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A B S T R A C T   

Long-term, high-resolution, regional wave hindcast datasets were generated using unstructured-grid Simulating 
WAves Nearshore (SWAN) models for the U.S. coastal waters to support nearshore wave energy development in 
the U.S. including those bordering U.S. territorial islands. The model domains resolved the entire U.S. exclusive 
economic zones, with a spatial resolution of approximately 200 m nearshore. The regional SWAN models were 
driven by the global WAVEWATCH III® model outputs and run for a 42-year period from 1979 to 2020. 
Extensive model validations were performed using buoy observations and altimeter data. Regional resource 
characterization was performed based on hindcast data points at 2 km from shore and along the 100 m isobath. 
Aggregations of wave resource parameters were produced, and spatial and seasonal variations were analyzed for 
all the regions. Wave resource metrics recommended by international standards, including a 3-h time series of six 
resource parameters, hourly frequency- and directionally resolved wave spectra at selected “virtual buoy” lo
cations, and average-annual values of omni-directional wave power, significant wave height, and energy period 
are publicly disseminated through an Amazon Web Service and a Marine Energy Atlas web application tool to 
facilitate wave energy research and a wide range of coastal ocean applications.   

1. Introduction 

Wave energy is the most promising marine renewable energy source 
because of its vast resource and high predictability. As waves have high 
energy densities, relative to other renewable resources and can be 
forecasted reasonably well despite their short term and seasonal vari
ability, they are a reliable renewable energy resource [1–5]. In the 
United States, wave energy resources make up approximately 80% of the 
ocean hydrokinetic energy resources (wave, ocean currents, and tidal 
currents) [6]. The global theoretical potential of wave energy is esti
mated 29,500 TWh per year [7], which is more than double the current 
global electricity demand of 13,400 TWh [8]. The theoretical wave 
energy along the edge of the continental shelf of the United States (U.S.) 
is estimated at 2640 TWh/year [9], approximately 65% of the annual 
electricity consumption 4054 TWh/year in U.S (https://www.energy. 
gov/sites/prod/files/2017/03/f34/qtr-2015-chapter4.pdf). The most 
abundant wave energy resources in the U.S. are found in coastal waters 

in the Pacific Ocean, e.g., the Aleutian trench, the West Coast, and the 
Hawaiian coast [9]. A variety of wave energy conversion (WEC) tech
nologies designed to capture, absorb, and convert the energy transferred 
by ocean waves to electricity, or some other useful form of energy, are 
under development, but the industry is still in its pre-commercial phase, 
partially due to the lack of detailed information about wave climate and 
resource characteristics at the regional scale. 

Wave energy resource characterization and assessment provide 
essential data and information to support WEC project siting, permit
ting, and development [10]. Significant efforts have been carried out to 
assess the wave resource at regional or nation-wide scales around the 
world based on wave hindcasts, including in the USA [11–13], Australia 
[14,15], European Atlantic Coast [16], India [17], China [18,19], Japan 
[20,21], France [22,23], Scotland [24,25], Portugal [26,27], Italy [28, 
29], Persian Gulf [30], and others. Some efforts have been carried out to 
assess the global wave resource using global hindcast datasets. Rusu and 
Rusu [31] estimated global wave power based on a 30-year ERA5 
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database from 1989 to 2018. An assessment on global wave resource and 
inter-annual variability was conducted by Reguero, Losada [32] based 
on a long-term global ocean wave reanalysis dataset from 1948 to 2000. 
However, most of these resource assessments were at the reconnaissance 
level and lacked the spatial resolution needed for accurate character
ization and assessment in the nearshore areas where initial WEC de
ployments are expected. The high-performance computing resources 
and storage required for multi-decade high-resolution model hindcasts 
with extensive coverage, and their costs, can be prohibitive. For 
example, the first U.S. nation-wide wave resource assessment, con
ducted by the Electric Power Research Institute, was based on a 
global-regional nested WAVEWATCHIII model with 4 arc minute (~5–7 
km) resolution in the nearshore region [11]. Similarly, Australia’s na
tional wave energy resource assessment was based on a 35-year hindcast 
using the nest-grid modeling approach with 4 arc minute resolution 
nearshore. Alternatively, model resolutions in the nearshore areas can 
be further refined using multi-level nested grids. However, for a 
national-scale resource assessment. It is preferable to maintain model 
consistency in terms of model configurations and inputs, validation 
methods, and model output formats using the same modeling approach. 

A joint effort, funded by the U.S. Department of Energy’s Water 
Power Technologies Office, was carried out by Pacific Northwest Na
tional Laboratory (PNNL), Sandia National Laboratories (Sandia), and 
National Renewable Energy Laboratory (NREL) to generate and 
disseminate high-quality wave hindcast datasets to support wave 
resource characterization and assessment and coastal applications in U. 
S. coastal waters (https://openei.org/wiki/PRIMRE/Signature_Project 
s/Resource_Characterization). The overall objectives of the study were 
as follows: (1) generate long-term, high-resolution wave hindcasts that 
cover the entire U.S. Exclusive Economic Zone (EEZ), at sufficient res
olution in the nearshore regions, for feasibility and design-level resource 
characterization and assessment; (2) improve model accuracy through 
extensive model validation and compute the IEC wave resource metrics 

[10]; and (3) develop and enhance data-sharing tools to disseminate the 
hindcast datasets and resource metrics through, an open-access web-
based platform, the Marine Energy Atlas (https://maps.nrel.gov/mar 
ine-energy-atlas/), for spatial data on marine energy resources. Ulti
mately, the wave hindcasts will provide long-term, high-resolution 
datasets of wave energy resource attributes and wave conditions to 
advance the wave energy industry. The datasets will inform WEC design; 
help develop wave energy resource classification systems that facilitate 
regional energy planning; and help characterize opportunities, con
straints, and risks to coastal engineering projects. 

The structure of this paper is as follows. The methodologies, 
including model domain, model grids, and model configurations are 
described in Section 2, followed by model validation with buoy data and 
altimetry data in Section 3. Wave resource characterization at a regional 
scale is presented in Section 4. Hindcast data dissemination is described 
in Section 5, and conclusions are summarized in Section 6. 

2. Methods 

2.1. Study domains 

As a nation-wide wave resource assessment, the study domains cover 
the entire U.S. EEZ, which extends up to 200 nautical miles (370 km) 
offshore and can be divided into eight regions: East Coast, Gulf of Mexico 
(GoM), Puerto Rico and U.S. Virgin Islands (PRUSVI), West Coast, 
Southern Alaska, Hawaii, U.S. Pacific Territories (USPT) (Fig. 1) (htt 
ps://www.gc.noaa.gov/documents/2011/012711_gcil_maritime_eez_m 
ap.pdf). The area of each U.S. EEZ region, as well as the corresponding 
model grid points are presented in Table 1. The USPT (a combination of 
seven subregions) has the largest EEZ area of 3,328,925 km2, followed 
by Southern Alaska with 2,836,000 km2. The PRUSVI region has the 
smallest EEZ area—211,429 km2. The total EEZ area covered by this 
study is 11,300,382 km2, which includes most of the U.S. EEZ except for 

Fig. 1. U.S. EEZ regions corresponding to Table 1 for wave resource assessment.  
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northern Alaska. 
Note that the coverages of the EEZ areas are not exactly the same as 

the model domains that consider the effect of physical processes in each 
region. For example, the effect of sea ice was not considered in this 
current study. Therefore, the northern Alaska coast (north of the Aleu
tian Islands and Bristol Bay) was excluded from the model domain 
because the northern Bering Sea and the Arctic Coast are covered with 
sea ice most of the year and wave energy there is small [33,34]. In the 
Atlantic Ocean, model domains (East Coast, GoM, and PRUSVI) extend 
much farther out of the EEZ to the central ocean basin, and they account 
for the local growth of wind waves and swells [35,36]. More discussion 
of model domain configurations is provided in Section 2.3. 

2.2. Wave models 

Several widely used third-generation phase-averaged wave models 
simulate the ocean wave dynamics and account for all the physics of 
wave growth and dissipation in the ocean and shallow-water regions; 
they include WAM [37], WAVEWATCH III [38,39]. SWAN [40,41], 
TOMWAC [42] and MIKE-21 SM [43]. Over the past decade, 
unstructured-grid wave models have been developed rapidly and with 
the flexibility to account for the need for high resolution in the nearshore 
area and better representation of complex shorelines and computational 
efficiency in a large model domain. 

The wave model used in this study is the unstructured-grid version of 
the Simulating Wave Nearshore (SWAN) Cycle III Version 41.10 [44]. 
SWAN solves the spectral action balance equation: 

∂N
∂t

+
∂cxN

∂x
+

∂cyN
∂y

+
∂cθN

∂θ
+

∂cσN
∂σ =

1
σ (Sin + Swc + Snl4 + Sbot + Sbrk) (1)  

where N is the wave action, cx and cy are the group velocity in the spatial 
domain based on linear wave theory, cθ and cσ are the propagation ve
locities in spectral domain, θ is the wave direction, and σ is the radian 
frequency of the waves. The right-hand side represents the sinks and 
sources of energy. Sin and Swc are wind input and whitecapping; Snl is the 
nonlinear quadruplet interactions; Sbot and Sbrk are the dissipation due to 
bottom friction and depth-induced wave breaking, respectively. For the 
detailed definitions and descriptions of source terms, readers are 
referred to Refs. [45–48]. 

WAVEWATCH III global wave reanalysis developed by the U.S. Na
tional Oceanic and Atmospheric Administration (NOAA) was also used 
in this study to provide boundary conditions for all regional SWAN 
model hindcasts from 1979 to 2020 for a period of 42 years. The 
WAVEWATCH III global wave reanalysis has been thoroughly validated 
using in situ data and satellite-borne altimeters [49]. 

2.3. Model configurations 

All regional SWAN models were forced by the NOAA global wave 
hindcast based on WAVEWATCH III at the open boundaries (see Section 
2.2) and wind fields at the sea surface. Wind forcing comes from the 
Climate Forecasting System Reanalysis (CFSR) from January 1980 
through March 2011 and from the Climate Forecast System (CFSv2) 
from April 2011 onward [50,51]. Wind was bilinearly interpolated from 
CFSR and CFSv2 into the model domains. Because of the availability of 
the different versions of wind forcing (CFSR and CFSv2), our wave 
hindcast study was also divided into two phases: Phase 1 covers the 
period from 1979 to 2010 and Phase 2 from 2011 to 2020. During Phase 
1, the natural Gaussian grid was used as a source of the wind in the 
Atlantic, GoM, and Caribbean. The 0.5◦ reprojection was used as the 
wind source for the Pacific regions during Phase 1. Out of all models, the 
Hawaii model was the exception; it used a dynamically downscaled 
wind product from the University of Hawaii. The downscaling was done 
using Weather Research and Forecasting to a spatial resolution of 5 km 
and used CFSR as boundary conditions [52]. During Phase 2, all regions 
used the same CFSv2 0.2◦ grid as a source for wind interpolation. 
Although discrepancies exist between CFSR and CFSv2 in terms of model 
resolution and availability of data for assimilation, both models have 
been found to be suitable for wave hindcasting [53]. 

We strived to achieve a consistent model configuration, but some of 
the parameters had to be adjusted to account for local characteristics. In 
the case of the East Coast, the SWAN model domain was extended to the 
Central Atlantic. The large model domain resulted in a significant fetch 
for development of local waves and swells within the domain. Therefore, 
it was found, through a calibration analysis, that approximating the two- 
dimensional spectrum using a Gaussian distribution in directional space 
and JONSWAP in frequency space provided good results. These data 
were collected at the open boundary from bulk wave parameter output 
[36]. In the case of the Pacific domains, WAVEWATCH III was reim
plemented to store spectral output at the SWAN open boundaries. There 
are two reasons for this distinction. The first is that the SWAN models do 
not extend much beyond the EEZ and thus the open boundaries have a 
larger effect on the waves within the domain. In addition, multimodal 
sea states are the norm in the Pacific Ocean. For example, in American 
Samoa waves generated in the Southern Ocean, the Northwest Pacific, 
and the tropical Pacific can all reach the territory simultaneously, thus 
requiring a frequency and directionally resolved spectral characteriza
tion of the boundary conditions [66]. WAVEWATCH III was reimple
mented following the same approach used in the NOAA reanalysis with 
the distinction of two new meshes being developed for the tropical Pa
cific at 10 and 4 arc minute resolutions; these resolutions were consis
tent across the rest of the domains. 

SWAN default formulations for third-generation physics were 
initially used. A calibration procedure was performed on the East Coast 
to determine the adequate model coefficients. Except for Southern 
Alaska, all models included triad interactions following Edelberky 
(1996) [54]. The West Coast model described in Refs. [55,56] initially 
did not include triad interactions but was executed again including triad 
interactions for completeness. In addition, the model domain was 
extended to cover the EEZ and is described in Ref. [57]. 

The frequency ranges in all regions were determined via convergence 
analysis, which resulted in varying low- and high-frequency cutoffs. 
However, a common range between 0.04 and 0.5 Hz was resolved in the 
models. The Pacific Ocean models had a lower minimum frequency to 
account for the transpacific swells that generally have longer wave pe
riods. In contrast, significant local wave generation activity occurs in the 
GoM and PRUSVI, and thus a higher frequency cutoff was used to 
accurately account for these waves. In addition, the base directional 
resolution considered was 15◦. However, sensitivity analyses were per
formed in all regions to ensure model convergence and to mitigate the 
Garden Sprinkler Effect (GSE). A directional resolution of 5◦ was found 
to be necessary around Alaska, Hawaii, and the USPT to mitigate this 

Table 1 
Areas of U.S. EEZ regions considered in this study and details of the models used.  

Region EEZ (km2) Model Grid Pointsc 

West Coast 825,549 699,904 
Southern Alaska 2,836,000a 3,894,283 
Hawaii 2,474,884 1,696,188 
U.S. Pacific Territories (USPT) 3,328,925b 1,470,061 
East Coast 915,763 2,635,135 
Gulf of Mexico (GoM) 707,832 3,351,881 
Puerto Rico and U.S. Virgin Islands (PRUSVI) 211,429 1,304,756 
Total 11,300,382 14,552,304  

a The total area for the entire Alaska EEZ is 3,770,000 km2. 
b Commonwealth of Northern Mariana Islands, Guam, American Samoa, 

Jarvis Island, Johnston Atoll, Palmyra Atoll and Kingman Reef, Baker and 
Howland Islands, and Wake Island. 

c Model grids cover larger areas than the EEZs, especially for the U.S. East 
Coast and GoM. 
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effect, while the resolution needed to be increased to 10◦ in the PRUSVI. 
GSE is more evident with swell propagation, which varies by location. 

In the SWAN model solution, there is a close interplay between the 
number of iterations in the Gauss Siedel algorithm and the time step. In 
essence they are nested loops in the model solution. These two param
eters have a large influence on the computing time, and it was desirable 
to minimize the number of iterations and maximize the time step. SWAN 
in its unstructured solution is not subjected to the Courant–Frie
drichs–Lewy criterion because the solution method is implicit [58]. A 
convergence analysis was carried out in all regions to determine the least 
computational effort needed to avoid solution deterioration. Swells 
traveling across the mesh, the number of sub-domains used to solve the 
equations using the Message Passing Interface, and the physical size of 
the mesh all influence these characteristics. Therefore, this parameter is 
expected to vary by model. In the case of the USPT, except for the 
Commonwealth of the Northern Mariana Islands and the U.S. Territory 
of Guam (CNMI-Guam) and American Samoa, the maximum number of 
iterations allowed was five, but over 99% of the time the model 
converged in two iterations. Because the models were smaller, there was 
no need to limit the number of iterations to decrease runtime. Model 
configurations for all the regions are summarized in Table 2. 

2.4. Model grids and resolutions 

The WAVEWATCH III global hindcast reanalysis employed a three- 
level nested-grid approach with a global grid resolution (Level-1) of 
0.5◦ and regional nested-grid resolutions (Level-2 and -3) of 10 and 4 arc 
minutes, respectively. However, the WAVEWATCH III regional grids 
were found to not fully cover the EEZ regions in both the Southern 
Alaska and West Coast regions, and they only cover a small portion of 
the Hawaii region. There are no regional nested grids for the USPT. 
Therefore, in the Pacific Ocean the extents of the 10 and 4 arc minute 
WAVEWATCH III models off Southern Alaska and the West Coast were 
extended beyond the U.S. EEZ. In the Central Pacific, new WAVE
WATCH III 10 and 4 arc minute models were developed to cover all 
USPT and Hawaii. 

Separate SWAN models were developed for each region to incorpo
rate the local conditions in the modeling system. In Hawaii, the mesh 
size was depth dependent to account for refraction due to sea mounts 
that do not have surface expression but are shallow enough to refract 
waves. The model mesh has a resolution of 200 m for waters less than 

500 m deep and relaxes to match the boundary resolution of 5 km. This 
same approach was taken in the rest of the USPT. The mesh around 
Southern Alaska was constrained to 300 m or finer within 30 km from 
shore. This was done to accurately model the swell exchanges between 
the North Pacific and the Bering Sea between the Aleutian Islands. The 
West Coast region has very narrow continental shelf, comparing to other 
regions. Instead of using a depth-dependent mesh generation method, a 
simple approach was taken to specify the mesh resolution in the range of 
200–350 m in the nearshore areas. 

The GoM and PRUSVI models were run on the same mesh, taking 
advantage of the unstructured-grid feature of SWAN. The model reso
lution in the nearshore region was specified as being approximately 200 
m and gradually increased to 4000–5000 m near the U.S. EEZ and 
maintained the same outside EEZ for computational efficiency. 

The total computational meshes for all the regions have more than 
14.5 million grid points (nodes). Model grid points for each model 
domain are listed in Table 1. The total number of model grid points is 
proportional to the size of the model domain and to the complexity of 
the shorelines and number of islands where high model resolution is 
required. Examples of model meshes for the Hawaii, Southerm Alaska, 
and East Coast regions are shown in Fig. 2. 

3. Model validation 

Model validation is a critical step in understanding the accuracy of 
the models, sources of the errors, and the associated physical processes, 
before applying the wave hindcast datasets to resource characterization 
and assessment. In this study, model validation was conducted using two 
different methods based on the types of measurement data. The first 
method is the spectral wave buoy data method, which can be used to 
derive the six IEC resource parameters at buoy locations. The second is 
the altimetry data method, and only significant wave height was 
compared with altimetry data along all the satellite track locations 
where altimetry data were used to derive the significant wave height. 

Model simulations for all the regions were conducted for a 42-year 
period from 1979 to 2020. Model runs were executed in three national 
labs’ high-performance computing facilities: Constance at PNNL, Chama 
and Skybridge at Sandia, and Eagle at NREL. A summary of the model 
validation with wave buoy data is provided in Section 3.2. Model vali
dation using altimetry data is reported in Section 3.3. 

Table 2 
Regional model configurations.  

Parameter Southern Alaska East Coast PRUSVI GoM Hawaii USPT West Coast 

Wind temporal 
resolution 

1 h 

Wind spatial resolution Phase1: 0.50◦Phase2: 0.20◦ Phase1: 0.32◦

Phase2: 0.20◦

Phase1: 
0.05◦

Phase2: 
0.20◦

Phase1: 0.50◦

Phase2: 0.20◦

Spectral boundary 
conditions 

Two-dimensional Spectrum       

Wind input Janssen (1991) [59]; Cavaleri and 
Malanotte-Rizzoli (1981) [47]       

Quadruplet interactions Hasselmann et al. (1985) [45]       
Whitecapping Janssen (1991) [59]       
Triad interactions No Edelberky (1996) 

[54]      
Depth-induced breaking Battjes and Janssen (1978) [46]       
Bottom friction JONSWAP (1973) [60]       
Sea ice Considered in WAVEWATCH III forcing [39]       
Minimum spatial 

resolution 
200 m in nearshore areas       

Number of frequencies 29 28 28 28 31 34 29 
Frequency range (Hz) 0.035–0.505 0.040–0.520 0.040–1.0 0.040–1.0 0.030–0.505 0.030–0.697 0.035–0.505 
Directional resolution 5◦ 15◦ 10◦ 10◦ 5◦ 5◦ 10◦

Time step (min) 10 10 3 3 2 3–5 5 
Iterations 2 1 3 3 5 5 3  
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3.1. Wave resource parameters and model performance metrics 

As recommended by IEC-TS 62600–101 [10], six resource parame
ters should be calculated and analyzed for any wave energy resource 
characterization and assessment: omnidirectional wave power, signifi
cant wave height, wave energy period, spectral width, the direction of 
maximum directionally resolved wave power, and the directionality 
coefficient [10]. However, by default, SWAN v41.10 does not compute 
omnidirectional wave power, the directionality coefficient, and the di
rection of maximum directionally resolved wave power, although some 
parameters, such as total wave power, can be calculated based on SWAN 
outputs [61]. This capability was added to SWAN v41.10 to calculate 
and store the six IEC resource parameters at each computational grid 
point [36,55]. The definitions of the six IEC wave resource parameters 
are described below. 

Omnidirectional wave power (J [W /m]) is the flux of energy through 
a unit circle and describes the density of power: 

J = ρg
∑

i,j
cg,iSijΔfiΔθj (2)  

where ρ is the water density, g is the acceleration of gravity, cg is the 
group velocity, Sij is the directionally and frequency resolved variance 
spectrum, f is the discrete frequency, and θ is the discrete wave direc
tion. 

The significant wave height provides a characteristic wave height of 
the sea state and is defined as follows: 

Hm0 = 4.004
̅̅̅̅̅̅
m0

√
(3)  

where m0 is the zeroth spectral moment. Spectral moments are 
computed from the variance spectrum via: 

mn =
∑

i
f n
i

(
∑

j
SijΔθj

)

Δfi (4) 

Following linear wave theory, Hm0 [m] is directly proportional to the 
total energy of the sea state: 

E =
1
16

ρg(Hm0)
2
. (5) 

The energy period (Te [s]) is presented as a characteristic wave 
period: 

Te =
m− 1

m0
(6)  

where the spectral moments are computed following Eq. (4). The spec
tral width (ε0) characterizes the spread of the energy in frequency space: 

ε0 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
m− 0m− 2

m2
− 1

− 1
√

(7) 

The directional characteristics of the sea state can be described by 
the directionally resolved wave power: 

Jθ = ρg
∑

i,j
cg,iSijΔfiΔθj cos

(
θ − θj

)
δ
{

δ = 1, cos
(
θ − θj

)
≥ 0

δ = 0, cos
(
θ − θj

)
< 0 (8)  

where only the wave power crossing a vertical plane perpendicular to a 
direction θ is accounted for. The direction of maximum directionally 
resolved wave power θJmax is the direction that maximizes Jθ. The 
directionality coefficient (d) characterizes the directional spread of 
wave power: 

d =
JθJmax

J
(9)  

where JθJmax [W /m] is the wave power at θJmax. The six parameters 
defined above provide a comprehensive description of the sea state 
adequate for a reconnaissance study. 

The most commonly used error metrics for evaluating the model 
performance for non-directional resource parameters are the root-mean- 
square-error (RMSE), scatter index (SI), bias (b), and the linear corre
lation coefficient (R): 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(Pi − Mi)
2

N

√

(10)  

SI =
RMSE

M
(11)  

bias=
1
N

∑N

i=1
Pi − Mi (12)  

R=

∑N
i=1(Pi − P)(Mi − M)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[∑N
i=1(Pi − P)2][∑N

i=1(Mi − M)
2]

√ (13)  

where N is the number of measurements, Mi is the measured data, Pi is 
the predicted results, and overlines represent the time average. To 
evaluate the model performance for directional resource parameters, i. 
e., direction of maximum directionally resolved wave power and 
directionality coefficient, the angular bias (bθ) [62] and the circular 
correlation (Rθ) were used following the Hanson et al. [63] method: 

Fig. 2. Examples of SWAN model domains and mesh resolutions for Hawaii (a, b); Southern Alaska (c, d), and East Coast (e, f) regions.  
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biasθ = tan− 1
∑N

i=1 sin|Pi − Mi|
∑N

i=1 cos|Pi − Mi|
(14)  

Rθ =

∑N
i=1 sin(Pi − P)sin(Mi − M)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅( ∑N
i=1[sin(Pi − P)]2

)(∑N
i=1[sin(Mi − M)]

2)
√ (15)  

3.2. Model validation with buoy data 

All the regional models have been validated with wave buoy data 
from the NOAA National Data Buoy Center (NDBC), the Coastal Data 
Information Program (CDIP), Fisheries and Ocean Canada, and Pacific 
Islands Ocean Observing System (PacIOOS). Model results were vali
dated not only for six IEC resource parameters but also for wave spectral 
characteristics. Detailed model validation results and discussion were 
reported in previous studies [33,35,36,55,64–67]. A summary of the 
model validation for the six regional IEC parameters for all the regions is 
provided in this section. 

All the buoys within the SWAN model domains for which data re
cords exist for the period from 1979 to 2020 were considered in the 
model validation efforts. A total of 110 buoys were used for the model 
validation. The West Coast region has the most buoys (42), followed by 
Southern Alaska (23) and Hawaii (22). PRUSVI and USPT have the 
fewest—only four buoys in each region. Fig. 3 shows the distributions of 
buoys color-coded by region. 

The regional averaged error statistics for the six IEC resource pa
rameters are shown in Table 3 through 5. Note that for the directional 
parameters, i.e., direction of maximum directionally resolved wave 
power, only bias and the linear correlation coefficient were calculated. 
For significant wave height Hm0, the RMSEs are in the range of 
0.24–0.48 m (Table 3), the highest being in the Southern Alaska and 
West Coast regions where waves are strong. The scatter index, a 
normalized error parameter (Eq. (11)), ranges from 0.17 to 0.28 
(Table 3), and the highest occurred in the East Coast region where wave 

heights are generally low but are subject to the impact of extreme waves 
induced by tropical cyclones during the hurricane season (summer and 
fall). The biases for the simulated wave heights are small and positive 
(except for PRUSVI), indicating the models are slightly overpredicting 
the significant wave heights at the regional scale. The linear correlations 
are also very good, all above 0.92, except for the East Coast region that 
has a value of 0.88 (Table 3). The trends in the error statistics for the 
omnidirectional wave power are similar to those for significant wave 
height but have larger values (Table 3) because the wave energy is 
proportional to the square of the significant wave height (Eq. (5)). The 
scatter indexes for the East Coast and GoM regions are noticeably greater 
than those for other regions because the average wave power in those 
two regions is small (see Section 4.2). Waves in these regions propagate 
over strong ocean currents and eddy systems, such as Florida Current 
and Gulf Stream. However, the present models did not consider wave- 
current interaction and wave dissipations associated with it, which 
may contribute to the error in simulating high-frequency waves that 
dominate the wave climate in areas with strong currents. 

The RMSE for the energy period varies from 0.70 to 1.22 for all re
gions (Table 4). In general, the RMSEs show larger values in the 
Southern Alaska, West Coast, and Hawaii regions, likely because wave 
periods are much longer than the those in other regions, as indicated by 
the scatter index, which is below 0.18 for all the regions. The biases for 
the simulated wave energy period are mostly positive, indicating the 
models overpredicted the energy period, especially in the large regions 
like Southern Alaska, the West Coast, Hawaii, and the East Coast. 
However, the maximum bias is only 0.66 (in Hawaii), which showed the 
regional models accurately simulated the wave period, as indicated by 
the high linear correlation coefficients (Table 4). The RMSE, scatter 
index, and bias for the spectral width are generally small (Table 4). 
However, the linear correlation coefficients for the Southern Alaska, 
East Coast, and GoM regions are relatively low, likely due to model 
capability in capturing the wide spread of energy in the frequency 
domain under extreme sea states. The accuracy of the simulated ε0 is 

Fig. 3. Buoy locations for model validations in the Southern Alaska, Hawaii, USPT, West Coast, East Coast, GoM, and PRUSVI regions.  
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relatively low compared to other parameters as ε0 is a highly non-linear 
function of the spectral moments. This error is more pronounced in 
modeling high-frequency wave climates, e.g., in the GoM, where the 
small error in high-frequency spectrum bands causes substantial 
changes in ε0 calculation. 

The error statistics (bias and R) for the direction of maximum 
directionally resolved wave power showed the model results are overall 
in good agreement with the data (Table 5). The absolute values of the 
biases are range from 0.66 deg in the PRUSVI region to 17.3 deg in the 
Southern Alaska region. The linear correlation coefficients are close to 
0.9 except in the Southern Alaska (0.73) and East Coast (0.59) regions, 
which is again likely due to the challenge of simulating wave directions 
in areas of active wave growth and under extreme weather conditions. 
The directionality coefficient, a normalized parameter that relates to 
θJmax and characterizes the directional spread of the energy distribution, 
showed good errors in RMSE, SI, and bias. However, the linear corre
lation coefficients were generally low. 

3.3. Validation with altimetry data 

Satellite-borne radar altimeters have provided near continuous sig
nificant wave height estimates since 1985, starting with the GEOdetic 
SATellite (GEOSAT) mission. Throughout the hindcast period of 
1979–2020, a total of 14 missions provided data in the study regions. 
The mission names and timelines are shown in Fig. 4. These altimetry- 
based data are valuable because they can be used to evaluate spatial 
patterns of model performance, which is currently not possible with in 

situ measurements because doing so would require very dense wave 
buoy arrays. In addition, these altimeters provide total coverage in the 
study region. This is critical because five of the seven Pacific Island 
territories do not have in situ measurements during the study period. 
Furthermore, other regions are significantly subsampled; for example, 
there is only one buoy deployed in American Samoa and three buoys in 
the southern Mariana Islands. This dataset has two main limitations that 
must be acknowledged. First, the time interval between measurements is 
generally long, on the order of multiple days. Second, the on-board radar 
altimeters only provide significant wave height estimates. However, the 
agreement between altimeter estimates and in situ measurements has 
been found to be very high [1,68]. Despite these shortcomings, this 
dataset is still a very valuable source of data for model validation, 
particularly in regions where no in-situ measurements occur, and it has 
been used in previous wave resource assessments [69]. 

Significant wave height is measured by actively emitting microwaves 

Table 3 
Forty-two-year regional averaged error statistics for significant wave height and omnidirectional wave power.    

Hm0 (m) J (kW/m) 

Region Buoy # RMSE SI bias R RMSE SI bias R 

West Coast 46 0.40 0.22 0.16 0.93 13.5 0.65 4.0 0.92 
Southern Alaska 23 0.48 0.21 0.10 0.95 22.8 0.75 7.7 0.91 
Hawaii 22 0.32 0.17 0.04 0.92 11.0 0.61 2.0 0.88 
USPT 4 0.27 0.16 − 0.04 0.92 8.0 0.61 − 0.25 0.82 
East Coast 17 0.39 0.28 0.11 0.88 10.51 1.05 2.06 0.83 
GoM 11 0.25 0.21 0.01 0.93 5.22 1.15 0.33 0.90 
PRUSVI 4 0.24 0.18 0.03 0.92 5.12 0.71 1.19 0.88  

Table 4 
Forty-two-year regional averaged error statistics for energy period and spectral width.   

Te (s) ε0 

Region RMSE SI Bias R RMSE SI bias R 

West Coast 1.19 0.13 0.53 0.85 0.07 0.19 − 0.01 0.73 
Southern Alaska 1.22 0.16 0.61 0.84 0.10 0.29 0.02 0.54 
Hawaii 1.21 0.15 0.66 0.86 0.07 0.18 − 0.01 0.67 
USPT 0.72 0.09 0.28 0.87 0.05 0.14 − 0.01 0.68 
East Coast 1.15 0.18 0.58 0.75 0.08 0.25 0.02 0.47 
GoM 0.74 0.14 − 0.05 0.82 0.09 0.30 0.03 0.51 
PRUSVI 0.70 0.12 0.08 0.83 0.07 0.20 0.03 0.59  

Table 5 
Forty-two-year regional averaged error statistics for direction of maximum 
directionally resolved wave power and directionality coefficient.   

θJmax (deg) d 

Region bias R RMSE SI bias R 

West Coast 11.0 0.88 0.09 0.11 0.04 0.73 
Southern Alaska 17.3 0.73 0.15 0.21 0.07 0.46 
Hawaii 8.8 0.87 0.10 0.14 0.01 0.63 
USPT 9.0 0.88 0.08 0.10 0.04 0.86 
East Coast 4.37 0.59 0.16 0.22 0.10 0.32 
GoM − 0.77 0.89 0.11 0.12 0.05 0.62 
PRUSVI 0.60 0.89 0.08 0.10 0.02 0.67  

Fig. 4. Missions that provide publicly available significant wave height used 
for model validation. 
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in the Ku band (13–17 GHz) in all missions except Satellite with ARgos 
and ALtika (SARAL) mission, which used a Ka band at 35.75 GHz. The 
sea surface variance is estimated from the shape of the waveform returns 
[70]. Data were downloaded from the Australian Ocean Data Network 
portal (https://portal.aodn.org.au/), which has a consistent database 
because data were reprocessed for all missions using a consistent algo
rithm (the technical details can be found in Ref. [1]). To facilitate 
model-data comparisons the data are binned over a 0.20◦grid. These 
bins measure 22.2 km in the meridional direction and vary from 22.2 km 
at the equator to 11.1 km at 60◦N in the zonal direction. Each bin must 
contain at least 200 model-data pairs to be considered for use in model 
validation. 

The spatial distribution of RMSE using altimetry data is shown in 
Fig. 5. Overall, Southern Alaska has the maximum error (up to 0.75 m) 
compared to other regions, followed by the West Coast, East Coast, and 
northern Hawaii regions. The Pacific coast of the Aleutian archipelago 
has the highest 90th percentile waves in the U.S. EEZ [71]; thus, higher 
RMSEs, which are dimensional, can be expected. Simulated significant 
wave heights are in good agreement with altimetry data in the USPT, 
GoM, and PRUSVI regions (Fig. 5). In the East Coast, the offshore sites 
with relatively large error (red stream along the East Coast in Fig. 5) 
overlay with the Gulf Stream, demonstrating the influence of ocean 
currents on the wave modeling in the East Coast region. 

Error statistics for significant wave height averaged over the entire 
EEZ regions are shown in Table 6. The RMSE ranges from 0.33 m in the 
USPT to 0.75 m in Southern Alaska. The trend and values of error sta
tistics for the significant wave height using altimetry data (Table 6) are 
consistent with those shown in Table 3 using wave buoy data, which 
confirms the model validation methodologies using both observation 
datasets are correct and the regional models are capable of accurately 
simulating wave dynamics in the U.S. coastal waters using the multi- 
scale, multi-resolution approach. 

4. Regional resource characterization 

The six IEC resource parameters were outputted at every grid point of 
the model domain and at 3-h intervals for the 42-year period. Once all 
six IEC resource parameters are produced for all regions, resource 
characterization can be performed at the regional scale by calculating 
the aggregated resource parameters and analyzing the regional and 
temporal variabilities of wave energy, following the methodologies 

recommended. 

4.1. Aggregation of wave resource parameters 

As recommended by IEC-TS 62600–101, aggregated wave resource 
parameters were calculated for each region. Because the nearshore area 
is the most promising area for harvesting wave energy, we calculated the 
aggregated wave resource parameters in the nearshore for all the re
gions. We characterized wave resources for each region at locations 
based on two factors: the distance from the shore and the water depth. 
Data were collected at points 2 km from shore and at the 100 m isobath 
around all the coasts. Model results were extracted at a spatial resolution 
(distance between two data stations) of 1 km and at 3-h intervals for the 
statistics analysis. Two kilometers from shore was chosen, rather arbi
trarily, to represent the practical distance for shore-connected devices. 
The 100 m isobath was selected to complement the analysis and explore 
the diversity of sites around the U.S. 

Fig. 6a shows the distributions of water depth for data points at 2 km 
from the shore and the distance from shore for data points along the 100 
m isobath. Clearly, at the 2 km distance from shore, nearly 100% of the 
data points are within 50 m water depth in the East Coast and GoM 
regions because of the broad continental shelf. In contrast, most of the 
stations in the USPT and Hawaii regions are in waters deeper than 500 m 
(Fig. 6a). This is because the insular shelves are much narrower than the 
continental shelf. Stations at 2 km offshore in the West Coast and 
Southern Alaska regions are distributed within 200 m water depth and 
the largest fraction of them are within 50 m (Fig. 6a). Stations in Hawaii 
spread out across a wide range of water depths up to 1000 m deep, but 
most are evenly distributed in areas shallower than 200 m depth 

Fig. 5. Distributions of RMSE of simulated significant wave height in U.S. EEZ using altimetry data.  

Table 6 
Error statistics for significant wave height for different regions using altimetry 
data.  

Region RMSE (m) SI bias (m) R 

West Coast 0.48 0.20 0.21 0.92 
Southern Alaska 0.74 0.28 0.10 0.87 
Hawaii 0.39 0.17 0.09 0.88 
USPT 0.33 0.16 − 0.01 0.85 
East Coast 0.49 0.29 0.17 0.88 
GoM 0.33 0.31 0.03 0.87 
PRUSVI 0.34 0.23 0.11 0.82  
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(Fig. 6a). 
On the other hand, most stations (>60%) along the 100 m isobath in 

the USPT region are less than 2 km from shore (Fig. 6b). In the East Coast 
region, most of the stations along the 100 m isobath are more than 10 km 
from shore, and more than 50% stations are located in the range of 
10–50 km offshore (Fig. 6b). In the West Coast, Southern Alaska, and 
GoM regions, stations along the 100 m isobath showed an increasing 
trend in distance offshore—most of them are located between 10 and 50 
km from shore (Fig. 6b). In contrast, stations in the Hawaii and PRUSVI 
regions showed a decreasing trend in distance offshore; the largest 
fraction of stations is located within 2 km from shore (Fig. 6b). 

The approach of combining two sets of samples based on two 
important factors (water depth and distance from shore) can provide 
valuable insight when evaluating and comparing the resource across 
regions. However, the specific values (100 m water depth and 2 km 
distance from shore) chosen in this study only serve as examples for 
users who want to perform similar analyses with different distances from 
shore or water depths that are better suited for their applications in the 
future. This high-resolution dataset allows users to assess the resource at 
a given depth even if it is located very close to shore. 

Aggregated values for the five IEC resource parameters were calcu
lated for each region at 2 km from shore and at the 100 m water depth 
are shown in Tables 7 and 8, respectively. The direction of maximum 
directionally resolved wave power was not considered because it is 
meaningless to average the directions. Compared with J, Hm0 and Te, the 
Pacific (Southern Alaska, Hawaii, West Coast, and USPT regions) is more 
energetic than the Atlantic (East Coast and PRUSVI regions) at 2 km 
from shore, because the Atlantic faces the direction of the westerlies and 

is in the path of intense extratropical storms [72]. In the Pacific, the 
overall most energetic region is the West Coast region, which has an 
average J of 16.9 (kW/m), an Hm0 of 1.4 m and a Te of 9.4 s. The 
Pacific-facing coast of Southern Alaska is more energetic than the West 
Coast, but the Bering Sea-facing shores are also aggregated in this 
analysis and are significantly less energetic [33]. These aggregate sta
tistics provide guidance on the expected energy production if wave 
energy converters are spread evenly along the coast at 2 km from shore. 
The USPT region has higher omnidirectional wave power at 2 km from 
shore than the Southern Alaska region. This is mostly driven by the 
relatively small size of the islands, and they cast little shadow on the 
wave energy resource [64], which implies that a significant amount of 
power can be found close to shore and in multiple directions. Note that 
the average values of the resource parameters in the USPT region do not 
equal the means of the values for the subregions because they are 
weighted by the number of stations around each subregion. In the East 
Coast region, the average omnidirectional wave power increases with 
distance from shore [35]. The offshore along the East Coast is more 
exposed to swells generated by nor’easter and Bermuda High pressure 
system, while the nearshore is more dominated by local wind seas [71, 
73]. The GoM region has the lowest wave resource at 2 km from shore 
compared to the rest of the regions, with an average J of 1.1 (kW/m), an 
Hm0 of 0.4 m, and a Te of 3.5 s. This is because the GoM is a 
semi-enclosed basin and therefore is fetch limited and dominated by 
local wind-seas. 

As shown in Table 8, a significant amount of the wave energy re
sources in the East Coast region are located farther offshore because the 

Fig. 6. Distribution of data points used in aggregated statistical analysis of wave resource parameters (a) as a function of water depth at 2 km distance offshore and 
(b) as a function of distance from shore along the 100 m isobath. 

Table 7 
Aggregated statistics for wave resource parameters 2 km offshore.  

Region J(kW/m) Hm0(m) Te(s) ε0- d- 

West Coast 16.9 1.4 9.4 0.39 0.89 
Southern Alaska 12.7 1.3 7.0 0.45 0.85 
Hawaii 11.6 1.4 8.6 0.41 0.78 
USPT 13.0 1.6 8.2 0.37 0.77 
American Samoa 14.6 1.7 9.2 0.39 0.70 
Baker and Howland Islands 15.0 1.8 9.0 0.38 0.65 
CNMI-Guam 11.8 1.5 7.8 0.35 0.81 
Jarvis Island 15.7 1.9 8.9 0.41 0.63 
Johnston Atoll 13.4 1.6 8.8 0.45 0.78 
Palmyra Atoll and Kingman Reef 17.6 1.9 8.7 0.41 0.62 
Wake Island 17.8 1.9 8.5 0.34 0.75 
East Coast 3.8 0.8 6.4 0.38 0.90 
GoM 1.1 0.4 3.5 0.40 0.89 
PRUSVI 5.4 1.1 6.5 0.40 0.86  

Table 8 
Aggregated statistics for wave resource parameters along the 100 m isobath.  

Region J(kW/m) Hm0(m) Te(s) ε0- d- 

West Coast 33.6 2.2 9.8 0.34 0.85 
Southern Alaska 21.5 1.8 7.7 0.40 0.81 
Hawaii 12.6 1.5 8.5 0.41 0.76 
USPT 11.6 1.5 8.1 0.38 0.78 
American Samoa 14.3 1.7 9.1 0.38 0.72 
Baker and Howland Islands 10.6 1.5 8.7 0.39 0.73 
CNMI-Guam 7.6 1.2 7.4 0.36 0.86 
Jarvis Island 11.6 1.6 8.5 0.43 0.72 
Johnston Atoll 18.9 2.0 8.4 0.40 0.71 
Palmyra Atoll and Kingman Reef 18.7 2.0 8.5 0.41 0.60 
Wake Island 10.3 1.4 7.9 0.37 0.84 
East Coast 14.5 1.7 6.9 0.33 0.79 
GoM 4.8 1.1 4.9 0.32 0.82 
PRUSVI 7.1 1.2 6.7 0.38 0.86  
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energy is driven by nor’easter and Bermuda High pressure swells as 
mentioned above. The 100 m isobath on the East Coast is much farther 
from shore (5 km–100 km, see Fig. 6b) than in the rest of the regions, 
which also allows an extended fetch for continuous wind-wave growth 
beyond the 2 km distance from shore. Therefore, the average wave 
power in the East Coast region increases from 3.8 at the 2 km offshore to 
14.5 kW/m along the 100 m isobath, which is comparable to the wave 
power in the Hawaii and USPT regions (Table 8). In addition, waves 
traveling toward shore have lost less energy to bottom friction at the 
100 m isobath stations because of deep water. Wave resources in the 
West Coast and Southern Alaska regions at stations along the 100 m 
isobath also increase compared to those at 2 km from shore (Table 8), 
because most of the stations along the 100 m isobath are farther offshore 
than 2 km (Fig. 6b) and the waves are less dissipated before approaching 
to the shore. The differences in wave power between 2 km from shore 
and along the 100 m isobath are less significant around Hawaii and the 
USPT (Tables 7 and 8), because of the narrow insular shelf discussed 
previously. 

4.2. Regional variability of wave resource 

Regional distributions of 42-year averages of significant wave 
height, omnidirectional wave power, and energy period in all of the U.S. 
EEZ domains are shown in Fig. 7 through Fig. 9. Overall, the Southern 
Alaska region has the highest wave resource within the EEZ domain, 
followed by the West Coast and Hawaii regions (Figs. 7 and 8). The GoM 
region has the least wave energy among all the regions and the East 
Coast region shows strong spatial gradient across the shore (Figs. 7 and 
8). The southern portion of the Southern Alaska region shows a greater 
energy resource than the northern portion because of the sheltering 
effect of the Aleutian Islands (Fig. 8). Similarly, wave energy in north
eastern region of Hawaii is also greater than that in the southwestern 
region because of the sheltering effect of the Hawaii islands. Also, there 
is significant latitudinal variability in the wave resource in the West and 
East Coast regions, as discussed by Yang et al. (2020) [56] and Ahn et al. 
(2021) [73], respectively. Wave energy periods in the Pacific Ocean are 
much longer that those in the Atlantic Ocean (Fig. 9). The West Coast 
region has the longest wave period because of the longest fetch, which is 
consistent with the results shown in the aggregation analysis (Tables 7 
and 8). The GoM region also has the shortest wave period, mostly be
tween 3 and 6 s, because of the fetch being limited in a semi-enclosed 

basin. 
The IEC-TS 62600–101 also recommends bivariate analysis based on 

the time series distribution of wave height and wave period as part of the 
resource characterization. For this purpose, we generated the bivariate 
distribution at selected locations in each other region. To achieve a 
consistent evaluation, all stations selected are 2 km from shore and 
facing the open ocean. The selected stations are not shallow enough for 
depth-induced breaking to be active, thereby acting as an upper limit in 
the distributions. Fig. 10 shows the bivariate distributions at selected 
stations in each region. While all the panels have the same x- (Te) and y- 
axes scales (Hm0), to emphasize the distributions at each station rather 
than comparing magnitudes among all the stations the color scale for the 
probability distribution is not constant across panels. The station in 
American Samoa is on the east shore of the island, partially sheltered 
from the northwestern swells that are active in the boreal winter [66]. 
However, it is exposed to the southwestern swells (~1.5–2.5 m), which 
have fairly long periods (~9 s) (Fig. 10a). The station in Guam shows a 
wave climate similar to that of American Samoa but with a shorter wave 
period and smaller wave height (Fig. 10b). The northeast shore of 
Hawaii experiences waves whose heights are mostly in the range of 
1.5–2.5 m and wave periods are longer than 7 s (Fig. 10c). A station 
south of the Aleutian Islands in Alaska experiences a broad range of 
wave heights, from 1 m to more than 6 m and a wave period mostly in 
the range of 7–11 s (Fig. 10d), representing complex and energetic sea 
states in Alaska. The Washington coast also experiences a wide range of 
wave heights and periods; most occurrences are in the 1.5–3.5 m and 
8–12 s range, but the tail of the significant wave height can reach more 
than 6.5 m (Fig. 10e). This is consistent with the large-scale assessment 
of increasing wave period eastward in the north Pacific [71]. Wave 
climate in the GoM region features small wave heights (<1.5 m) and 
short-wave periods (<7 s) (Fig. 10f). However, the tail of significant 
wave height can reach up to 6.5 m as a result of hurricanes. In the Gulf of 
Maine on the East Coast, waves are also mostly in the range of <2.5 m in 
wave height and <7 s in wave period. However, the tail of the wave 
climate is widespread in both wave height (up to 6.5 m) and energy 
period (up to 13 s) (Fig. 10g). The northern shore of Puerto Rico is 
exposed to the Atlantic Ocean and receives the longest period waves in 
PRUSVI (Fig. 10h). The tail of the significant wave height distributions 
extends to higher waves in the GoM and East Coast regions, presumably 
because of longer uninterrupted fetches of tropical storms and hurri
canes, but further research into the variability of these extreme 

Fig. 7. Simulated 42-year averaged significant wave height for the U.S. EEZ in the Pacific and Atlantic regions.  
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parameters is needed. 

4.3. Temporal variability of wave resource 

The monthly variabilities of wave power at 2 km from shore and 
along the 100 m isobath in each region are shown in Figs. 11 and 12, 
respectively. In general, regions in the Atlantic Ocean have less monthly 
variability than those in the Pacific Ocean, especially at stations 2 km 
from shore. The West Coast region has the largest monthly variability 
among all the regions at 2 km from shore and along the 100 m isobath, 
while the GoM region has the smallest wave resource but also experi
ences the least monthly variability in both cases compared to the rest of 
the regions (Figs. 11 and 12). All regions, except USPT, show the lowest 
wave resource in the summer months 2 km from shore (Fig. 11). The 
small peak in wave power observed in July–September in the USPT 

region is mainly due to the exposure of American Samoa to the Southern 
Ocean swells, which intensify during the austral winter [66]. Winter 
(boreal) is the most energetic period (December and January) and shows 
the highest wave energy in all regions except the GoM, where most of the 
wave resource is locally generated, and February through April have the 
largest winds (Fig. 11). Therefore, the GoM region experiences peak 
wave energy during the months of February to April. The GoM also 
experiences the smallest wave energy from July to September even when 
influenced by hurricanes (Fig. 11). Of all the regions, the East Coast 
region has the second smallest wave resource and monthly variability at 
2 km from shore, but it exhibits the third highest wave energy as well as 
monthly variability in the winter along the 100 m isobath, after the West 
Coast and Southern Alaska regions (Fig. 12). 

Fig. 8. Simulated 42-year omnidirectional wave power for the U.S. EEZ in the Pacific and Atlantic regions.  

Fig. 9. Simulated 42-year averaged wave energy period for the U.S. EEZ in the Pacific and Atlantic regions.  
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5. Data dissemination 

The wave resource hindcast datasets, which include 42-year 3-h time 
series of the six IEC resource statistics at all model grid points and 
thousands of virtual buoy sites with hourly two-dimensional wave 
spectra, are hosted on the Amazon Web Services (AWS) Registry of Open 
Data (https://registry.opendata.aws/wpto-pds-us-wave/), a database 
maintained by NREL. The full datasets have several hundred terabytes of 
data organized into a collection of. h5 files, ranging from 2.5 to 455.2 
gigabytes in size. Hosting the hindcast datasets on the AWS database 
ensures that the data are publicly available and allows users to access 
each dataset in its entirety or derive a subset of it using a variety of 
approaches. The goal of the AWS open-source database is to disseminate 
the wave resource data to designers of WEC technologies and WEC 
project developers, and to promote further research not only on the 
characterization and assessment of U.S. wave energy resources, but also 
on the effect of climate change on nearshore wave climate, extreme sea 
state and operational safety, coastal hazards, and community resilience. 

The hindcast datasets are also disseminated through the Marine 
Energy Atlas (https://maps.nrel.gov/marine-energy-atlas/), where 
users can visualize variables of interest for particular locations, and have 
the option to spatially or temporally subset the data for download. Users 
can also download subsets of data through their web browser by navi
gating through the AWS Registry of Open Data to the region and then the 
year of interest (https://data.openei.org/s3_viewer?bucket=wpto-pds- 
us-wave&prefix=v1.0.0%2F). 

The datasets can also be accessed using the Marine and Hydrokinetic 
Toolkit (MHKiT) software (https://github.com/MHKiT-Software) or 
directly from the database on AWS. MHKiT is software that can be run 
through Python and MATLAB, and it includes tools that enable users to 
analyze and explore data. The Wave Module within MHKiT contains 
functions to download and analyze the dataset, and it includes access to 
complementary data and tools for streamlined analytical and processing 
workflows. Through the AWS command line interface (https://aws. 
amazon.com/cli/), users can download the entire dataset to their local 
machine, but this requires significant data storage volume. Details about 

Fig. 10. 42-year averaged wave climate based on the bivariate distribution of significant wave height and energy period in (a) American Samoa, (b) Guam and the 
Commonwealth of the Northern Mariana Islands, (c) Hawaii, (d) Aleutian Islands of Alaska, (e) Northern Washington on the West Coast, (f) Gulf of Maine on the East 
Coast, (g) Mississippi River Delta of the GoM, and (h) Puerto Rico. The center image shows the 42-year averaged omnidirectional wave power. 

Fig. 11. Comparison of the monthly variability of omnidirectional wave power at 2 km offshore for different regions.  
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accessing the dataset can be found here: https://www.nrel.gov/water 
/wave-hindcast-dataset.html. 

6. Summary and conclusions 

This study presents the 42-year regional wave hindcast datasets for 
the US EEZs using high-resolution SWAN models and the national-scale 
wave resource characterization based on the hindcast datasets. Aggre
gated statistics of wave resources derived using the IEC-TS 62600-101 
methodology showed that the wave resource is high and exhibits 
regional and significant monthly variability in different regions of the U. 
S. The wave hindcast models generate time series for a variety of wave 
energy resource statistics, including wave power at a 200 m resolution 
up to 30 km off the coastline, depending on the regional characteristics. 
These statistics facilitate high-fidelity characterization, classification, 
and assessment of the U.S. wave energy resources, including assessment 
of wave energy project opportunities, constraints, and risks. Because the 
regional models cover the entire U.S. EEZs, the hindcast datasets can 
also be used to provide wave boundary conditions for local studies for 
design class assessments [10]. 

The regional hindcast models were extensively validated for wave 
resource parameters using wave buoy measurements and altimetry data. 
Overall, the regional wave models showed good agreement with ob
servations obtained from wave buoy data and altimetry data. Relatively 
speaking, error statistics are generally larger in the Southern Alaska, 
East Coast, and GoM regions, which are subject to extreme weather 
events such as extratropical storms and hurricanes, indicating the need 
for model improvement in simulating large waves in extreme sea states. 

Wave resource characterization was conducted for all the coastal 
regions in the U.S. based on hindcast data sampled at 2 km from shore 
and along the 100 m isobath. Aggregations of resource parameters and 
regional distributions of wave resources showed that the West Coast 
region has the highest resource and monthly variability, while the GoM 
region has the lowest wave power and monthly variability at 2 km from 
shore and along 100 m isobath. Significant wave resources exist in the 
East Coast region along the 100 m isobath, and they have the potential 
for deep water wave harvesting in support of Power Blue Economy (PBE) 
applications, such as offshore ocean observation systems. 

While support of wave energy research and development drove the 
development of these datasets, they are also valuable for other coastal 
applications such as the offshore wind energy industry, coastal and 
ocean planning, coastal engineering, and coastal resilience. The datasets 
also have potential use for evaluating historical nonstationary wave 
climate trends and interannual variability due to climate change, PBE, 
and coastal resilience. 

Model errors due to limitations of physics packages in the model and 

errors of wind forcing will affect the accuracy of wave resource esti
mates, especially for large waves during extreme events. For example, 
underpredicting or overpredicting of wave power will result in under- or 
over-estimates of the wave resource. It is important to update the 
hindcasts when new physics packages and more accurate wind products 
become available. 

Although the regional hindcasts were validated and provide valuable 
long-term, high-resolution wave datasets to support WEC development 
and other coastal ocean applications, limitations in the models warrant 
future research. For example, the current hindcasts do not cover the 
northern Alaska region—the Bering Sea and the Alaskan Artic Coast
—because of the challenge of simulating effects of sea-ice on waves. In 
recent developments and research related to sea-ice effects in wave 
modeling [34,74–76], it is now possible to extend the Alaska region to 
cover the entire EEZ in Alaska. Wind is the most important forcing for 
wave hindcast and forecast modeling, so it is important to incorporate 
new wind product with higher resolution in wave hindcasts when 
possible. Future research on long-term decadal variability [56,77] and 
the effect of climate change on wave resource in different regions should 
be also considered. This present study did not consider ocean current 
forcing and wave-current interaction because in most of the nearshore 
regions the effect is small. However, the East Coast region shows good 
wave resources farther offshore where wave interaction with the Gulf 
Stream could play an important role in wave power [78–80]. Cook Inlet, 
a large semi-enclosed bay in Alaska, represents the highest tidal stream 
energy potential with strong tidal current in the U.S., and wave-current 
coupling modeling should be considered to improve both wave and tidal 
current predictions [81]. Furthermore, additional statistics on extreme 
wave conditions to characterize wave loads for WEC design should also 
be considered in future study. 
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[12] G. García-Medina, H.T. Özkan-Haller, P. Ruggiero, Wave resource assessment in 
Oregon and southwest Washington, USA, Renew. Energy 64 (2014) 203–214. 

[13] S. Ahn, K.A. Haas, V.S. Neary, Wave energy resource characterization and 
assessment for coastal waters of the United States, Appl. Energy (2020) 267. 

[14] M.A. Hemer, et al., A revised assessment of Australia’s national wave energy 
resource, Renew. Energy 114 (2017) 85–107. 

[15] M.G. Hughes, A.D. Heap, National-scale wave energy resource assessment for 
Australia, Renew. Energy 35 (8) (2010) 1783–1791. 

[16] P. Gleizon, et al., Wave energy resources along the European atlantic coast, in: Z.Y. 
a.A. Copping (Ed.), Marine Renewable Energy - Resource Characterization and 
Physical Effects, Springer, Switzerland, 2017, pp. 37–69. 

[17] V.S. Kumar, T.R. Anoop, Wave energy resource assessment for the Indian shelf seas, 
Renew. Energy 76 (2015) 212–219. 

[18] B. Liang, et al., 22-Year wave energy hindcast for the China East Adjacent Seas, 
Renew. Energy 71 (2014) 200–207. 

[19] Z.F. Wang, C.L. Duan, S. Dong, Long-term wind and wave energy resource 
assessment in the South China sea based on 30-year hindcast data, Ocean Eng. 163 
(2018) 58–75. 

[20] K. Sasmal, et al., Assessment of wave energy resources and their associated 
uncertainties for two coastal areas in Japan, J. Mar. Sci. Technol. 26 (3) (2021) 
917–930. 

[21] A. Webb, T. Waseda, K. Kiyomatsu, A high-resolution, long-term wave resource 
assessment of Japan with wave-current effects, Renew. Energy 161 (2020) 
1341–1358. 

[22] M. Goncalves, P. Martinho, C.G. Soares, Wave energy conditions in the western 
French coast, Renew. Energy 62 (2014) 155–163. 

[23] J.P. Sierra, et al., Assessment of the intra-annual and inter-annual variability of the 
wave energy resource in the Bay of Biscay (France), Energy 141 (2017) 853–868. 

[24] S.P. Neill, et al., Inter-annual and inter-seasonal variability of the Orkney wave 
power resource, Appl. Energy 132 (2014) 339–348. 

[25] S.P. Neill, et al., The wave and tidal resource of Scotland, Renew. Energy 114 
(2017) 3–17. 

[26] R.P.G. Mendes, M.R.A. Calado, S.J.P.S. Mariano, Wave energy potential in 
Portugal-Assessment based on probabilistic description of ocean waves parameters, 
Renew. Energy 47 (2012) 1–8. 

[27] D. Silva, P. Martinho, C.G. Soares, Wave energy distribution along the Portuguese 
continental coast based on a thirty three years hindcast, Renew. Energy 127 (2018) 
1064–1075. 

[28] L. Liberti, A. Carillo, G. Sannino, Wave energy resource assessment in the 
Mediterranean, the Italian perspective, Renew. Energy 50 (2013) 938–949. 

[29] M. Monteforte, C. Lo Re, G.B. Ferreri, Wave energy assessment in Sicily (Italy), 
Renew. Energy 78 (2015) 276–287. 

[30] F. Salimi, C. Ershadi, V. Chegini, Forty years wind wave power assessment in the 
high-energy region of Persian Gulf, Int. J. Environ. Sci. Technol. 19 (4) (2022) 
2677–2702. 

[31] L. Rusu, E. Rusu, Evaluation of the worldwide wave energy distribution based on 
ERA5 data and altimeter measurements, Energies 14 (2) (2021). 

[32] B.G. Reguero, I.J. Losada, F.J. Mendez, A global wave power resource and its 
seasonal, interannual and long-term variability, Appl. Energy 148 (2015) 366–380. 

[33] G. García-Medina, et al., Wave resource characterization at regional and nearshore 
scales for the US Alaska coast based on a 32-year high-resolution hindcast, Renew. 
Energy 170 (2021) 595–612. 

[34] R. Branch, et al., Modeling Sea ice effects for wave energy resource assessments, 
Energies 14 (12) (2021). 

[35] M.N. Allahdadi, et al., Development and calibration of a high-resolution model for 
the Gulf of Mexico, Puerto Rico, and the US Virgin Islands: implication for wave 
energy resource characterization, Ocean Eng. (2021) 235. 

[36] M.N. Allahdadi, et al., Development and validation of a regional-scale high- 
resolution unstructured model for wave energy resource characterization along the 
US East Coast, Renew. Energy 136 (2019) 500–511. 

[37] WAMDI, The WAM model - a third generation ocean wave prediction model, 
J. Phys. Oceanogr. 18 (12) (1988). 

[38] H.L. Tolman, A 3rd-generation model for wind-waves on slowly varying, unsteady, 
and inhomogeneous depths and currents, J. Phys. Oceanogr. 21 (6) (1991) 
782–797. 

[39] H.L. Tolman, A new global wave forecast system at NCEP, Ocean Wave Meas. Anal. 
1 and 2 (1998) 777–786. 

[40] N. Booij, R.C. Ris, L.H. Holthuijsen, A third-generation wave model for coastal 
regions - 1. Model description and validation, J. Geophys. Res. Oceans 104 (C4) 
(1999) 7649–7666. 

[41] R.C. Ris, L.H. Holthuijsen, N. Booij, A third-generation wave model for coastal 
regions - 2. Verification, J. Geophys. Res. Oceans 104 (C4) (1999) 7667–7681. 

[42] M. Benoit, F. Marcos, F. Becq, TOMAWAC: a prediction model for offshore and 
nearshore storm waves. Environmental and Coastal Hydraulics: protecting the 
Aquatic Habitat, Proc. Theme B 1 & 2 (27) (1997) 1316–1321. 

[43] DHI, Mike 21 Spectral Waves FM - Short Description, DHI: Horsholm Denmark, 
2012, p. 16. 

[44] SWAN, SWAN: User Manual, Cycle III Version 41.01A, Delft University of 
Technology, Delft, The Netherlands, 2015. 

[45] S. Hasselmann, et al., Computations and parameterizations of the nonlinear 
energy-transfer in a gravity-wave spectrum .2. Parameterizations of the nonlinear 
energy-transfer for application in wave models, J. Phys. Oceanogr. 15 (11) (1985) 
1378–1391. 

[46] J.A. Battjes, J.P.F.M. Janssen, Energy loss and set-up due to breaking random 
waves, in: 16th Conference on Coastal Engineering, ASCE, Hamburg, Germany, 
1978. 

Z. Yang et al.                                                                                                                                                                                                                                    

http://www.pacioos.org
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref1
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref1
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref2
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref2
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref2
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref3
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref3
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref4
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref4
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref4
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref5
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref5
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref6
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref6
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref7
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref7
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref7
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref8
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref9
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref9
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref10
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref10
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref10
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref11
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref11
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref11
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref12
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref12
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref13
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref13
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref14
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref14
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref15
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref15
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref16
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref16
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref16
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref17
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref17
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref18
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref18
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref19
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref19
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref19
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref20
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref20
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref20
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref21
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref21
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref21
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref22
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref22
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref23
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref23
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref24
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref24
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref25
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref25
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref26
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref26
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref26
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref27
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref27
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref27
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref28
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref28
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref29
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref29
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref30
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref30
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref30
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref31
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref31
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref32
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref32
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref33
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref33
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref33
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref34
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref34
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref35
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref35
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref35
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref36
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref36
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref36
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref37
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref37
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref38
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref38
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref38
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref39
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref39
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref40
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref40
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref40
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref41
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref41
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref42
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref42
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref42
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref43
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref43
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref44
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref44
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref45
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref45
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref45
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref45
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref46
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref46
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref46


Renewable Energy 212 (2023) 803–817

817

[47] L. Cavaleri, P.M. Rizzoli, Wind wave prediction in shallow-water - theory and 
applications, J. Geophys. Res. Ocean Atmos. 86 (Nc11) (1981) 961–973. 

[48] G.J. Komen, S. Hasselmann, K. Hasselmann, On the existence of a fully-developed 
wind-sea spectrum, J. Phys. Oceanogr. 14 (8) (1984) 1271–1285. 

[49] A. Chawla, D.M. Spindler, H.L. Tolman, Validation of a thirty year wave hindcast 
using the Climate Forecast System Reanalysis winds, Ocean Model. 70 (2013) 
189–206. 

[50] S. Saha, et al., The ncep climate forecast system reanalysis, Bull. Am. Meteorol. 
Soc. 91 (8) (2010) 1015–1057. 

[51] S. Saha, et al., The NCEP climate forecast system version 2, J. Clim. 27 (6) (2014) 
2185–2208. 

[52] W.C. Skamarock, J.B. Klemp, A time-split nonhydrostatic atmospheric model for 
weather research and forecasting applications, J. Comput. Phys. 227 (7) (2008) 
3465–3485. 

[53] J.E. Stopa, K.F. Cheung, Intercomparison of wind and wave data from the ECMWF 
reanalysis interim and the NCEP climate forecast system reanalysis, Ocean Model. 
75 (2014) 65–83. 

[54] Y. Eldeberky, Nonlinear transformation of wave spectra in the nearshore zone (Ph. 
D. Thesis), in: Department of Civil Engineering, Delft University of Technology, 
Netherlands, 1996. 

[55] W.C. Wu, et al., Development and validation of a high-resolution regional wave 
hindcast model for U.S. West Coast wave resource characterization, Renew. Energy 
152 (2020) 736–753. 

[56] Z.Q. Yang, et al., Characteristics and variability of the nearshore wave resource on 
the US West Coast, Energy (2020) 203. 

[57] T. Wang, et al., A high-resolution regional wave resource Characterization for the 
U.S. West coast, in: Offshore Technology Conference, 2020. Houston, USA. 

[58] M. Zijlema, Computation of wind-wave spectra in coastal waters with SWAN on 
unstructured grids, Coast. Eng. 57 (3) (2010) 267–277. 

[59] P.A.E.M. Janssen, Quasi-linear theory of wind-wave generation applied to wave 
forecasting, J. Phys. Oceanogr. 21 (11) (1991) 1631–1642. 

[60] K. Hasselmann, et al., Measurements of wind-wave growth and swell decay during 
the joint north sea wave project (JONSWAP), Ergaenzungsheft Zur Deutschen 
Hydrographischen Zeitschrift (1973) 95. 

[61] L. Rusu, The wave and wind power potential in the western Black Sea, Renew. 
Energy 139 (2019) 1146–1158. 

[62] J.A. Bowers, I.D. Morton, G.I. Mould, Directional statistics of the wind and waves, 
Appl. Ocean Res. 22 (1) (2000) 13–30. 

[63] J.L. Hanson, et al., Pacific hindcast performance of three numerical wave models, 
J. Atmos. Ocean. Technol. 26 (8) (2009) 1614–1633. 

[64] N. Li, et al., Wave energy resources assessment for the multi-modal sea state of 
Hawaii, Renew. Energy 174 (2021) 1036–1055. 

[65] N. Li, et al., Wave climate and energy resources in the Mariana Islands from a 42- 
year high-resolution hindcast, Renew. Energy (2023) (in revision). 

[66] G. García-Medina, et al., Wave climate and energy resources in American Samoa 
from a 42-year hindcast, Renew. Energy (2023). https://doi.org/10.1016/j. 
renene.2023.03.031. 

[67] S. Ahn, et al., A framework for feasibility-level validation of high-resolution wave 
hindcast models, Ocean Eng. (2022) 263. 

[68] S. Zieger, J. Vinoth, I.R. Young, Joint calibration of multiplatform altimeter 
measurements of wind speed and wave height over the past 20 years, J. Atmos. 
Ocean. Technol. 26 (12) (2009) 2549–2564. 

[69] N. Li, et al., Thirty-four years of Hawaii wave hindcast from downscaling of climate 
forecast system reanalysis, Ocean Model. 100 (2016) 78–95. 

[70] D.B. Chelton, et al., in: L.-L. Fu, A. Cazenave (Eds.), Satellite Altimetry. Satellite 
Altimetry and Earth Sciences: A Handbook of Techniques and Applications, 
Acadenuc Press, 2021, p. 131. 

[71] R.A. Arinaga, K.F. Cheung, Atlas of global wave energy from 10 years of reanalysis 
and hindcast data, Renew. Energy 39 (1) (2012) 49–64. 

[72] E.K.M. Chang, Y.F. Fu, Interdecadal variations in Northern Hemisphere winter 
storm track intensity, J. Clim. 15 (6) (2002) 642–658. 

[73] S. Ahn, et al., Nearshore wave energy resource characterization along the East 
Coast of the United States, Renew. Energy 172 (2021) 1212–1224. 

[74] V.T. Cooper, et al., Wind waves in sea ice of the western Arctic and a global 
coupled wave-ice model, Phil. Trans. Math. Phys. Eng. Sci. 380 (2235) (2022). 

[75] S. Iwasaki, J. Otsuka, Evaluation of wave-ice parameterization models in 
WAVEWATCH III (R) along the coastal area of the sea of okhotsk during winter, 
Front. Mar. Sci. 8 (2021). 

[76] K. Nederhoff, et al., The effect of changing sea ice on wave climate trends along 
Alaska’s central Beaufort Sea coast, Cryosphere 16 (5) (2022) 1609–1629. 

[77] S. Ahn, V.S. Neary, Non-stationary historical trends in wave energy climate for 
coastal waters of the United States, Ocean Eng. 216 (2020), 108044. 

[78] C.A. Hegermiller, et al., Wave-current interaction between hurricane matthew 
wave fields and the Gulf stream, J. Phys. Oceanogr. 49 (11) (2019) 2883–2900. 

[79] Y.J. Sun, W. Perrie, B. Toulany, Simulation of wave-current interactions under 
hurricane conditions using an unstructured-grid model: impacts on ocean waves, 
J. Geophys. Res. Oceans 123 (5) (2018) 3739–3760. 

[80] D.W. Wang, et al., Wave-current interaction near the gulf-stream during the 
surface-wave dynamics experiment, J. Geophys. Res. Oceans 99 (C3) (1994) 
5065–5079. 

[81] T.P. Wang, Z.Q. Yang, A tidal hydrodynamic model for cook inlet, Alaska, to 
support tidal energy resource characterization, J. Mar. Sci. Eng. 8 (4) (2020). 

Z. Yang et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S0960-1481(23)00403-2/sref47
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref47
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref48
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref48
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref49
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref49
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref49
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref50
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref50
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref51
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref51
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref52
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref52
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref52
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref53
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref53
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref53
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref54
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref54
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref54
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref55
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref55
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref55
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref56
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref56
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref57
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref57
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref58
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref58
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref59
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref59
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref60
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref60
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref60
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref61
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref61
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref62
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref62
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref63
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref63
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref64
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref64
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref65
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref65
https://doi.org/10.1016/j.renene.2023.03.031
https://doi.org/10.1016/j.renene.2023.03.031
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref67
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref67
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref68
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref68
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref68
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref69
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref69
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref70
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref70
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref70
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref71
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref71
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref72
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref72
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref73
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref73
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref74
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref74
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref75
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref75
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref75
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref76
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref76
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref77
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref77
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref78
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref78
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref79
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref79
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref79
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref80
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref80
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref80
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref81
http://refhub.elsevier.com/S0960-1481(23)00403-2/sref81

	Multi-decade high-resolution regional hindcasts for wave energy resource characterization in U.S. coastal waters
	1 Introduction
	2 Methods
	2.1 Study domains
	2.2 Wave models
	2.3 Model configurations
	2.4 Model grids and resolutions

	3 Model validation
	3.1 Wave resource parameters and model performance metrics
	3.2 Model validation with buoy data
	3.3 Validation with altimetry data

	4 Regional resource characterization
	4.1 Aggregation of wave resource parameters
	4.2 Regional variability of wave resource
	4.3 Temporal variability of wave resource

	5 Data dissemination
	6 Summary and conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


