

Resource Assessment of OTEC, Tidal Stream and Ocean Current in Puerto Rico

Zhaoqing Yang, Fadia Ticona Rollano, Gabriel Garcia-Media, Andrea Copping

Pacific Northwest National Laboratory

PANEC 2024 Pan American Marine Energy Conference Barranguilla, Colombia Jan 22-24, 2024

PNNL is operated by Battelle for the U.S. Department of Energy

Background

- Puerto Rico is uniquely positioned for exploiting marine energy to meet their 100% renewable energy goal by 2050 and enhance their coastal resilience
- US DOE, Water Power Technologies Office (WPTO) funded the study of marine energy resource characterization and assessment
 - Wave
 - Tidal stream
 - Ocean Current
 - Ocean thermal energy conversion (OTEC)

Modeling Approach

- Leveraging existing and public model outputs
- Tidal Stream
 - ADvanced CIRCulation (ADCIRC)
 - High resolution 30 to 100 m along Puerto Rico coastlines
 - One month simulation
- Ocean Current
 - American Seas (AmSeas) regional Navy Coastal Ocean Model (NCOM)
 - Resolution 1/30°
 - 8 years simulation (2014-2021)
- OTEC
 - HYbrid Coordinate Ocean Model (HYCOM)
 - Resolution 1/12°
 - 14 years simulation (2008 2021)

		HYCOM	HYCOM	
	Amseas	GOFS 3.0	GOFS 3.1	
Record length	2014 - 2021	2008 - 2018	2014 –2021	
Horizontal resolution	1/30°	1/12°	1/12°	
Number of vertical	40	22	40	
levels	40	33		

Tidal Stream Resource Assessment

- Large model domain with high resolution in Puerto Rico
- Model validation with NOAA tide gauge data

 TABLE II

 ERROR STATISTICS AT NOAA WATER LEVEL STATIONS

Station ID	Quantity	RMSE (m)	Bias (m)	R
9855371	San Juan	0.040	0.000	0.97
9757809	Arecibo	0.039	0.001	0.97
9759394	Mayaguez	0.034	0.001	0.96
9759110	Magueyes	0.032	0.000	0.91
9754228	Yabucoa	0.028	0.001	0.94
9753216	Fajardo	0.026	0.000	0.98
9759938	Mona	0.029	-0.001	0.93
9752235	Culebra	0.023	0.000	0.98
9752695	Esperanza	0.031	0.001	0.92
9752619	Isabel Segunda	0.024	0.001	0.98

All measured time-series retrieved include N = 745 data points.

Tidal Stream Resource Assessment

Probability of exceeding speeds of 30 cm/s

Pacific

Northwest

Current speed (m/s)

Average tidal current power density W/m^2 80 (a) 19°N -- 60 40 18°N 20 EEZ 68°W 67°W 66°W 65°W

Ocean Current Resource Assessment

MODEL PROPERTIES FOR AMSEAS AND HYCOM						
	Ame	HYCOM	HYCOM			
	Amseas	GOFS 3.0	GOFS 3.1			
Record length	2014 –2021	2008 - 2018	2014 –2021			
Horizontal resolution	1/30°	1/12°	1/12°			
Number of vertical	40	22	40			
levels	40	33	40			

 Sea surface current data from AmSeas

Average ocean current power density

Probability of exceeding speeds of 30 cm/s

Ocean Current Resource Assessment – Hotspots

OTEC Resource Assessment – Model Data

- 3D temperature data from HYCOM
- Model validation average difference in temperature between HYCOM and Argo floats at (left) 600 m and (right) 1,000 m water depth

OTEC Resource Assessment

- Criteria: minimal thermal gradient of 20°C between the warm sea surface and cold-water intake depth
- OTEC Power Density:

$$\frac{P}{Q} = \frac{\rho_w C_p E_{TG} (\Delta T)^2 (1 - PL)}{8(273 + SST)}$$

- P = the thermal power,
- Q = the deep seawater flow rate,
- $\rho_w =$ the average density of water,
- $C_p = the specific heat of water,$
- $E_TG =$ the turbo generator efficiency,
- PL = the losses due to pumping, and
- ΔT = the temperature differential between sea surface and cold-water intake

Pacific Northwest NATIONAL LABORATOR

OTEC Resource Assessment – OTEC Operation Depth with $\Delta T = 20 \ ^{\circ}C$

Pacific

Northwest NATIONAL LABORATOR

Winter

OTEC Resource Assessment

North Shore

OTEC Power Density

OTEC power density at 1000m depth based on average values of SST and ΔT

Conclusions

- Tidal stream and ocean current hot spots are identified near the western coast of the main island
- OTEC is the most promising marine energy source for electricity generation, especially in the southern coastal water of Puerto Rico

Acknowledgement: This project was funded by the US Department of Energy, Water Power Technologies Office

Thank you

zhaoqing.yang@pnnl.gov

