Time-Domain and the ML-TF 
methods for damping values that were not included in the training dataset but 
fall within the input PTO damping range.

Model WPS PTO Damping 
(

MNms
rad

)
TAPTime 

History

TAPML- 

TF

Error 
(%)

1 WPS 
#1

8 395.7 411.7 4.0

2 WPS 
#1

12 405.7 420.7 3.7

3 WPS 
#1

16 403.1 410.3 1.8

4 WPS 
#1

20 392.7 392.8 0.03

5 WPS 
#2

8 29.3 28.5 2.8

6 WPS 
#2

12 29.8 29.4 1.4

7 WPS 
#2

16 29.9 29.3 2.2

8 WPS 
#2

20 29.9 28.9 3.4

Table 6 
Comparison of the TAP computed using the Direct Time-Domain and the ML-TF 
methods for out-of-range PTO damping values.

Model WPS PTO Damping 
(

MNms
rad

)
TAPTime 

History

TAPML- 

TF

Error 
(%)

1 WPS 
#1

26 373.0 369.0 1.1

2 WPS 
#1

28 366.2 360.1 1.7

3 WPS 
#1

30 359.5 351.2 2.3

4 WPS 
#1

32 352.9 343.1 2.8

5 WPS 
#2

26 29.7 28.3 4.6

6 WPS 
#2

28 29.6 28.0 5.5

7 WPS 
#2

30 29.5 27.5 6.7

8 WPS 
#2

32 29.4 27.0 8.0
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more energetic, lower damping values near 10 MN m s/rad yield supe
rior performance. These transitions are clearly reflected in the damping- 
specific TAP profiles presented in the figure. The ability to accurately 
identify and adapt to seasonal variations in optimal damping is essential 
for maximizing energy capture and operational efficiency throughout 
the year. This finding underscores the importance of adaptive PTO 
control strategies in enhancing the long-term performance of wave en
ergy converters across diverse sea states.

4. Conclusion

This study presents a novel ML-TF approach for accurately esti
mating the TAP of FWECs under complex sea conditions. The proposed 
methodology integrates physics-based numerical modelling with su
pervised ML, enabling robust TAP predictions while achieving a sub
stantial reduction in computational cost. This efficiency facilitates 
extensive scenario modelling, detailed performance assessment, and 
optimization of FWECs across diverse operational and environmental 
conditions.

The proposed process begins with frequency-domain modelling 
based on potential flow theory to extract hydrodynamic coefficients. 
These are followed by time-domain simulations using WEC-Sim to 

capture the FWEC’s dynamic response under a range of regular wave 
conditions. The resulting CWR matrices form the training dataset for ML 
algorithms, including Random Forest (RF), Gradient Boosted Regression 
Trees (GBRT), and Multi-Layer Perceptron (MLP). The optimized MLP 
model generates high-resolution CWR windows across a range of PTO 
damping values and frequencies. These outputs are used to construct 
TFs, which enable efficient and accurate TAP estimations across arbi
trary sea states by incorporating region-specific wave energy spectra 
(WES).

Compared to conventional numerical simulation methods, the 
ML–TF framework achieves an approximate 80 % reduction in compu
tational cost while maintaining high predictive accuracy. Validation 
against direct time-history simulations under both single-peak and 
double-peak sea states yielded maximum errors of less than 4 % for in- 
range PTO damping values, and under 8 % for extrapolated values. 
These results confirm the model’s robustness and generalizability, even 
when predicting beyond the original training set. Key advantages of the 
ML–TF approach include its hybrid nature, which retains the physical 
interpretability of TFs while leveraging the predictive capabilities of ML. 
Moreover, it enables the generation of high-resolution outputs from 
relatively sparse datasets, making it an efficient and practical surrogate 
model for FWEC performance prediction.

Application of the model to the northern Oman Sea, utilizing 209 
observed sea states, revealed important regional performance insights. 
Ten distinct TFs were developed for various PTO damping levels to es
timate TAP and identify optimal damping strategies. Among the sites 
studied, Pasabandar exhibited the highest power potential, particularly 
during the summer monsoon when long-period swell waves dominate. 
In contrast, Meydani, predominantly influenced by shorter-period, 
wind-generated waves, demonstrated lower energy availability, while 
Pozm displayed intermediate performance reflecting a blend of wave 
climates. Analysis further confirmed that swell-dominated sea states 
yield higher energy capture efficiency, whereas low-energy conditions 

Fig. 16. Location of wave data measurement stations along the Makran coast in the northern part of the Oman Sea.

Table 7 
Summary of wave data measurement stations.

Station 
No.

Name Depth 
(m)

Latitude 
(DMS)

Longitude 
(DMS)

Measurement 
period

1 Meydani 30 25◦ 16′ 
37″

59◦ 11′ 45″ Feb–Nov 2016

2 Pozm 30 25◦ 13′ 
36″

60◦ 15′ 02″ Feb–Dec 2016

3 Pasabandar 30 24◦ 56′ 
86″

61◦ 18′ 74″ Feb–Dec 2016
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Fig. 17. TAP of the proposed MBFWEC across different sea states, categorized by occurrence date at (a) Meydani, (b) Pozm, and (c) Pasabandar stations.
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benefit from higher PTO damping values, while high-energy conditions 
favour lower damping.

Noted limitations of the proposed framework include its dependence 
on the quality and diversity of the training dataset, reduced accuracy 
when extrapolating far beyond the trained PTO damping or wave fre
quency ranges, and the assumption of unidirectional sea states in its 
current implementation. Future research will aim to extend the ML–TF 
approach to incorporate wave directionality, a factor known to signifi
cantly influence TAP, as demonstrated in prior studies. While modelling 
broadband, directionally distributed irregular waves poses substantial 
computational challenges, integrating ML into this context offers sub
stantial potential to enhance efficiency. Expanding the framework to 
account for directional spreading will allow for a more comprehensive 
and realistic evaluation of FWEC performance under naturally occurring 
sea conditions.
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Nomenclature

CWR Capture Width Ratio
DOF Degree of Freedom
FWEC Floating Wave Energy Converter
GBRT Gradient Boosted Regression Tree
MAE Mean Absolute Error
MBFWEC Multi Body Floating Wave Energy Converter
MLP Multi-Layer Perceptron
ML Machine Learning
PTO Power Take-Off
R2 Coefficient of Determination
RAE Relative Absolute Error
RF Random Forest
RMSE Root Mean Square Error
TAP Total Absorbed Power
TF Transfer Function
WEC Wave Energy Converter
WES Wave Energy Spectrum
WPS Wave Power Spectrum
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