
Renewable Energy 246 (2025) 122887 

A
0

 

Contents lists available at ScienceDirect

Renewable Energy

journal homepage: www.elsevier.com/locate/renene  

Adaptive optimization of wave energy conversion in oscillatory wave surge 

converters via SPH simulation and deep reinforcement learning
Mai Ye a , Chi Zhang b, Yaru Ren c, Ziyuan Liu b, Oskar J. Haidn a, Xiangyu Hu a,∗

a TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching bei München, Germany
b Huawei Technologies Munich Research Center, Riesstraße 25, 80992, Munich, Germany
c State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Section of Chengdu No.24 Southern Yihuan, 610065, Chengdu, China

A R T I C L E  I N F O

Dataset link: https://github.com/Xiangyu-Hu/S
PHinXsys.git

Keywords:
Smoothed particle hydrodynamics (SPH)
Oscillating wave surge converter (OWSC)
Wave–structure interactions
Deep reinforcement learning (DRL)
Damping coefficient

 A B S T R A C T

The nonlinear damping characteristics of the oscillating wave surge converter (OWSC) significantly impact the 
performance of the power take-off system. This study presents a framework by integrating deep reinforcement 
learning (DRL) with numerical simulations of OWSC to identify optimal adaptive damping policy under 
varying wave conditions, thereby enhancing wave energy harvesting efficiency. The open-source multiphysics 
library SPHinXsys establishes the numerical environment for wave interaction with OWSCs. Subsequently, a 
comparative analysis of three DRL algorithms is conducted using the two-dimensional (2D) numerical study of 
OWSC interacting with regular waves. The results reveal that artificial neural networks capture the nonlinear 
characteristics of wave–structure interactions and provide efficient PTO policies. Notably, the soft actor–critic 
algorithm demonstrates exceptional robustness and accuracy, achieving a 10.61% improvement in wave energy 
harvesting. Furthermore, policies trained in a 2D environment are successfully applied to the three-dimensional 
study, with an improvement of 22.54% in energy harvesting. The optimization effect becomes more significant 
with longer wave periods under regular waves with consistent wave height. Additionally, the study shows that 
energy harvesting is improved by 6.42% for complex irregular waves. However, for the complex dual OWSC 
system, optimizing the damping characteristics alone is insufficient to enhance energy harvesting.
1. Introduction

Considering the significant environmental issues caused by the ex-
tensive use of fossil fuels, including pollution, greenhouse gas emis-
sions, and ecological destruction, there has been a marked increase in 
the study of clean and renewable energy sources. Among these, wave 
energy stands out due to its substantial potential (with a minimum 
estimated capacity of around 0.2 TW), high energy density, and the 
advantage of not occupying land resources [1]. These features have 
attracted significant research and development investments, making 
wave energy a crucial component in transitioning to a sustainable 
energy future. Historically, most research has focused on extracting 
energy from the heave motion of deep-water systems, mainly due to the 
common belief that nearshore wave resources are significantly lower 
than those in deeper waters [2]. However, since the beginning of the 
21st century, the concept of exploitable wave energy resources has 
become more realistic [3]. In many nearshore locations, the exploitable 
resource is typically only 10%–20% lower than that offshore [4]. As a 
result, the extraction of wave energy from the surge motion of waves 
in nearshore waters has gained increasing attention.

∗ Corresponding author.
E-mail address: xiangyu.hu@tum.de (X. Hu).

Typical wave energy converters (WECs) can be classified into three 
main categories based on their working principles: oscillating water 
column (OWC) devices, which use the oscillating water column to 
compress air and drive a turbine [5], over-topping devices, which 
utilize the potential energy of waves as they spill over a barrier [6], 
and wave-activated bodies, which exploit the heave, surge, roll, or 
pitch motions depending on their construction [7]. Oscillating wave 
surge converters (OWSCs) are typical wave-activated bodies used in 
nearshore waters, usually employing bottom-hinged flap mechanisms. 
Notable examples include the products of WaveRoller, and Oyster [8]. 
The primary distinction between these two lies in the positioning 
of their flaps: WaveRoller’s flap is wholly submerged in seawater, 
whereas Oyster’s flap has an upper edge that protrudes above the 
water surface [9]. Research conducted at Queen’s University Belfast 
suggests that while partial submersion enhances the impact pressure 
exerted by the rotating flap, the flap inherently decouples from the 
wave as the oscillation amplitude increases [10]. This decoupling ef-
fect ensures that the wave-induced loads remain manageable, thereby 
safeguarding the structural integrity of the Oyster, even under extreme 
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Fig. 1. Schematic of Oyster® (a type of OWSC) under waves.
, 
sea conditions. The structure of the Oyster is shown in Fig.  1. The 
flap is connected to the base via a hinge and oscillates back and 
forth in response to the incident waves. This oscillatory motion drives 
the power take-off (PTO) system, which utilizes a hydraulic pump 
to channel high-pressure water through a pipeline to a hydroelectric 
turbine, generating electricity [11].

According to the experimental study of the wave interacting with 
OWSCs by Henry et al. [12], the flap of an OWSC actively impacts the 
trough of incoming waves, generating breaking waves. Chow et al. [13] 
discovered that a system of two tandem OWSCs could improve overall 
wave energy conversion efficiency and determined the optimal separa-
tion distance between them based on Bragg reflection. Brito et al. [14] 
demonstrated through scale model experiments that the capture width 
ratio (CWR) and response amplitude operator of an OWSC exhibit weak 
correlation under both regular and irregular wave conditions.

The numerical study is attracting more and more attention as it 
can be applied to explore the detailed mechanisms of wave–structure 
interactions (WSI), optimize the structure of OWSCs, and improve 
the energy harvesting efficiency of PTO systems. Cheng et al. [9,
15] developed a two-dimensional (2D) and three-dimensional (3D) 
higher-order boundary element method (HOBEM) model to estimate 
the performance of an OWSC. Renzi and Dias [16] proposed a semi-
analytical model for the 3D computation of OWSCs. Although these 
methods offer high computational efficiency, they lack the accuracy of 
predicting nonlinear phenomena such as slamming and overtopping. 
Two approaches for this problem are based on the Navier–Stokes 
equations with either mesh or particle-based methods. For mesh-based 
methods, Schmitt et al. [17] explore the nonlinear relationship between 
wave height and the optimal damping of the OWSC. The numerical 
simulations by Wei et al. [18] also agreed with experimental results 
in predicting the wave height and the pressure distribution on the flap. 
Jiang et al. [19] discussed the impact of different damping strategies on 
power generation efficiency in PTO systems. However, these methods 
come with significant computational costs due to the inclusion of 
additional Volume of Fluid (VOF) equations and the necessity of using 
dynamic mesh techniques to solve for the motion of the flap [20].

Particle-based methods, i.e., smoothed particle hydrodynamics (SPH)
are particularly well-suited for addressing challenges involving large 
deformations and complex free surface flows [21,22], making them 
a compromising alternative to study the hydrodynamic interactions 
between waves and WECs. Specifically, for OWSC calculations, Henry 
et al. [12] and Rafiee et al. [23] used a modified SPH method to 
perform 2D and 3D numerical simulations. Their results indicated that 
3D simulations can more accurately predict the pressure distribution on 
the flap. Brito et al. [24] presented a numerical model combining Du-
alSPHysics for wave computation and Chrono for nonlinear mechanical 
constraint systems of OWSCs. Later, they updated the numerical model 
to consider most constraints, such as the PTO system, revolute joints, 
and frictional contacts [25]. Liu et al. [26] quantitatively analyzed 
the effects of parameters such as load, flap mass, thickness, hinge 
2 
height, and damping of the PTO system on motion resonance and wave 
absorption of OWSC. Zhang et al. [27] used a Riemann-based weakly 
compressible method based on SPHinXsys and Simbody to compute 
incident waves and WSI. They demonstrated that the solver could 
accurately predict wave height and the pressure distribution on the flap 
while significantly reducing computation time, showing great potential 
for practical applications.

Currently, the performance optimization of OWSCs primarily relies 
on theoretical analysis [28] and numerical simulations [29] under 
specific wave conditions to conduct parametric studies on the structure 
and position of flaps or damping of the PTO system. There is still a lack 
of research on effective control strategies to enhance the performance 
of OWSCs. In comparison, control strategy methods have already been 
applied to optimize the wave energy absorption performance of other 
WEC devices [30]. However, the interaction between waves, especially 
irregular waves, and OWSCs is complex, highly stochastic, and non-
linear. Models such as latching and model predictive control (MPC) 
exhibit poor robustness and are highly dependent on the accuracy of 
the predictive model. Inaccurate models can significantly affect perfor-
mance [31]. In the past decade, with the rapid advancement of artificial 
intelligence (AI), deep reinforcement learning (DRL) has demonstrated 
significant capabilities in the field of active flow control [32]. DRL 
combines artificial neural networks (ANN) and reinforcement learning 
(RL). Since ANN uses nonlinear activation functions and can effec-
tively fit any function, DRL, compared to traditional RL, enhances 
the exploration and capture of high-dimensional state spaces, making 
it suitable for WSI problems [33]. Research on optimizing WECs us-
ing DRL employs potential wave theory as the environment. Studies 
have shown that DRL can enhance the energy harvesting efficiency of 
WECs [34,35]. Additionally, compared to directly using computational 
fluid dynamics (CFD) as the environment, this approach significantly 
reduces the time required to train the ANN. However, potential wave 
theory is less effective at capturing the coupling effects between mul-
tiple physical fields. Only Liang et al. [36] have combined 2D CFD 
with DRL to optimize the wave energy conversion of horizontal floating 
cylinders under irregular waves.

In this paper, we will first establish a new platform that combines 
CFD with DRL. Based on our previous work, we will use SPHinXsys, a 
multi-physics library based on the SPH method, and Simbody as the nu-
merical computation platform for the bottom-hinged OWSC [37]. Given 
that mainstream DRL platforms like Tianshou employ neural networks 
such as PyTorch, which are based on the Python environment, we will 
use Pybind11 to package the relevant OWSC code into a dynamic link 
library for invocation in the OpenAI Gymnasium environment [38]. 
This standardized environment will facilitate the direct application 
of various DRL algorithms available on the Tianshou platform, en-
abling us to explore the impact of these algorithms on performance 
improvement. The remainder of this paper is organized as follows: 
Section 2 introduces the Riemann-based SPH method for FSI modeling 
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in SPHinXsys and Simbody. Section 3 discusses the details of our CFD-
DRL framework, the DRL training environment, and the mainstream RL 
algorithms. Section 4 analyzes the performance differences of various 
DRL algorithms, explores the applicability of 3D numerical computa-
tions and different wave period to the policies, verifies that the adaptive 
damping coefficient policy can be applied to random irregular waves, 
and investigates the feasibility of wave energy optimization under the 
dual OWSC systems.

2. Numerical modeling

2.1. Governing equations

In the Lagrangian framework, the mass and momentum conserva-
tion equations for incompressible and viscous fluid can be written as
⎧

⎪

⎨

⎪

⎩

𝑑𝜌
𝑑𝑡

= −𝜌∇ ⋅ 𝐯,

𝑑𝐯
𝑑𝑡

= −1
𝜌
∇𝑝 + 𝜈∇2𝐯 + 𝐠.

(1)

Here, 𝜌 is the density of the fluid, 𝐯 the velocity, 𝑝 the pressure, 𝜈
the kinematic viscosity, and 𝐠 is the gravity. An artificial isothermal 
equation of state (EoS) is used to close the system of Eq. (1)
𝑝 = 𝑐2(𝜌 − 𝜌0), (2)

where 𝜌0 is the initial density, 𝑐 = 10𝑣𝑚𝑎𝑥 the artificial speed of 
sound [39]. 𝑣𝑚𝑎𝑥 = 2

√

𝑔ℎ is the maximum anticipated particle velocity 
in the flow, 𝑔 = |𝐠|, ℎ the water depth.

Eq. (1) can be discretized as 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑𝜌𝑖
𝑑𝑡

= 2𝜌𝑖
∑

𝑗
𝑉𝑗 (𝑈∗ − 𝐯𝑖 ⋅ 𝐞𝑖𝑗 )

𝜕𝑊𝑖𝑗

𝜕𝑟𝑖𝑗
,

𝑑𝐯𝑖
𝑑𝑡

= −𝑚𝑖
∑

𝑗

2𝑃 ∗

𝜌𝑖𝜌𝑗
∇𝑊𝑖𝑗 + 𝑚𝑖

∑

𝑗

2𝜇
𝜌𝑖𝜌𝑗

𝐯𝑖𝑗
𝑟𝑖𝑗

𝜕𝑊𝑖𝑗

𝜕𝑟𝑖𝑗
+ 𝐠𝑖.

(3)

Here, 𝑚𝑖 and 𝜌𝑖 are the mass and density of particle 𝑖, 𝑉𝑗 the particle 
volume, 𝐯𝑖𝑗 = 𝐯𝑖 − 𝐯𝑗 particle relative velocity, and 𝜇 is the dynamic 
viscosity. Also, ∇𝑊𝑖𝑗 = 𝐞𝑖𝑗 (𝜕𝑊 (𝑟𝑖𝑗 , ℎ)∕𝜕𝑟𝑖𝑗 ) with 𝐞𝑖𝑗 = 𝐫𝑖𝑗∕𝑟𝑖𝑗 and 𝐫𝑖𝑗 =
𝐫𝑖−𝐫𝑗 , and 𝑊𝑖𝑗 represents the Kernel gradient [40]. Besides, 𝑈∗ and 𝑃 ∗

are the solutions of the one-dimensional Riemann problem constructed 
along the line pointing from particle 𝑖 to 𝑗. The left and right initial 
states of the Riemann problem can be reconstructed as 
{

(𝜌𝐿, 𝑈𝐿, 𝑃𝐿, 𝑐𝐿) = (𝜌𝑖,−𝐯𝑖 ⋅ 𝐞𝑖𝑗 , 𝑝𝑖, 𝑐𝑖),
(𝜌𝑅, 𝑈𝑅, 𝑃𝑅, 𝑐𝑅) = (𝜌𝑗 ,−𝐯𝑗 ⋅ 𝐞𝑖𝑗 , 𝑝𝑗 , 𝑐𝑗 ).

(4)

The linearized Riemann solver coupled with the weighted kernel 
gradient correction (WKGC) [41] is adopted to solve this Riemann 
problem 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑈∗ =
𝜌𝐿𝑐𝐿𝑈𝐿 + 𝜌𝑅𝑐𝑅𝑈𝑅 + 𝑃𝐿 − 𝑃𝑅

𝜌𝐿𝑐𝐿 + 𝜌𝑅𝑐𝑅
,

𝑃 ∗ =
𝜌𝐿𝑐𝐿𝑃𝑅𝐁𝑖 + 𝜌𝑅𝑐𝑅𝑃𝐿𝐁𝑗 + 𝜌𝐿𝑐𝐿𝜌𝑅𝑐𝑅𝛽(𝑈𝐿 − 𝑈𝑅)

𝜌𝐿𝑐𝐿 + 𝜌𝑅𝑐𝑅
,

(5)

where the low dissipation limiter 𝛽 = 𝑚𝑖𝑛(3𝑚𝑎𝑥(𝑈𝐿 − 𝑈𝑅, 0)∕𝑐, 1), 𝑐 =
(𝜌𝐿𝑐𝐿 + 𝜌𝑅𝑐𝑅)∕(𝜌𝐿 + 𝜌𝑅), the correction matrix 𝐁𝑖 = 𝜔1𝐁𝑖 + (1 − 𝜔1)𝐈, 
𝐁𝑖 = (−

∑

𝑗 𝐫𝑖𝑗 ⊗ ∇𝑊𝑖𝑗𝑉𝑗 )−1 = (𝐀𝑖)−1, 𝐈 the identity matrix, 𝜔1 =
|

|

𝐀𝑖|| ∕(0.3 + |

|

𝐀𝑖||).

2.2. Dual-criteria time stepping

In order to improve computational efficiency, dual-criteria time-
stepping method is adopted. Specifically, the update frequency of the 
particle configuration is controlled by the advection criterion, while the 
integration of pressure relaxation is determined by a smaller time step 
size based on the acoustic criterion. Following Zhang et al. [42], the 
3 
time step size of the advection criterion 𝛥𝑡𝑎𝑑 and the acoustic criterion 
𝛥𝑡𝑎𝑐 are 
⎧

⎪

⎨

⎪

⎩

𝛥𝑡𝑎𝑑 = 𝐶𝐹𝐿𝑎𝑑 min( ℎ
|𝐯|𝑚𝑎𝑥

, ℎ
2

𝜈
),

𝛥𝑡𝑎𝑐 = 𝐶𝐹𝐿𝑎𝑐 (
ℎ

𝑐 + |𝐯|𝑚𝑎𝑥
),

(6)

where 𝐶𝐹𝐿𝑎𝑑 = 0.25 and 𝐶𝐹𝐿𝑎𝑐 = 0.6.

2.3. SPHinXsys and Simbody coupling

The fluid density 𝜌𝑖 will be initialized firstly at the beginning of the 
advection time step 𝛥𝑡𝑎𝑑 as 

𝜌𝑖 = max(𝜌∗, 𝜌0
∑

𝑊𝑖𝑗
∑

𝑊 0
𝑖𝑗

), (7)

where 𝜌∗ denotes the density before re-initialization and 𝜌0 represents 
the initial reference value. The viscous force 𝐟𝑎𝜈 is also computed at 
this stage. Subsequently, pressure relaxation is carried out over the next 
several acoustic time steps 𝛥𝑡𝑎𝑐 using the position-based Verlet scheme 
proposed by Zhang et al. [43] 
⎧

⎪

⎨

⎪

⎩

𝜌
𝑛+ 1

2
𝑖 = 𝜌𝑛𝑖 +

1
2
𝛥𝑡𝑎𝑐 (

𝑑𝜌𝑖
𝑑𝑡

)𝑛+
1
2 ,

𝐫
𝑛+ 1

2
𝑖 = 𝐫𝑛𝑖 +

1
2
𝛥𝑡𝑎𝑐𝐯𝑛𝑖 .

(8)

The particle’s velocity 𝐯𝑖, density 𝜌𝑖, and position 𝐫𝑖 are updated to 
the mid-points as 
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐯𝑛+1𝑖 = 𝐯𝑛𝑖 + 𝛥𝑡𝑎𝑐 (
𝑑𝐯𝑖
𝑑𝑡

)𝑛+1,

𝜌𝑛+1𝑖 = 𝜌
𝑛+ 1

2
𝑖 + 1

2
𝛥𝑡𝑎𝑐 (

𝑑𝜌𝑖
𝑑𝑡

)𝑛+
1
2 ,

𝐫𝑛+1𝑖 = 𝐫
𝑛+ 1

2
𝑖 + 1

2
𝛥𝑡𝑎𝑐𝐯𝑛+1𝑖 .

(9)

Then, the forces acting on the flap of the OWSC will be computed, 
which are composed of two main components, the pressure force 𝐟𝑎𝑝
and the viscous force 𝐟𝑎𝜈 , as 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐟𝑎𝑝 = −2
∑

𝑖
𝑉𝑖𝑉𝑎

𝑝𝑖𝜌𝑑𝑎 + 𝑝
𝑑
𝑎𝜌𝑖

𝜌𝑖 + 𝜌𝑑𝑎
∇𝑎𝑊𝑎𝑖,

𝐟𝑎𝜈 = 2
∑

𝑖
𝜈𝑉𝑖𝑉𝑎

𝐯𝐢 − 𝐯𝐝𝐚
𝑟𝑎𝑖

𝜕𝑊𝑎𝑖
𝜕𝑟𝑎𝑖

.

(10)

Here, the subscript 𝑎 denotes the solid particle index. The imaginary 
pressure 𝑝𝑑𝑎  and velocity 𝐯𝑑𝑎  read as follows 
⎧

⎪

⎨

⎪

⎩

𝑝𝑑𝑎 = 𝑝𝑖 + 𝜌𝑖max (0, (𝐠 −
𝐝𝐯𝑎
𝑑𝑡

) ⋅ 𝐧)(𝐫𝑎𝑖 ⋅ 𝐧),

𝐯𝑑𝑎 = 2𝐯𝑖 − 𝐯𝑎,
(11)

where 𝐧 represents the normal direction of the solid body to fluid. The 
total force and total torque 𝜏 acting on the flap can be written as 
⎧

⎪

⎨

⎪

⎩

𝐅 =
∑

𝑎∈𝑁
𝐟𝑎 =

∑

𝑎∈𝑁
(𝐟𝑎𝑝 + 𝐟𝑎𝜈 ),

𝜏 =
∑

𝑎∈𝑁
(𝐫𝑎 − 𝐫𝐺) × 𝐟𝑎,

(12)

where 𝑁 denotes the total number of solid particles and 𝐫𝐺 is the 
position vector of the flap mass center.

At the end of each time step, the total force and total torque 
calculated from SPHinXsys are transmitted to Simbody for solving the 
Newton–Euler equations 
⎧

⎪

⎨

⎪

⎩

𝐅 = 𝑚𝐈0
𝑑𝐯
𝑑𝑡
,

𝜏 = 𝐉0
𝑑𝛺
𝑑𝑡

− 𝑘𝑑𝛺.
(13)

where 𝑚 is the mass of the flap, 𝐈0 the identity matrix, 𝐉0 the moment of 
the inertia about the center of mass, 𝜔 the angular velocity and 𝑘  the 
𝑑
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Fig. 2. The 2D water tank geometry for wave generation verification.
damping coefficient. After updating the position, velocity, and normal 
direction, the new kinematic state will be imported back to SPHinXsys, 
and the loop will continue.

It is worth noting that during the computation of Eq. (13), the 𝑘𝑑
is variable within a specific range, and it can be rapidly implemented 
through the damping update definition in Simbody.

2.4. Wave generation

A piston-type wave maker is used to generate the regular and 
irregular waves [44]. For fluid particles around the wall region, the 
interaction is determined by solving a one-sided Riemann problem 
along the wall-normal direction [42] where the left state is defined 

(𝜌𝐿, 𝑈𝐿, 𝑃𝐿) = (𝜌𝑖,−𝐧𝑤 ⋅ 𝐯𝑖, 𝑝𝑖), (14)

where 𝐧𝑤 is the normal direction of the wall, and 𝑖 represents the 
fluid particles. The right state of the velocity 𝑈𝑅 and pressure 𝑃𝑅 are 
assumed as 
{

𝑈𝑅 = −𝑈𝐿 + 2𝐮𝑤,
𝑃𝑅 = 𝑃𝐿 + 𝜌𝑖𝐠 ⋅ 𝐫𝑖𝑤,

(15)

where 𝐮𝑤 is wall velocity, 𝐫𝑖𝑤 = 𝐫𝑤 − 𝐫𝑖, 𝜌𝑖 is computed from Eq. (2).
The displacement function of the wave maker 𝑟𝑎 for regular waves 

relies on 
⎧

⎪

⎨

⎪

⎩

𝑟𝑎 = 𝐸 sin(2𝜋𝑓𝑡 + 𝜓),

𝐸 =
𝐻(sinh(2𝑘ℎ) + 2𝑘ℎ)
sinh(2𝑘ℎ) tanh(2𝑘ℎ)

.
(16)

Here, 𝐸 is the wave stroke, 𝑓 the wave frequency, 𝜓 the wave phase, 𝐻
the wave height, and ℎ the water depth. The wave number 𝑘 followed 
by the dispersion relation [45] 

𝜔2 = 𝑔𝑘 tanh(𝑘ℎ), (17)

where 𝜔 = 2𝜋𝑓 is the wave angular frequency.
For irregular waves, the JONSWAP spectrum exhibits a more con-

centrated wave energy than the Pierson–Moskowitz spectrum, making 
it more effective in describing the energy distribution of waves in the 
developmental stage [5]. Considering that OWSCs are predominantly 
placed in nearshore areas, where waves are typically in this devel-
opmental stage, it is appropriate to use the JONSWAP spectrum to 
generate irregular waves [46] 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑆(𝑓 ) = 𝛽𝐽𝐻
2
𝑝𝑇

−4
𝑝 𝑓−5 exp[−1.25(𝑇𝑝𝑓 )−4]𝛾

exp[−
(𝑇𝑝𝑓−1)2

(2𝛿2𝐽 )
]

𝐽 ,

𝛽𝐽 =
0.0624(1.094 − 0.01915 ln 𝛾𝐽 )

0.230 + 0.0336𝛾𝐽 − 0.185(1.9 + 𝛾𝐽 )−1
,

(18)

where 𝐻𝑝 is the main wave height, 𝑇𝑝 the peak wave period, 𝑓 = 𝜔∕2𝜋
the wave frequency, and 𝛾𝐽 = 3.3 the peak enhancement factor, 𝛿𝐽
dependent on the peak frequency 𝑓𝑝 = 1∕𝑇𝑝 [47]. Our study em-
ployed a combination of 𝑁 random regular waves to simulate nonlinear 
waves. The wave number 𝑘𝑛 for each regular wave was consistent with 
Eq. (17). The displacement equation 𝑟𝑁  can be written as 

𝑟𝑁 =
𝑁
∑

𝐸(𝑓𝑛) cos(2𝜋𝑓𝑛𝑡 + 𝜓𝑛). (19)

𝑛=1

4 
Here, 𝐸(𝑓𝑛) =
√

2𝑆𝜔(𝑓𝑛)𝛥𝑓 , 𝑓1 = 0 Hz, 𝑓𝑁 = 3𝑓𝑝, 𝛥𝑓 = 1∕𝑇𝑡𝑜𝑡𝑎𝑙 with 
𝑇𝑡𝑜𝑡𝑎𝑙 the total time of simulation, 𝜓𝑛 represents the random phases, and 
𝑆𝜔(𝑓𝑛) is defined as 

𝑆𝜔(𝑓𝑛) = 𝑆(𝑓𝑛)(
4 sinh2(𝑘ℎ)

2𝑘ℎ + sinh(2𝑘ℎ)
)−2. (20)

In addition, to prevent numerical divergence caused by excessive 
movement of the wave maker during the initial computation, we in-
troduced a relaxation time 𝑡𝑟𝑒𝑥 = 1 s, and the final wave maker 
displacement function is as follows 

𝑟𝑁 =

⎧

⎪

⎨

⎪

⎩

sin(𝜋𝑡
2
)𝑟𝑁 , 𝑡 ≤ 𝑡𝑟𝑒𝑥

𝑟𝑁 , 𝑡 > 𝑡𝑟𝑒𝑥.
(21)

Also, to mitigate the impact of wave reflection off the wall on the 
motion of the OWSC, the wave–particle velocity 𝐯 in the damping zone 
is given by 

𝐯 = 𝐯0(1.0 − 𝛼𝛥𝑡(
𝐫 − 𝐫0
𝐫1 − 𝐫0

)). (22)

𝐯0 the fluid particle velocity at the entrance of the damping zone, the 
reduction coefficient 𝛼 is set as 5.0, 𝐫0 and 𝐫1 are the initial and final 
position vectors of the damping zone.

2.5. Numerical model validation

In this section, we verify the accuracy of generating regular and 
irregular waves and validate the numerical simulations of the 2D and 
3D OWSC.

The geometry of the 2D numerical simulation is shown in Fig.  2. 
The total length of the tank 𝐿 is 15 m, the water depth ℎ 0.691 m, and 
the damping zone is 4.47 m long. The parameters of the second-order 
Stokes wave are 𝐻 = 0.2 m and wave period 𝑇 = 2 s [45]. As shown in 
Fig.  3, our numerical result of wave frequency and amplitude is very 
close to the analytical solution [45], which indicates that the wave is 
generated correctly.

Furthermore, we set three different particle resolutions from coarse 
to fine. The resolution of 𝑑𝑝 = 0.015 m not only improves the ac-
curacy of the calculation results but also reduces the computation 
time. Therefore, this resolution will be used for all subsequent 2D 
simulations.

In Fig.  4, the typical parameters for irregular waves are 𝐻𝑝 =
0.2 m and 𝑇𝑝 = 2.0 s. Note that 𝑇𝑡𝑜𝑡𝑎𝑙 is set for 40 s and 100 s for 
comparison. The frequency spectrum is obtained by applying the Fast 
Fourier Transform (FFT) to the free surface height, as shown in Fig.  5. 
Notably, our numerical results demonstrate a high degree of agreement 
with the analytical results derived from the JONSWAP spectrum, and 
for RL training, 𝑇𝑡𝑜𝑡𝑎𝑙 = 40 s is set for one training episode.

The present method for modeling wave interaction with the OWSC 
is validated in both 2D and 3D. The water tank and OWSC geome-
tries are based on the experiment conducted at Queen’s University 
Belfast [18], as shown in Fig.  6. The length, width, and height of the 
wave tank are 18.4 m, 4.58 m, and 1.0 m. The flap shape of the OWSC 
is simplified as a box-type with the dimensions of 0.12 m × 1.04 m ×
0.48 m. It is set at 7.92 m far from the wave maker in the 𝑥 direction 
and the middle in the 𝑧 direction. The water depth ℎ is 0.691 m, and 
the hinge height is 0.16 m. The mass and inertia of the flap are 33 kg
and 1.84 kg m2. The damping coefficient 𝑘𝑑 is set to 20. In addition, 
we set three free surface height sensors in the 𝑥 direction, which are 
WP04 (3.99 m), WP05 (7.02 m), and WP12 (8.82 m).
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Fig. 3. Comparison of free surface heights under different resolutions at 𝑥 = 4.0 m with theoretical results.
Fig. 4. Time series of the free surface elevation at 𝑥 = 0.2 m for the irregular wave.
Fig. 5. Comparison between the analytical JONSWAP spectrum of Eq. (18) and the SPH spectrum corresponding to different time series.
Fig. 6. Schematic of the wave tank and the OWSC mode.
The wave maker creates a simple harmonic wave with the wave 
height 𝐻 = 0.2 m and wave period 𝑇 = 2 s. The simulation parameter is 
1 ∶ 25 in scale, and the results presented herein have been converted to 
full scale as in Ref. [27]. The 2D simulation and training is computed 
on a Mac OS system, with an Apple M1 Max core and 32 GB RAM, 
while the 3D simulation is carried on a Windows system, with an AMD 
Ryzen 9 7950X core and 48 GB RAM. The total fluid particle numbers 
5 
are 40027 and 1.542 million, for 2D and 3D simulations, respectively. 
From Fig.  7, we can see that WP04 is far away from the flap, so the 
interaction of the wave and flap has little influence on the free surface 
height, and our results show that the wave maker can generate an 
accurate sine wave with minor errors. WP05 and WP12 are set near the 
flap, and we can find that our simulations can capture the influence 
of interaction on free surface height in both places. Furthermore, by 



M. Ye et al. Renewable Energy 246 (2025) 122887 
Fig. 7. Comparison of free surface elevations for wave height 𝐻 = 5.0 m and wave period 𝑇 = 10 s at different wave probes. (a) 𝑥 = 3.99 m for WP04, (b) 𝑥 = 7.02 m for WP05, 
and (c) 𝑥 = 8.82 m for WP12.
Fig. 8. Comparison of the flap rotation.
comparing the free surface heights at WP05 and WP12, it is evident 
that the free surface height significantly decreases after passing through 
the OWSC, indicating an energy reduction. This reduction indirectly 
demonstrates that a portion of the energy has been converted into 
wave energy. Fig.  8 shows that the flap rotation simulation results are 
consistent with the experiment. The 3D results are much better than 
2D simulations, where antisymmetric diffracted waves traveling in all 
directions, including tangentially to the flap, can induce near-resonant 
phenomena that enhance the exciting torque on the converter [48].

Notably, a 2D simulation requires only 1.2 min of computing time 
for 12 s of physical time calculation, whereas a 3D simulation de-
mands 4.5 h. Given that each DRL training session necessitates at least 
200 episodes, we employ 2D simulations for training and utilize 3D 
simulations for policy validation.
6 
3. Direct deep reinforcement learning

Fig.  9 provides an overview of the platform. The DRL training 
process consists of two key components: the environment and the 
agent. The sampled state vector from SPHinXsys is normalized and 
passed to the agent. The reward is calculated based on the change in 
state between two consecutive time steps and the variation in reward 
parameters during the action application. We show a typical framework 
of the DRL algorithm: soft actor critics (SAC), which takes actor–critic 
architecture [49]. The policy network (actor) outputs actions fed into 
Simbody and critic networks in real-time. The critic networks evaluate 
the quality of these actions, and the smaller 𝑄𝑖 is chosen to update 
the policy network with gradient ascent. The critic networks will be 
updated with target networks using gradient descent.
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Fig. 9. The current CFD-DRL framework encompasses an integrated interaction process between two primary components: the CFD Environment and the DRL Agent.
3.1. DRL environments

The numerical simulation environment, observation probes, and 
action transition functions are created using SPHinXsys. The standard 
DRL environment is built based on OpenAI’s Gym library in Tian-
shou [50], which includes two essential functions: reset and step. 
In the reset function, the numerical environment is initialized, and 
the initial observations are collected using probes. The step func-
tion receives action values from the DRL algorithm, passes them to 
SPHinXsys for numerical calculations under the current action, collects 
new observations, and gets the reward.

Rabault et al. [51] show that more observations will give the agent 
more information to update its network and improve the training 
result. Therefore, 38 observations are set as the state vector 𝑠𝑛 from 
the environment to capture the structure of the regular wave and its 
impact on the flap. The components of the observations are based on 
two parts, as shown in Fig.  10. The first part is the wave properties, 
including velocity and free surface height at five positions, starting from 
7 
𝑥 = 3.0 m to 𝑥 = 7.6 m, which is close to one wavelength. Another 5 
points from 𝑦 = 0.3 m to 𝑦 = 0.7 m on the front panel of the OWSC 
device are also set to get the wave velocity. The second part is the 
characteristics of the flap, including flap rotation and angular velocity, 
and damping coefficient 𝑘𝑑 of the PTO system. Besides, it is ideal that 
the observations from 2D and 3D simulations can be close. Thus, the 
observation positions are set on the middle plane in the 𝑧-axis as shown 
in Fig.  6, and only 𝑥-axis and y-axis properties are considered.

In the present work, the action 𝑎𝑛 in one action time step 𝑡𝑎 = 0.1 s
of variation in the damping coefficient |𝛥𝑘𝑑 | ≤ 25 N m s∕rad. However, 
directly changing the damping coefficient has the potential risk to 
the computation divergence. Therefore, the current numerical damping 
coefficient 𝑘𝑛𝑑 and the subsequent numerical damping coefficient 𝑘𝑛+1𝑑
have a simple linearly increasing change of 𝛥𝑘𝑑∕𝑀 during the time 
step of 𝑡𝑎∕𝑀 . Considering that the 𝛥𝑡𝑎𝑐 = 0.00021 s, 𝑀 = 10 is 
sufficient to ensure accuracy in the 2D simulation. Note that a large 
damping coefficient will make the flap’s rotation challenging. A small 
damping coefficient will result in larger deflection angles, which may 
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Table 1
The variations of the total wave energy conversion 𝐸𝑡 in terms of damping coefficients.
 𝑘𝑑 (N m s/rad) 10 20 30 40 45 50 60 70 80 90 100  
 𝐸𝑡 (J) 195.19 281.38 309.56 321.26 321.96 316.52 310.86 300.92 291.02 279.37 267.47 
Fig. 10. Two main components of the observation vector.

cause the OWSC to break in real applications. In the present work, 
0 ≤ 𝑘𝑑 (N m s∕rad) ≤ 100 is applied. As observed in Fig.  8, we 
can see that even if the damping coefficient is set to 0, the most 
extensive rotation of the flap is 50◦, which is smaller than the critical 
value. Although the entire OWSC can still run under extreme boundary 
conditions, a penalty term is given in the reward as 𝑃 ∗ = −1 ⋅
[

(𝑘𝑑 + 𝛥𝑘𝑑 < 0) ∨ (𝑘𝑑 + 𝛥𝑘𝑑 > 100)
]

.
Based on Senol and Raessi’s work [52], the instance energy harvest-

ing in one action time step can be defined as 

𝑃𝑡𝑎𝑘𝑒−𝑜𝑓𝑓 =
𝑀−1
∑

𝑛=0
𝑘𝑛𝑑 (

𝛺𝑛+1 +𝛺𝑛
2

)2. (23)

Here, 𝛺𝑛 is the flap angular velocity. It is evident that larger 𝑃𝑡𝑎𝑘𝑒−𝑜𝑓𝑓
means more instantaneous wave energy harvesting by the OWSC. The 
study of Zhang et al. [27] shows that the average wave energy har-
vesting factor (CF) of 3D OWSCs can reach a peak when 𝑘∗𝑑 is around 
40 N m s/rad. Combined with Table  1, the verification results show 
that in the case of 2D OWSC, the total wave energy conversion reaches 
a maximum value at 𝑘∗𝑑 = 45 N m s∕rad. Then, the instance energy 
harvesting in one action time step with 𝑘∗𝑑 is recorded as the baseline 
𝑃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 in the reward to help the agent distinguish good from harmful 
actions. The final reward can be calculated as 
𝑟𝑛 = 𝑃𝑡𝑎𝑘𝑒−𝑜𝑓𝑓 − 𝑃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 + 𝑃 ∗. (24)

3.2. DRL algorithms

RL algorithms can be broadly categorized into two types: on-policy 
and off-policy. On-policy algorithm updates its policy network after 
one episode and uses the newly updated policy to collect data in the 
next episode. The typical algorithm is proximal policy optimization 
(PPO) [53]. On the other hand, the policy for updating and collecting 
is different for the off-policy algorithm. The typical methods are twin 
delayed deep deterministic policy gradient (TD3) [54] and SAC.

More specifically, the action value function 𝑄𝜋𝜃 (𝑠𝑛, 𝑎𝑛) and the state 
value function 𝑉𝜋𝜃 (𝑠𝑛) can be defined as: 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑄𝜋𝜃 (𝑠𝑛, 𝑎𝑛) = 𝐄𝜋𝜃 [
∞
∑

𝑡=𝑛
(𝛾𝑡𝑟𝑡|𝑠𝑡, 𝑎𝑡)],

𝑉𝜋𝜃 (𝑠𝑛) = 𝐄𝑎𝑛∼𝜋𝜃 [
∞
∑

𝑡=𝑛
(𝛾𝑡𝑟𝑡|𝑠𝑡)],

(25)

where 𝜋𝜃 is the policy network with parameter 𝜃, 𝛾𝑡 ∈ [0, 1] the discount 
factor for the future reward, and ∑∞

𝑡=𝑛 𝛾𝑡𝑟𝑡 usually defined as return 𝐺𝑛. 
The policy network plays an important role in the optimization process, 
as its input is the current state 𝑠 , and its output is the action 𝑎  or 
𝑛 𝑛
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the probability density function of the action 𝜋𝜃(⋅|𝑠𝑛). The action value 
function 𝑄𝜋𝜃 (𝑠𝑛, 𝑎𝑛) represents the expected return obtained by taking 
action 𝑎𝑛 in the current state 𝑠𝑛 and then following the policy 𝜋𝜃 . The 
state value function 𝑉𝜋𝜃 (𝑠𝑛) represents the expected return obtained by 
following the policy 𝜋𝜃 and the current state 𝑠𝑛.

3.2.1. The PPO algorithm
The core of the PPO algorithm is to build an objective function 𝐽 to 

characterize the return 𝐺𝑛 under the parameter 𝜃 of the current policy 
network. The best policy and return are obtained by updating 𝜃 to 
maximize the objective function. Based on the Policy Gradient Theorem 
(PGT), the objective function 𝐽 (𝜃) can be written as [53] 

𝐽 (𝜃) = 𝐄𝑠𝑛∼[𝐄𝑎𝑛∼𝜋𝜃𝑘 [
𝜋𝜃(𝑎𝑛|𝑠𝑛)
𝜋𝜃𝑘 (𝑎𝑛|𝑠𝑛)

⋅ 𝐴𝜋𝜃𝑘 (𝑠𝑛, 𝑎𝑛)]], (26)

where  is the replay buffer, 𝜃𝑘 the old parameter of the policy 
network. Also, 𝐴𝜋𝜃𝑘 (𝑠𝑛, 𝑎𝑛) is the advantage function which can be 
defined as 

𝐴𝜋𝜃𝑘 (𝑠𝑛, 𝑎𝑛) = 𝑟𝑛 + 𝛾𝑉
𝜋𝜃𝑘
𝜙 (𝑠𝑛+1) − 𝑉

𝜋𝜃𝑘
𝜙 (𝑠𝑛), (27)

where 𝑉 𝜋𝜃𝑘
𝜙 (𝑠𝑛) is the estimated value of state 𝑠𝑛 by the critic network 

with parameters 𝜙, the superscript 𝜋𝜃𝑘  indicates that the data is col-
lected using the policy employed during the 𝑘th iteration, and 𝛾 is the 
discount factor. The advantage function will not affect the expectation 
but improve the policy’s performance [55]. A key feature of PPO is the 
clipped surrogate objective, which is designed to prevent huge policy 
updates. The objective function of 𝐽 (𝜃) is then rewritten as follows

𝐽 (𝜃) = 𝐄𝑠𝑛∼
[

𝐄𝑎𝑛∼𝜋𝜃𝑘
[

min
(

𝑟𝜃(𝑠𝑛, 𝑎𝑛),

clip(𝑟𝜃(𝑠𝑛, 𝑎𝑛), 1 − 𝜎, 1 + 𝜎)
)

⋅ 𝐴𝜋𝜃𝑘 (𝑠𝑛, 𝑎𝑛)
]]

, (28)

where 𝑟𝜃(𝑠𝑛, 𝑎𝑛) = 𝜋𝜃(𝑎𝑛|𝑠𝑛)∕𝜋𝜃𝑘 (𝑎𝑛|𝑠𝑛), and 𝜎 = 0.2.
The critic network 𝑉𝜙 in PPO is primarily used to represent the state 

value function and its loss function is defined as 

𝐿(𝜙) = 𝐄𝑠𝑛∼
[

(

𝑉𝜙(𝑠𝑛) − (𝑟𝑛 + 𝛾𝑉𝜙𝑘 (𝑠𝑛+1))
)2

]

(29)

3.2.2. The TD3 algorithm
The TD3 algorithm is based on policy gradient methods, where the 

policy network 𝜋𝜃 outputs actions 𝑎𝑛 directly. The value networks 𝑄𝜙𝑖 , 
called critics, provide value estimates based on 𝑠𝑛 and 𝑎𝑛 suggested 
by the policy network. TD3 employs two value networks to mitigate 
overestimation issues and obtains more reliable value estimates using 
the minimum value predicted by the two networks [54]. Each network 
(the policy and the two value networks) is paired with a corresponding 
target network. Therefore, a total of six networks are utilized during 
the training process.

The objective function of a TD3 policy network is defined as 

𝐽 (𝜃) = 𝐄𝑠𝑛∼
[

𝑄𝜙1 (𝑠𝑛, 𝜋𝜃(𝑠𝑛))
]

. (30)

Also the loss for the critic networks is given by temporal difference 
(TD) 

𝐿(𝜙𝑖) = 𝐄𝑠𝑛∼
[

(

𝑄𝜙𝑖 (𝑠𝑛, 𝑎𝑛) − 𝑦𝑛
)2

]

, 𝑖 = 1, 2. (31)

Here, the target value 𝑦𝑛 = 𝑟𝑛 + 𝛾 min𝑖=1,2𝑄𝜙′𝑖 (𝑠𝑛+1, 𝜋𝜃′ (𝑠𝑛+1) + 𝜖), where 
𝑄𝜙′𝑖  means the target critic network, 𝜋𝜃′  the target policy network and 
𝜖 is the truncated Gaussian noise.
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Fig. 11. Free surface height in front of the flap for training and testing.
Fig. 12. Total reward curves in the training process with three agents.

3.2.3. The SAC algorithm
SAC consists of a policy network that outputs an action proba-

bility density function, two value networks, and two target networks 
corresponding to the value networks.

In the PPO state space exploration primarily relies on sampling 
from the action probability distribution output by the policy network, 
whereas TD3 achieves exploration by artificially adding noise to the 
output of the action. Compared with the PPO and TD3 algorithms, 
the SAC algorithm incorporates the entropy of the policy into the 
state-value function, encouraging exploration by maximizing the return 
regularized by entropy 

𝑉𝜋𝜃 (𝑠𝑛) = 𝐄𝑎𝑛∼𝜋𝜃 [
∞
∑

𝑡=𝑛
(𝛾𝑡𝑟𝑡|𝑠𝑡) + 𝛽(𝜋𝜃(𝑠𝑛))], (32)

where 𝛽 is the regularization coefficient.
The objective function of the policy network is 

𝐽 (𝜃) = 𝐄𝑠𝑛∼
[

min
𝑖=1,2

𝑄𝜙𝑖 (𝑠𝑛, 𝑎̃𝑛) − 𝛽 log𝜋𝜃(𝑎̃𝑛|𝑠𝑛)
]

, (33)

where 𝑎̃𝑛 is the sample from 𝜋𝜃(⋅|𝑠𝑛).
Also, the loss for the critic networks is also calculated by TD, while 

with a different definition of 𝑦𝑛
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐿(𝜙𝑖) = 𝐄𝑠𝑛∼
[

(

𝑄𝜙𝑖 (𝑠𝑛, 𝑎𝑛) − 𝑦𝑛
)2

]

, 𝑖 = 1, 2,

𝑦𝑛 = 𝑟𝑛 + 𝛾
(

min
𝑖=1,2

𝑄𝜙′𝑖 (𝑠𝑛+1, 𝑎̃𝑛+1) − 𝛽 log𝜋𝜃(𝑎̃𝑛+1|𝑠𝑛+1)
)

,
(34)

here where 𝑎̃  is the sample from 𝜋 (⋅|𝑠 ).
𝑛+1 𝜃 𝑛+1
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Table 2
Basic hyperparameters of different DRL algorithms.
 Algorithm PPO TD3 SAC  
 Activation function tanh tanh tanh  
 Learning rate (𝛼) 3e−4 3e−4 1e−3  
 Steps per epoch 2048 2048 2048  
 Batch size 256 256 256  
 Discount factor (𝛾) 0.99 0.99 0.99  
 Soft update (𝜏) – 0.005 0.005 

4. Result

4.1. Study of DRL algorithms

Initially, three typical DRL algorithms are trained:i.e., PPO, TD3, 
and SAC. The parameters of the policy and critic networks under the 
three algorithms are consistent, with two hidden layers and 512 neu-
rons in each layer. Other settings of the neural network and algorithm 
hyperparameters are shown in Table  2.

Fig.  11 illustrates the free surface height at 𝑥 = 7.6 m in front of 
the flap. It is observed that around the 4-s mark, the wave reaches and 
interacts with the flap. Consequently, the training phase is initiated at 
the 4-s mark and continues until the 24-s mark, encompassing 20 s and 
200 actions. The testing phase extends over 40 s, incorporating 400 
actions.

The overall reward curves with standard deviation shadows are 
depicted in Fig.  12. The training consisted of 220 episodes, with TD3 
and SAC requiring the pre-collection of data for the first 20 episodes, 
a process of gathering initial data before the actual training. Pre-
collection resulted in oscillations around −80 in the reward curves 
during this phase. However, both algorithms quickly identified effec-
tive energy enhancement strategies within the first ten episodes after 
training commenced. Considering TD3 incorporates noise artificially to 
enrich exploration, it displayed instability and only began to stabilize 
after 90 episodes.

On the other hand, SAC explored and converged to optimal strate-
gies by approximately 60 episodes with entropy regularization. PPO, 
not requiring initial data collection, showed a slower but steady im-
provement from the beginning, converging to effective strategies
around 80 episodes. From the reward trends observed between episodes 
160 and 220, SAC demonstrates its best performance with the slightest 
standard deviation, indicating superior stability over other two algo-
rithms. In addition, since the incident wave is regular, the dynamic 
curve of the damping coefficient is also periodic, as shown in Fig.  13. 
It can be observed that the overall fluctuation of the PPO algorithm is 
substantial, whereas the TD3 algorithm converges to a locally optimal 
solution due to insufficient exploration. Therefore, SAC will be applied 
for subsequent agent training.

Fig.  14 presents the velocity field in the 𝑥-direction and the motion 
state of the flap under both fixed and dynamic damping coefficients, 
and Fig.  15 focuses on quantitatively analyzing the flap’s rotation 
and angular velocity. It can be observed that the adaptive change of 
the damping coefficient does not alter the flow field structure or the 
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Fig. 13. Adaptive damping coefficients of the PTO system with different agents.
Fig. 14. Free surfaces and wave–structure interactions in one wave period. The fluid particles are colored by velocity magnitude on the 𝑥-axis.
angular amplitude of the flap, while shift the equilibrium position of the 
flap, from −1.81◦ to 4.31◦. Further analysis indicates that the periodic 
characteristics of the free surface height at the flap are consistent 
with the damping coefficient of the PTO system. When the wave crest 
passes, the damping coefficient increases to its peak value. Given that 
the energy density of the wave crest is high, the angular velocity 
is reduced slightly, leading to an overall improvement in the PTO 
system, as shown in Fig.  15(c). In addition, the wave energy density 
of the trough itself is lower than that of the peak, and some energy 
has already been absorbed during the crest phase. Maintaining a high 
damping coefficient during this phase would rapidly decrease angular 
velocity. Although reducing the damping coefficient can increase the 
flap’s angular velocity, the PTO system’s power output still decreases 
compared to a constant damping coefficient. Overall, as shown in Fig. 
16(b), during a complete wave period, the average energy harvesting 
by the dynamic damping system is 27.3 J, compared to 24.4 J captured 
under the optimal constant damping coefficient, resulting in a 10.61% 
improvement in wave energy harvesting.

The energy harvesting efficiency of the OWSC can be quantified by 
CWR [25,52] 

CWR =
𝑃𝑜𝑢𝑡
𝑃0

. (35)

Here, 𝑃𝑜𝑢𝑡 is the capture of instantaneous energy within a wave period 
and 𝑃  is the mean incident power of unidirectional regular waves 
0
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Table 3
Comparison of constant and adaptive damping coefficients for different wave types.
 Fixed 𝑘𝑑 (%) DRL (%) 
 2D regular wave 13.12 14.68  
 3D regular wave 34.15 41.86  
 2D irregular wave 86.79 92.38  

based on the linear theory 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑃𝑜𝑢𝑡 =
1

𝑇𝑝𝑒𝑟𝑖𝑜𝑑 ∫

𝑇𝑝𝑒𝑟𝑖𝑜𝑑

0
𝑘𝑑𝛺

2 𝑑𝑡

𝑃0 =
𝜌𝑔𝐻2𝐵𝜔

16𝑘
(1 + 2𝑘ℎ

sinh(2𝑘ℎ)
),

(36)

with 𝐵 denoting the width of the flap. Currently, CWR under optimal 
constant damping coefficient is 13.12%, and 14.68% for the adaptive 
damping coefficient in 2D simulations, as shown in Table  3.

4.2. Effects of 3D simulations

Previous studies have shown that fixed flaps in 2D simulations 
simplify the diffraction waves, which are theoretically equal in size to 
the incident waves and opposite in direction. This results in standing 
waves forming on the windward side of the flap [48]. In 3D simulations, 
diffraction waves propagate in all directions, and antisymmetric shear 
waves along the flap can trigger near-resonance, enhancing the torque 
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Fig. 15. Influence of the damping coefficient on the (a) rotation of the flap, (b) angular velocity of the flap, and (c) instantaneous power capture.

Fig. 16. Comparison of peak and trough energy in a complete cycle under the optimal constant damping coefficient and SAC strategy, (a) 2D and (b) 3D.
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Fig. 17. 3D simulations of OWSC: Free surfaces and the flap motion in a wave period. The left side is the optimal constant damping coefficient, and the right side is the damping 
coefficient controlled with SAC.
Fig. 18. Comparison of the damping coefficient with the same policy under 2D and 3D simulations.
acting on the converter. Therefore, 3D simulations can more accurately 
capture the motion characteristics of the OWSC device in actual opera-
tion. In this section, we conduct experiments in a 3D environment with 
the policy obtained from a 2D training environment. Notably, Zhang 
et al. [27] have proved that in 3D simulations, 𝑘𝑑 = 40 N m s/rad is 
the optimal constant damping coefficient.

As shown in Fig.  17, the dynamic changes in the damping coefficient 
do not alter the structure of the flow field in the 3D simulations. Also, as 
shown in Fig.  18, the output of the damping coefficient in both 2D and 
3D simulations is essentially consistent. This consistency indicates that 
the 2D assumption can accurately represent the coupling effect between 
the waves and the OWSC, and it also demonstrates the robustness of the 
trained policy network, which can be applied in real-world scenarios.

Similar to the 2D simulation, Fig.  19 shows that under adaptive 
damping control, the equilibrium position of the flap shifts to the left 
by 11.46◦, approaching nearly vertical position to the base. Considering 
the fluid incompressibility, this shift increases the force perpendicular 
to the flap, as illustrated in Fig.  19(a). A control period is assumed to 
begin when the flap rotates to the far left, with the wave crest reaching 
the flap. During the first quarter of the period, the damping coefficient 
continues to rise. Due to the increased thrust on the flap, the angular 
velocity remains almost unchanged compared to the constant damping 
coefficient, enhancing energy harvesting. As the wave trough passes, 
the force on the flap decreases, and the reduction in the damping 
coefficient helps maintain the flap’s angular velocity. Since the energy 
12 
of the wave crest is inherently higher than that of the trough, the 
overall energy harvesting improves due to the difference in energy 
levels, as shown in Fig.  16(b). Over a complete wave period, the 
average energy harvesting by the dynamic damping system is 77.88 J, 
compared to 63.55 J under the optimal constant damping coefficient, 
resulting in a 22.54% improvement. Also, in 3D simulation, CWR under 
optimal constant damping coefficient is 34.15% and 41.86% with the 
adaptive damping coefficient.

4.3. Optimization under different wave periods

It is well-established that fixed damping coefficients in vibration 
absorbers are suboptimal under off-resonance conditions. In this sec-
tion, we first apply the optimized policy, trained under baseline wave 
conditions (𝑇 = 2 s,𝐻 = 0.2 m), to scenarios where either the 
wave period is altered (𝑇 = 3 s) or the wave amplitude is increased 
(𝐻 = 0.4 m). The results, shown in Fig.  20, indicate that when 
the wave period changes, the policy’s adaptability decreases, yielding 
only a limited improvement in energy harvesting (3.73%). In contrast, 
when the wave amplitude varies, the policy remains highly adaptive, 
achieving a notable enhancement in energy capture (14.24%).

We train the policy using waves with periods of 𝑇 = 1 s and 
𝑇 = 3 s, respectively, and perform a comparative analysis against the 
results obtained from training with 𝑇 = 2 s, as shown in Fig.  21. The 
results indicate that the wave energy density increases as the wave 
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Fig. 19. Effects of different policies on (a) vertical force on the flap, (b) rotation of the flap, (c) angular velocity of the flap, and (d) instantaneous power capture.
period increases. However, the energy difference between wave crests 
and troughs becomes more pronounced. Since the strategy primarily 
enhances energy capture efficiency by leveraging the energy in the crest 
region, the optimization effect becomes more significant with longer 
wave periods. Overall, energy harvesting improved by 1.6%, 8.8%, and 
13.75% under the three wave periods, compared to the optimal fixed 
damping coefficient. Furthermore, for 𝑇 = 3 s, the variation in damping 
exhibits the same periodic characteristics as the wave itself, as shown 
in Fig.  22. This suggests that for regular waves, the damping variation 
period is identical to the wave period, although the magnitude of the 
damping variation differs. This observation is expected, as an increase 
in wave period while maintaining a constant wave height results in 
higher overall wave energy. Consequently, the optimal fixed damping 
coefficient increases, leading to corresponding adjustments in damping 
variation.
13 
4.4. Optimization under irregular waves

In this section, we investigate optimization problems under irregular 
wave conditions, the most common scenarios encountered in practical 
engineering applications. Considering the strong nonlinearity of the 
induced motion of the OWSC under irregular waves, the number of 
observation points increases. The initial observation position of the free 
surface height is set at 𝑥 = 3.5 m, with one point placed every 0.264 m 
for total 17 probes. The locations of observation points for wave speed 
are also increased accordingly, and the value of the observation vector 
increased to 74 at last. In addition, to verify that the policy network can 
resist the random characteristics of irregular waves, two sets of random 
seeds are used to characterize the wave phases in Eq. (19) during 
the training and testing stages while 𝐻𝑝 and 𝑇𝑝 remained unchanged. 
The relation between the total energy conversion and linear damping 
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Fig. 20. Comparison of peak and trough energy in 10 complete cycles under the optimal constant damping coefficient and SAC strategy, (a) 𝑇 = 3 s, 𝐻 = 0.2 m and (b) 𝑇 = 2 s, 
𝐻 = 0.4 m.

Fig. 21. Comparison of peak and trough energy in 10 complete cycles under the optimal constant damping coefficient and SAC strategy, 𝐻 = 0.2 m, (a) 𝑇 = 1 s, (b) 𝑇 = 2 s, and 
(c) 𝑇 = 3 s.
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Fig. 22. The free surface height in front of the first flap (𝑥 = 7.6 m) and the corresponding damping coefficient.
Fig. 23. The free surface height in front of the flap and the corresponding damping coefficient under the (a) training wave (c) testing wave, and the difference of instantaneous 
energy harvesting 𝛥𝐸 = 𝐸𝑡 − 𝐸60 under the (a) training wave (c) testing wave.
coefficient for irregular waves is shown in Table  4. It is clear that with 
𝑘𝑑 = 60 N m s/rad, the energy harvesting factor is the highest.

From Fig.  23(a), it can be observed that, compared to regular waves, 
less than one-third of the free surface heights of irregular waves exceed 
15 
0.2 m throughout the entire period, which is also the region where 
the wave energy is primarily concentrated. The dynamic response of 
the damping coefficient is related to the free surface height. When the 
peak period occurs, the damped vibration also increases accordingly. 
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Table 4
The variations of the total energy conversion in terms of damping coefficients.
 𝑘𝑑 (N m s/rad) 10 20 30 40 50 60 70 80 90 100  
 𝐸𝑡𝑟𝑎𝑖𝑛 (J) 195.21 290.79 340.34 365.88 378.75 383.36 382.02 379.29 377.94 368.95 
 𝐸𝑡𝑒𝑠𝑡 (J) 206.12 300.77 350.17 378.48 383.89 390.49 381.86 376.41 368.35 363.64 
Fig. 24. The geometry of the dual OWSC system. The overall structure has stayed the same. Only the length of the plane where the base is located has been increased.
Table 5
The influence of the spacing on the total energy conversion of dual OWSCs.
 𝛥𝑥 (m) 2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75 4.0  
 𝐸𝑡 (J) 449.01 366.32 422.91 526.69 608.52 661.68 675.47 650.44 541.84 
This relationship can also be observed in the test section, indicating 
that the agent can accurately capture the wave characteristics under 
the specific spectrum.

Further combined with Fig.  23(b), we can see that compared with 
the constant damping coefficient, the difference in energy harvesting is 
mainly concentrated in the peak period, which is essentially consistent 
with the improvement of energy harvesting by regular waves. The near-
simple harmonic damping motion will improve Capture energy in the 
crest section and reduce energy harvesting in the trough section. For 
secondary period waves, since the instantaneous energy they carry is 
small, the response of the damping coefficient will not cause signifi-
cant changes in flap motion and energy harvesting. This part of the 
energy cannot be effectively improved. Therefore, over the entire 40-s 
period, the wave energy harvesting increased by 24.67 J, an increase of 
6.42%, compared to the energy harvesting under a constant damping 
coefficient. In addition, for the average incident energy of the irregular 
wave, Eq. (36) is modified as 

𝑃0 =
𝑁
∑

𝑖=0

𝜌𝑔𝐻2
𝑖 𝐵𝜔𝑖

16𝑘𝑖

(

1 +
2𝑘𝑖ℎ

sinh(2𝑘𝑖ℎ)

)

. (37)

CWR under optimal constant damping coefficient is 86.79% and
92.38% for the adaptive damping coefficient.

4.5. Study of dual OWSC system

The dual OWSC system is illustrated in Fig.  24. Previous research 
has indicated that for a dual OWSC system, the maximum total energy 
conversion is achieved when the spacing between the two OWSCs is 
seven-eighths of the wavelength [13]. In this section, we initially set 
the damping coefficients of both flaps to 50 N m s/rad to investigate 
the impact of different spacings on total energy conversion. As shown 
in Table  5, when the spacing is 3.5 m, approximately three-quarters of 
the wavelength, the total energy conversion reaches its maximum.

Subsequently, the effect of varying damping coefficient combina-
tions on the total energy harvesting at the identified optimal spacing 
is investigated, as depicted in Fig.  25. The analysis reveals a linear 
relationship between the damping coefficient of the OWSC-2 and the 
total energy conversion, with higher damping coefficients leading to 
a gradual increase in energy harvesting. Conversely, for the OWSC-
1, the total energy conversion initially increases with the damping 
coefficient, reaching a peak before declining. Notably, the peak value 
occurs around 𝑘𝑑1 = 20 N m s/rad, and this peak remains unaffected 
by variations in 𝑘𝑑2. Therefore, for the subsequent RL training, the 
condition with 𝑘𝑑1 = 20 N m s/rad and 𝑘𝑑2 = 80 N m s/rad is established 
as the baseline. Given the strong nonlinear characteristics of the dual 
OWSC system and the observed lower wave energy harvesting by the 
16 
Fig. 25. The variations of the total energy conversion in terms of the damping 
coefficients in dual OWSCs.

OWSC-2, the damping coefficient of the OWSC-2 is held constant during 
training. This approach allows us to focus on optimizing the damping 
coefficient of the OWSC-1. The RL training commences at the 24th 
second, a point in time when the wave–structure interactions have 
stabilized, meaning the system has reached a steady state in terms of 
energy harvesting and conversion.

The training results are illustrated in Fig.  26. The damping co-
efficient variation is consistent with the trend of free surface height 
changes before the flap, demonstrating apparent periodicity that aligns 
with previous research findings. Further analysis based on Fig.  27 
reveals that, after 39 s, the system’s state is stabilized. An increase 
in the damping coefficient during the wave peak phase significantly 
reduces the angular velocity, resulting in only a limited increase in 
energy harvesting during the peak. Conversely, reducing the damp-
ing during the trough phase does not enhance the angular velocity, 
which remains lower than under constant damping conditions. This 
reduction in energy harvesting during the trough phase leads to a 
notable decrease in overall energy acquisition over the entire wave 
period, thereby failing to improve energy harvesting efficiency. During 
the 60-s test period, the energy harvesting for the OWSC-1 using the 
adaptive damping coefficient was 1560.37 J, compared to 1626.52 J 
with constant damping, representing a reduction of 4.07%.
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Fig. 26. The free surface height in front of the first flap (𝑥 = 7.6 m) and the corresponding damping coefficient.
Fig. 27. The influence of the damping coefficient on the (a) angular velocity of the first flap, and (b) instantaneous power capture.
Fig. 28. The influence of the damping coefficient on the instantaneous power capture of the OWSC-2.
Additionally, for the OWSC-2, where the damping coefficient re-
mained unchanged, the energy harvesting efficiency dropped signifi-
cantly from 362.94 J to 197.91 J, a decrease of 45.47%, as shown in 
Fig.  28. This indicates that after the wave passes through the OWSC-1 
with adaptive damping, the energy loss is more significant than with 
constant damping. Combined with Fig.  29, it is evident that under 
constant damping, significant harmonics are generated between the 
two OWSCs, which is beneficial for enhancing energy harvesting.

Therefore, in the dual OWSC system, the nonlinear characteristics 
are pronounced, and single damping control is insufficient to improve 
overall wave energy acquisition efficiency. Moreover, the 2D simu-
lations constrain the design and optimization of the OWSC layout, 
necessitating further analysis and discussion in subsequent work.
17 
5. Conclusion

This paper establishes a framework coupling a CFD environment 
based on an open-source SPH-based library with DRL, aimed at opti-
mizing the adaptive damping coefficient of the PTO system in OWSCs 
for wave energy conversion. Initially, the wave-making model and the 
numerical model of WSI were validated. Subsequently, the performance 
of various RL algorithms for the optimization process was investi-
gated. The results indicated that SAC considers policy entropy, bal-
anced exploration, and exploitation well and provides effective policies 
to enhance wave energy conversion.

For regular waves, the strategy primarily utilizes the difference in 
energy density between wave crests and troughs. Increasing energy 
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Fig. 29. The spectrum diagram at 𝑥 = 8.2 m.
harvesting during the crest phase and reducing it during the trough 
phase achieves a positive net energy harvesting over each wave period. 
The policy trained in 2D simulations can be effectively applied in 3D 
simulations. Although the 2D simulations simplify wave diffraction and 
result in a slight decrease in calculated CWR, they accurately capture 
the coupling characteristics between waves and OWSCs, allowing DRL 
to learn practical policies that are robust and transferable. This provides 
a theoretical foundation for validation in experiments. Moreover, the 
training strategy optimized for a specific wave period remains effective 
under variations in wave height. However, its performance deterio-
rates when the wave period changes. Notably, the optimization effect 
becomes more pronounced with longer wave periods.

The DRL algorithm could still learn effective energy conversion 
optimization policies for irregular waves, primarily targeting regular 
waves with high energy density in the main period. The optimization 
principle is similar to that for regular waves, with limited enhancement 
in energy harvesting from the dynamic damping response for waves in 
the secondary period due to their lower energy density.

Finally, this paper explores the optimization of wave energy ab-
sorption in a dual OWSC system. The interaction between incident 
waves and OWSCs in the dual system generates harmonics with strong 
nonlinearity. Optimization focused on the primary OWSC showed that 
using similar optimization policies cannot enhance energy harvesting, 
as it significantly reduces the wave energy density between the OWSCs, 
leading to a substantial decrease in energy absorption by the secondary 
OWSC and an overall reduction in the system’s energy harvesting. 
Therefore, considering the dynamic response of a single OWSC’s damp-
ing coefficient is insufficient to optimize the energy conversion in 
complex dual OWSC systems.

Future work will introduce multi-agent reinforcement learning to 
directly learn corresponding energy optimization strategies for various 
OWSC layouts in 3D simulations.
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