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Abstract: For the design of a horizontal-axis tidal current turbine with adaptive variable-pitch blades,
both numerical simulations and physical model experiments were used to study the hydrodynamic
performance of symmetrical airfoil blades based on backward swept models. According to the
lift–drag ratio of symmetrical airfoils, variable airfoil sections were selected for each part of the
blade in the spanwise direction. Then, three kinds of blades were designed by using different swept-
back models from wind turbines. A rotation model with a multi-reference frame was employed to
conduct a three-dimensional steady numerical simulation of the turbine model based on the CFD
method. The axial thrust and energy-capturing efficiency under different tip speed ratios, as well
as the corresponding starting torque under different flow rates, were analyzed. The simulation
results indicate that model 2 has optimal start-up performance, and model 3 has the largest power
coefficient. The thrust coefficient of model 1 is the smallest. In all, model 2 has better comprehensive
performance. The experiments of model 2 show that it has suitable hydrodynamic performance
to capture bidirectional energy via passively variable pitch. This research provides an important
solution for the design and optimization of horizontal-axis turbines to harvest bidirectional tidal
current energy.

Keywords: tidal current turbine; hydrodynamic performance; backward swept blade; CFD simula-
tion; physical model experiment

1. Introduction

The effective utilization of marine renewable energy is one important way to achieve
the carbon peaking and carbon neutrality goals of China. Tidal current energy is a type of
marine renewable energy that has the features of abundant reserves, stability, regularity,
and so on [1–3]. The horizontal-axis turbine is the core component of the tidal current
energy conversion device used to capture energy, which has the advantages of stability,
high efficiency, and large self-starting torque [4]. The optimal design of the turbine is
essential to improve its energy conversion efficiency and reliability, which are the key
issues for the research of the tidal current energy generation system. Some have studies
shown that the swept-back blade, as an optimal layout method, can significantly enhance
the passive pitch characteristic of the turbine, and also has important influences on other
hydrodynamic performances of the turbine [5].

Swept-back blades have been widely applied to wind turbines [6–9], but theoretical
and experimental research is rare in the field of tidal current turbines. Kaya et al. found
that the backward swept blades of wind turbines tend to reduce the thrust coefficient,
and various swept offsets and swept starting positions have different effects on the thrust
coefficient. For the backward swept blade with the starting position close to the blade
tip and larger offset, the thrust drop is more obvious [6]. Hansen studied the influence
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of nonlinear coupling of blades with different swept shapes on the power and thrust
coefficients, which explained the reason for the load with swept blades [7]. Larwood
et al. pointed out that the blade tip offset has the greatest impact on the energy generation
and blade load, indicating that the larger the blade tip offsets, the lower the load acts [8].
Khalafallah et al. investigated different swept starting points and swept directions under
various tip speed ratios (TSRs) by numerical simulation. The results showed that at a high
TSR, the energy harvesting efficiency of the downstream sweeping blade is higher than
that of the straight blade, but it has a larger axial thrust [10]. Amano et al. found that
the swept-back blades generate greater power than that of the straight blades at lower
wind speeds, whereas the straight blades obtain less energy at higher wind speeds [11].
For a generic 5MW NREL wind turbine model, Verelst and Larsen studied 120 different
backward swept and forward swept blades, and found that backward swept blades can
reduce fatigue loads but have lower energy harvesting efficiency at rated conditions, and
the forward swept blades increase fatigue loads [12]. In terms of variable-pitch symmetrical
airfoil blades for tidal current energy turbines, the swept design was first introduced by
our group. The model experiments and field tests showed that this method can effectively
improve the blade pitch efficiency [13]. For the general-purpose design of tidal current
turbine blades, Blade Element Momentum (BEM) and its correction theory are usually used
to provide theoretical supports for hydrodynamic performance analysis of the turbines [14].
A modified BEM-CFD method proposed by Edmunds et al. solves the problem of the tip
loss not being accurately determined by changing the angle of attack. The power coefficient
has been enhanced dramatically compared to the experimental data [15]. Based on the
BEM theory, Ma et al. [16] applied the optimal blade design approach for variable-speed
operation based on the BEM theory to design the chord length and the pitch angle of the
blade. A mathematical model was developed to forecast the hydrodynamic performance of
the turbine by using the blade tip and hub loss correction theory. The results revealed that
the experimental data are in good accordance with the theoretical value, indicating that
the BEM theoretical prediction is reasonable. To predict the hydrodynamic performance of
the turbine under certain working conditions, ANSYS Fluent software is mostly applied
for the numerical modeling and simulation of the model turbine [17,18]. The system
coupling module in ANSYS software can also be used for fluid-structure coupling analysis
to calculate the influence of blade structure changes on the hydrodynamic performance of
the turbine [19]. The numerical calculation results have good accuracy in predicting the
performance of the turbine, which can provide a certain reference for the design of the tidal
stream energy turbine [20].

In order to further study the influence of backward swept design on the hydrodynamic
performance of adaptive variable-pitch symmetrical airfoil blades, three kinds of blades
with different backward swept models are presented in this paper. The software of Solid-
Works was used to build the 3D model of the hydraulic turbine. Based on the pre-processing
software ICEM CFD, the solver Fluent, and the post-processing software CFD-Post, axial
thrust coefficient, energy acquisition characteristics, and starting torque of the turbine
models were analyzed and discussed. In addition, physical model experiments of the
selected model were carried out to verify the performance of the numerical simulation.

2. Backward Swept Blade Design
2.1. Initial Model

In the initial blade design, a thicker NACA0030 airfoil was selected at the blade root
for transition to meet the strength requirements at the blade root. Different sections along
the blade span have different angles of attack. The airfoil with the maximum lift–drag
ratio at the best angle of attack for each section was selected for the initial blade design. In
other words, different airfoils were selected in turn along the spanwise direction to design
the segmented airfoils, and the swept-back symmetrical airfoil blades were optimized
by the variable section design. The initial model has no swept design, that is, its pitch
centerline coincides with the hydro-dynamic centerline, as shown in Figure 1. Thus, there
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is not an effective torque under the action of the hydrodynamics to make the blade pitch
passively. The blade design of the initial model in this paper is based on the modified BEM
theory, and the fmincon function in the Matlab optimization toolbox was used to iteratively
solve the design target of the maximum power output of a single section of the blade, and
then the chord length of the blade was obtained. The initial turbine radius R is 166 mm.
The diameter and the length of the hub are 50 mm and 62 mm, respectively. The pitch
angle is 6◦. Table 1 shows the specific design parameters of the initial blades.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 3 of 16 
 

 

2. Backward Swept Blade Design 
2.1. Initial Model 

In the initial blade design, a thicker NACA0030 airfoil was selected at the blade root 
for transition to meet the strength requirements at the blade root. Different sections along 
the blade span have different angles of attack. The airfoil with the maximum lift–drag 
ratio at the best angle of attack for each section was selected for the initial blade design. In 
other words, different airfoils were selected in turn along the spanwise direction to design 
the segmented airfoils, and the swept-back symmetrical airfoil blades were optimized by 
the variable section design. The initial model has no swept design, that is, its pitch center-
line coincides with the hydro-dynamic centerline, as shown in Figure 1. Thus, there is not 
an effective torque under the action of the hydrodynamics to make the blade pitch pas-
sively. The blade design of the initial model in this paper is based on the modified BEM 
theory, and the fmincon function in the Matlab optimization toolbox was used to itera-
tively solve the design target of the maximum power output of a single section of the 
blade, and then the chord length of the blade was obtained. The initial turbine radius R is 
166 mm. The diameter and the length of the hub are 50 mm and 62 mm, respectively. The 
pitch angle is 6°. Table 1 shows the specific design parameters of the initial blades. 

 
Figure 1. The structure of the initial blade. 

Table 1. Initial blade design geometric parameters. 

Spanwise Position 
(r/R) 

Radius  
r/mm 

Chord Length  
c/mm 

Airfoils 

0.09 14.94 − − 
0.15 24.90 − circle with radius 10 
0.20 33.20 33.44 NACA0030 
0.27 44.82 45.54 NACA0018 
0.35 58.10 43.51 NACA0018 
0.40 66.40 41.49 NACA0015 
0.47 78.02 39.46 NACA0015 
0.53 87.98 37.44 NACA0015 

Figure 1. The structure of the initial blade.

Table 1. Initial blade design geometric parameters.

Spanwise Position (r/R) Radius
r/mm

Chord Length
c/mm Airfoils

0.09 14.94 − −
0.15 24.90 − circle with radius 10
0.20 33.20 33.44 NACA0030
0.27 44.82 45.54 NACA0018
0.35 58.10 43.51 NACA0018
0.40 66.40 41.49 NACA0015
0.47 78.02 39.46 NACA0015
0.53 87.98 37.44 NACA0015
0.60 99.60 35.42 NACA0015
0.66 109.56 33.39 NACA0015
0.73 121.18 31.37 NACA0012
0.79 131.14 29.34 NACA0012
0.86 142.76 27.32 NACA0012
0.93 154.38 25.30 NACA0012

1 166.00 23.32 NACA0012

2.2. Swept Model

The adaptive variable-pitch approach of horizontal-axis tidal current turbines pro-
posed by our group relies on the deflection moment of the hydrodynamic force generated
by the symmetrical airfoil blades relative to the pitching axis of the blade under the water
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flow, as shown in Figure 2. Through sweeping, the hydrodynamic center Oh of the blade
element is closer to the trailing edge than its pitching center Op, as shown in Figure 3. Thus,
there is a moment arm l between the hydrodynamic center and the pitching center. Then,
under the resultant force Fh from the lift FL and the drag FD, a pitching torque relative to
Op will be produced, which is illustrated in Figure 3a for the forward flow and in Figure 3b
for the backward flow.
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To increase the pitch torque as much as possible, the initial swept offset position of
the model in this paper is set at 35% of the blade span, the hydrodynamic center of each
section is offset to the trailing edge, and the tip offset reaches the maximum value, which
was designed to be 10%R.

The swept design methods derive from references [6–8]. Kaya et al. [6] studied the
influence of different offsets of wind turbine swept blades and the starting position of swept
blades on the thrust coefficient. Hansen et al. [7] investigated the influence of the torsion
and bending moment coupling of the swept blade on the static and dynamic performance
of the blade, and calculated the aerodynamic power and thrust of the blade with different
swept shapes. The applied model comprehensively considers the influence of linear and
quadratic functions and sweep curvature on sweep. Larwood et al. [8] conducted a study
on the design parameters of wind turbine swept blades and found that in addition to the tip
offset, which has a greater impact on energy harvesting and blade load, other parameters
have less impact. Table 2 presents the sweep offset equations for the three models.

Table 2. Sweep offset equations for three models.

Model Type Offset Equation

1 zo f f set = (rr − rstart)(R × Ps)/(R − rstart)

M((1 − Pr)(1 − Prstart )/Pr)

(Kaya 2018)

2 zo f f set = −a rr
R + b

( rr
R
)2

(Hansen 2011)

3 zo f f set = d
(

rr − rstart
R − rstart

)γ

(Larwood 2014)
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Among the above three equations, zo f f set is the blade section offset. R represents the
rotor radius, which is 0.166 m in this study. rr is the radius of the section. rstart is the radius
of the section at the backward swept starting position, which is 35% of the rotor radius.
Ps is the ratio of the tip offset to the rotor radius (Ps = d/R), where d is 10% of the rotor
radius. R × Ps denotes the deflection of the blade at the tip. Pr is the ratio of the radius
of the section to the radius of the rotor (Pr = rr/R). Prstart is the ratio of the radius of the
section at the backward swept starting position to the radius of the rotor. M represents
the sweep strength (Prstart = rstart/R), and M = 2 was chosen to represent the average
sweep strength. a and b are constants, and their selections can refer to [7]. Here, a and b are
9 and 25, respectively. γ is expressed as the equation offset exponent, and the exponent was
chosen to be 2 in this paper. The specific swept model parameters are shown in Figure 4.

According to Table 2 and the values of related parameters above, the offset values
calculated by each model are shown in Table 3. Figure 5 presents the comparison of offsets
for different models under different radial distributions. Obviously, among these three
models, the overall offset of model 1 is the largest, and that of model 3 is the smallest.
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Table 3. Offsets corresponding to different models.

Spanwise Position (r/R)
Offset/mm

Model 1 Model 2 Model 3

0.09 0 0 0
0.15 0 0 0
0.20 0 0 0
0.27 0 0 0
0.35 0 0.00100 0
0.40 0.649622 0.50880 0.0982
0.47 1.843385 1.43280 0.5657
0.53 3.082826 2.42280 1.2729
0.60 4.728119 3.80880 2.4556
0.66 6.277070 5.19470 3.7757
0.73 8.214997 7.04260 5.6734
0.79 9.968596 8.82440 7.6065
0.86 12.10352 11.1342 10.2193
0.93 14.31841 13.6927 13.2171

1 16.60000 16.6000 16.6000
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2.3. 3D Model

According to the corresponding section offsets of different models shown in Table 3,
the 3D models of three different swept blades and the overall 3D model of the turbine were
constructed in SolidWorks software, as shown in Figures 6 and 7, respectively.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 8 of 16 
 

 

2.3.3. D Model 
According to the corresponding section offsets of different models shown in Table 3, 

the 3D models of three different swept blades and the overall 3D model of the turbine 
were constructed in SolidWorks software, as shown in Figures 6 and 7, respectively. 

 
Figure 6. Different swept blades 3D model. 

 
Figure 7. Rotor overall 3D model. 

3. Numerical Simulation 
3.1. Meshing 

For the numerical modeling and simulation of the turbine model based on the Com-
putational Fluid Dynamics (CFD) method, the pre-processing software ICEM CFD was 
adopted to generate and optimize the grid. The mesh division needs to consider the qual-
ity of the mesh and the computer capability, select the unstructured tetrahedral mesh, and 
perform mesh division after setting other basic parameters. Figure 8 shows the mesh of 
the blade surface and its partial enlargement feature. It should be noted that the height of 
the first layer grid node of the boundary layer can be calculated by y+. After calculating 
the Reynolds number, wall friction coefficient, wall shear stress, and estimated velocity, 
the boundary layer height of the first layer is 0.25 mm. The boundary layer after meshing 
and its local enlarged features are shown in Figure 9. 

Figure 6. Different swept blades 3D model.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 8 of 16 
 

 

2.3.3. D Model 
According to the corresponding section offsets of different models shown in Table 3, 

the 3D models of three different swept blades and the overall 3D model of the turbine 
were constructed in SolidWorks software, as shown in Figures 6 and 7, respectively. 

 
Figure 6. Different swept blades 3D model. 

 
Figure 7. Rotor overall 3D model. 

3. Numerical Simulation 
3.1. Meshing 

For the numerical modeling and simulation of the turbine model based on the Com-
putational Fluid Dynamics (CFD) method, the pre-processing software ICEM CFD was 
adopted to generate and optimize the grid. The mesh division needs to consider the qual-
ity of the mesh and the computer capability, select the unstructured tetrahedral mesh, and 
perform mesh division after setting other basic parameters. Figure 8 shows the mesh of 
the blade surface and its partial enlargement feature. It should be noted that the height of 
the first layer grid node of the boundary layer can be calculated by y+. After calculating 
the Reynolds number, wall friction coefficient, wall shear stress, and estimated velocity, 
the boundary layer height of the first layer is 0.25 mm. The boundary layer after meshing 
and its local enlarged features are shown in Figure 9. 

Figure 7. Rotor overall 3D model.

3. Numerical Simulation
3.1. Meshing

For the numerical modeling and simulation of the turbine model based on the Com-
putational Fluid Dynamics (CFD) method, the pre-processing software ICEM CFD was
adopted to generate and optimize the grid. The mesh division needs to consider the quality
of the mesh and the computer capability, select the unstructured tetrahedral mesh, and
perform mesh division after setting other basic parameters. Figure 8 shows the mesh of the
blade surface and its partial enlargement feature. It should be noted that the height of the
first layer grid node of the boundary layer can be calculated by y+. After calculating the
Reynolds number, wall friction coefficient, wall shear stress, and estimated velocity, the
boundary layer height of the first layer is 0.25 mm. The boundary layer after meshing and
its local enlarged features are shown in Figure 9.
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3.2. Mesh Independence Analysis

By employing the CFD method to carry out numerical simulation so as to predict the
power coefficient of the tidal current turbine, the accuracy and economy of the scheme
should be considered. The number of nodes generated by the above scheme is about
500,000, and the total number of grids is about 2.06 million. Grid independence testing is
required. For this model, five kinds of grid refinement methods are discussed, and the grids
are refined, respectively, in the inner domain and outer domain. The calculation results of
different numbers of nodes and grids are obtained, as shown in Table 4.

Table 4. Grid independence verification.

Scheme Number of Nodes Total Number of Grids Power Coefficient

1 497,198 2,068,095 0.2527
2 659,907 3,060,727 0.2537
3 889,314 4,972,207 0.2486
4 1,000,141 5,035,295 0.2898
5 1,639,727 7,848,863 0.2899
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It can be seen from Table 4 that when the number of grids increases in multiples, the
power coefficient does not change significantly, indicating that the increase in the total
number of grids does not mean that the energy efficiency will definitely increase. Within
the limit range of grid density, the denser the grid, the higher the calculation accuracy is.
According to the comparison of scheme 5 and scheme 4, it is obvious that beyond this limit,
further densification could not improve the accuracy effectively. When exceeding the mesh
density limit, the number of different meshes will not have a great impact on the simulation
results. In general, the mesh in scheme 4 has achieved a relatively ideal prediction effect.
Considering the efficiency of computing resource allocation and simulation, the more
the grids, the longer the computing time takes, so scheme 4 could be selected for the
subsequent simulation.

3.3. Calculation and Post-Processing

The finite volume solver Fluent was employed to solve the three-dimensional in-
compressible Reynolds-averaged Navier-Stokes (RANS) equation. Furthermore, the k − ε
turbulence model, which is the most widely used in industrial flow calculation, was used
to simulate the turbulence in the water flow, where the equation was closed. The rotating
coordinate system, combined with the method of Multiple Reference Frame (MRF), was ap-
plied for the rotation of the turbine in the inner watershed. In addition, the post-processing
software CFD-Post was harnessed to analyze the simulation results. As shown in Figure 10,
the boundary condition of the computational domain inlet was set to the velocity inlet.
The outlet was subjected to a static pressure-outlet boundary condition. The surrounding
boundary of the computational domain was defined by a fixed wall condition. The non-slip
rotating wall condition was applied on the blade and hub surface. The rotational domain’s
relationship to the computational domain was set as an interior condition. The convective
term was discretized by the second-order incoming flow scheme. Then, the Simple algo-
rithm was used to achieve the coupling between pressure and velocity, and the residual of
each block was reduced to less than 10−3 to converge.
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4. Analysis of Simulation Results
4.1. Starting Torque

The starting torque is the torque of the stationary blade under water flow. Table 5
shows the model starting torque corresponding to the change of the velocity range from
0.2 m/s to 0.5 m/s. According to the data, the starting torque of all the three models
increases with the increase of the flow speed. Different backward swept methods have a
certain influence on the starting performance. However, due to the small initial design size
of the models, the difference in starting performance is small. In comparison, model 1 has
the smallest starting torque, and the other two models have a small increase compared with
model 1. Among them, the increase amplitude of model 2 is larger than that of model 3.
When the flow velocity is 0.2 m/s, the increments of models 2 and 3 are the largest, which
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are 1.53% and 0.18%, respectively. With its relatively good start-up characteristics, model 2
can be used as the optimal choice among the three models in applications with lower
requirements for the design index of start-up flow velocity.

Table 5. The starting torques corresponding to the three models at different flow velocities.

Velocity(m/s)
Starting Torque/N.m

Model 1 Model 2 Model 3

0.2 0.0055851 0.0056708 (+1.53%) 0.0055949 (+0.18%)
0.3 0.0126293 0.0126649 (+0.28%) 0.0126492 (+0.16%)
0.4 0.0225441 0.0226049 (+0.27%) 0.0225837 (+0.18%)
0.5 0.0353502 0.0354231 (+0.21%) 0.0354115 (+0.17%)

4.2. Energy Efficiency Analysis

Figure 11 presents the variation trend of the energy-harvesting efficiency with increas-
ing TSR at the flow velocity of 0.4 m/s. The typical power coefficient values at several
TSRs, as well as corresponding comparison, are shown in Table 6.
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Table 6. Power coefficients of three models under different TSR.

TSR
Power Coefficient

Model 1 Model 2 Model 3

2 0.05498 0.05424 (−1.35%) 0.05341 (−2.86%)
3 0.16236 0.15923 (−1.93%) 0.16284 (+0.3%)
4 0.2527 0.25514 (+0.96%) 0.25534 (+1.00%)
5 0.21838 0.22091 (+1.20%) 0.22151 (+1.40%)
6 0.10393 0.10739 (+3.22%) 0.1096 (+5.17%)

It can be seen from Figure 11 that the captured energy of the three swept-back models
increases first and then decreases with the increasing TSR. When the TSR is about 4, the
power coefficient of each model is maximized. At the TSR of 2, the power coefficient of
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model 3 is the smallest. Compared with model 1, the power coefficients of models 2 and 3
are reduced by 1.35% and 2.86%, respectively. Meanwhile at the TSR of 3, the power
coefficient of model 2 is the smallest, and the power coefficients of model 1 and model 3 are
increased by 1.92% and 2.21%, respectively, compared with that of model 2. In the range of
high TSR from 4 to 6, model 2 and model 3 show good energy harvesting characteristics.
Compared with model 1, the power coefficients of both model 2 and model 3 increase, and
model 3 has a larger increase than model 2, where the corresponding values are increased
by 3.22% and 5.17%, respectively. Generally speaking, when only considering the energy
efficiency, model 3 is superior to the other two models.

4.3. Load Analysis

The thrust coefficient obtained by numerical simulation is shown in Figure 12. The
thrust coefficients and corresponding comparisons at certain TSRs are shown in Table 7.
The overall thrust trend of the three groups of models increases first and then decreases
with the increasing TSR, and the thrust coefficient decreases when TSR is greater than 5.
When the TSR is less than 4, the thrust load of model 3 is the smallest, and the thrust
loads of model 1 and model 2 increase by 0.33% and 0.36%, respectively, compared with
model 3. For the TSR more than 4 or equal to 4, the thrust load of model 1 is the smallest,
and that of model 3 is the largest. When the optimum TSR is 4, the thrust load of model 3 is
increased by 0.63% compared with that of model 1. Apparently, model 1 can perform better
in practical applications to minimize the thrust load on the turbine as much as possible.
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Table 7. Trust coefficients of three models under different TSR.

TSR
Thrust Coefficient

Model 1 Model 2 Model 3

2 0.43441 0.43453 (+0.03%) 0.43299 (−0.33%)
3 0.64484 0.63774 (−1.1%) 0.64689 (+0.32%)
4 0.73239 0.73574 (+0.457%) 0.73575 (+0.459%)
5 0.75227 0.75575 (+0.46%) 0.75702 (+0.63%)
6 0.72829 0.73242 (+0.57%) 0.73610 (+1.07%)
7 0.68359 0.69225 (+1.27%) 0.69507 (+1.68%)
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5. Experimental Verification

According to the above simulation analysis, model 2 has the optimal starting perfor-
mance, which is especially suitable for the utilization of the tidal current resource with low
velocity in most areas of China. For the characteristics of energy-capturing efficiency and
thrust load, model 2 is between the other two models. Furthermore, the power coefficient
of model 2 is only a little less than that of model 3 at high TSR. Therefore, model 2 was
selected as the optimal design. To verify the numerical simulation, it is very necessary to
carry out physical model experiments. Figure 13 shows the model experiment test platform.
The hydrodynamic performances of the turbine were analyzed by measuring the torque,
rotational speed, and thrust of the turbine when the flow velocity was 0.4 m/s.
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Figure 14 presents the comparison results between the experimental data and the
simulation data of the power coefficient of the turbine under different TSRs. It can be seen
that the power coefficient obtained from the simulation data and the experimental data
shows a trend of first increasing and then decreasing with the increasing TSR. When the
TSR is about 4.5, the power coefficient is nearly the largest, which is 0.247. When the TSR is
less than 3, the experimental data are close to the simulation value. For TSR values from
3 to 6, the experimental data are smaller than the simulation value. This is because the
simulation calculation is in ideal conditions, and the energy loss is small. However, the
numerical simulation could generally reflect the energy harvesting feature of the turbine.

Figure 15 presents the comparison results between the experimental data and the
simulation data of the trust coefficient of the turbine under various TSRs. The results
illustrate that the change trend of the thrust coefficient is roughly the same in the two
environments of the experiment and the numerical simulation. When the TSR is 4.6, the
thrust coefficient is 0.75278, which is close to the design condition. When the TSR is greater
than 4.6, the simulation value is greater than the test value. As for when the TSR is less
than 4.6, the experimental value is similar to the simulation value. In general, the variation
trend of the numerical simulation is the same as that of the experimental data, which could
be used to predict the thrust performance of the turbine.
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6. Conclusions

In this paper, swept-back symmetrical airfoil blades were designed based on three
kinds of swept design methods, and the influence of different designs on the hydrodynamic
performance of the adaptive variable pitch blade was discussed. Through SolidWorks
modeling and CFD simulation, starting torque, power coefficient, and load conditions
of the three models were analyzed. When considering the starting performance, the
starting torques of model 2 and model 3 have increased values compared with that of
model 1, and the maximum increasing value of model 2 is 1.53%. For the energy harvesting
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efficiency, model 2 and model 3 show better power characteristics than model 1, where
the corresponding power coefficient has been increased by 3.22% and 5.17%, respectively.
When considering the thrust characteristics, the load coefficient of model 2 is also between
model 1 and model 3. For the application of tidal current resource with low velocity in
most areas of China, model 2 is the best choice among these three models, which could
harvest low-speed tidal current energy more effectively, while the increase of the thrust
load is not very obvious. In addition, the water tank experiment of model 2 showed that
the experimental data of thrust load and energy harvesting efficiency under different TSRs
have the same trend as the numerical simulation, which verifies the rationality of the
numerical simulation. This study can provide an important reference for the design and
optimization of the adaptive variable pitch turbine.
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