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The nonlinear damping characteristics of the oscillating wave surge converter (OWSC) significantly impact the
performance of the power take-off system. This study presents a framework by integrating deep reinforcement
learning (DRL) with numerical simulations of OWSC to identify optimal adaptive damping policy under
varying wave conditions, thereby enhancing wave energy harvesting efficiency. The open-source multiphysics
library SPHinXsys establishes the numerical environment for wave interaction with OWSCs. Subsequently, a
comparative analysis of three DRL algorithms is conducted using the two-dimensional (2D) numerical study of
OWSC interacting with regular waves. The results reveal that artificial neural networks capture the nonlinear
characteristics of wave-structure interactions and provide efficient PTO policies. Notably, the soft actor—critic
algorithm demonstrates exceptional robustness and accuracy, achieving a 10.61% improvement in wave energy
harvesting. Furthermore, policies trained in a 2D environment are successfully applied to the three-dimensional
study, with an improvement of 22.54% in energy harvesting. The optimization effect becomes more significant
with longer wave periods under regular waves with consistent wave height. Additionally, the study shows that
energy harvesting is improved by 6.42% for complex irregular waves. However, for the complex dual OWSC
system, optimizing the damping characteristics alone is insufficient to enhance energy harvesting.
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1. Introduction Typical wave energy converters (WECs) can be classified into three
main categories based on their working principles: oscillating water

Considering the significant environmental issues caused by the ex- column (OWC) devices, which use the oscillating water column to

tensive use of fossil fuels, including pollution, greenhouse gas emis-
sions, and ecological destruction, there has been a marked increase in
the study of clean and renewable energy sources. Among these, wave
energy stands out due to its substantial potential (with a minimum
estimated capacity of around 0.2 TW), high energy density, and the
advantage of not occupying land resources [1]. These features have
attracted significant research and development investments, making
wave energy a crucial component in transitioning to a sustainable
energy future. Historically, most research has focused on extracting
energy from the heave motion of deep-water systems, mainly due to the
common belief that nearshore wave resources are significantly lower
than those in deeper waters [2]. However, since the beginning of the
21st century, the concept of exploitable wave energy resources has
become more realistic [3]. In many nearshore locations, the exploitable
resource is typically only 10%-20% lower than that offshore [4]. As a
result, the extraction of wave energy from the surge motion of waves
in nearshore waters has gained increasing attention.
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compress air and drive a turbine [5], over-topping devices, which
utilize the potential energy of waves as they spill over a barrier [6],
and wave-activated bodies, which exploit the heave, surge, roll, or
pitch motions depending on their construction [7]. Oscillating wave
surge converters (OWSCs) are typical wave-activated bodies used in
nearshore waters, usually employing bottom-hinged flap mechanisms.
Notable examples include the products of WaveRoller, and Oyster [8].
The primary distinction between these two lies in the positioning
of their flaps: WaveRoller’s flap is wholly submerged in seawater,
whereas Oyster’s flap has an upper edge that protrudes above the
water surface [9]. Research conducted at Queen’s University Belfast
suggests that while partial submersion enhances the impact pressure
exerted by the rotating flap, the flap inherently decouples from the
wave as the oscillation amplitude increases [10]. This decoupling ef-
fect ensures that the wave-induced loads remain manageable, thereby
safeguarding the structural integrity of the Oyster, even under extreme
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Fig. 1. Schematic of Oyster® (a type of OWSC) under waves.

sea conditions. The structure of the Oyster is shown in Fig. 1. The
flap is connected to the base via a hinge and oscillates back and
forth in response to the incident waves. This oscillatory motion drives
the power take-off (PTO) system, which utilizes a hydraulic pump
to channel high-pressure water through a pipeline to a hydroelectric
turbine, generating electricity [11].

According to the experimental study of the wave interacting with
OWSCs by Henry et al. [12], the flap of an OWSC actively impacts the
trough of incoming waves, generating breaking waves. Chow et al. [13]
discovered that a system of two tandem OWSCs could improve overall
wave energy conversion efficiency and determined the optimal separa-
tion distance between them based on Bragg reflection. Brito et al. [14]
demonstrated through scale model experiments that the capture width
ratio (CWR) and response amplitude operator of an OWSC exhibit weak
correlation under both regular and irregular wave conditions.

The numerical study is attracting more and more attention as it
can be applied to explore the detailed mechanisms of wave-structure
interactions (WSI), optimize the structure of OWSCs, and improve
the energy harvesting efficiency of PTO systems. Cheng et al. [9,
15] developed a two-dimensional (2D) and three-dimensional (3D)
higher-order boundary element method (HOBEM) model to estimate
the performance of an OWSC. Renzi and Dias [16] proposed a semi-
analytical model for the 3D computation of OWSCs. Although these
methods offer high computational efficiency, they lack the accuracy of
predicting nonlinear phenomena such as slamming and overtopping.
Two approaches for this problem are based on the Navier-Stokes
equations with either mesh or particle-based methods. For mesh-based
methods, Schmitt et al. [17] explore the nonlinear relationship between
wave height and the optimal damping of the OWSC. The numerical
simulations by Wei et al. [18] also agreed with experimental results
in predicting the wave height and the pressure distribution on the flap.
Jiang et al. [19] discussed the impact of different damping strategies on
power generation efficiency in PTO systems. However, these methods
come with significant computational costs due to the inclusion of
additional Volume of Fluid (VOF) equations and the necessity of using
dynamic mesh techniques to solve for the motion of the flap [20].

Particle-based methods, i.e., smoothed particle hydrodynamics (SPH),
are particularly well-suited for addressing challenges involving large
deformations and complex free surface flows [21,22], making them
a compromising alternative to study the hydrodynamic interactions
between waves and WECs. Specifically, for OWSC calculations, Henry
et al. [12] and Rafiee et al. [23] used a modified SPH method to
perform 2D and 3D numerical simulations. Their results indicated that
3D simulations can more accurately predict the pressure distribution on
the flap. Brito et al. [24] presented a numerical model combining Du-
alSPHysics for wave computation and Chrono for nonlinear mechanical
constraint systems of OWSCs. Later, they updated the numerical model
to consider most constraints, such as the PTO system, revolute joints,
and frictional contacts [25]. Liu et al. [26] quantitatively analyzed
the effects of parameters such as load, flap mass, thickness, hinge

height, and damping of the PTO system on motion resonance and wave
absorption of OWSC. Zhang et al. [27] used a Riemann-based weakly
compressible method based on SPHinXsys and Simbody to compute
incident waves and WSI. They demonstrated that the solver could
accurately predict wave height and the pressure distribution on the flap
while significantly reducing computation time, showing great potential
for practical applications.

Currently, the performance optimization of OWSCs primarily relies
on theoretical analysis [28] and numerical simulations [29] under
specific wave conditions to conduct parametric studies on the structure
and position of flaps or damping of the PTO system. There is still a lack
of research on effective control strategies to enhance the performance
of OWSCs. In comparison, control strategy methods have already been
applied to optimize the wave energy absorption performance of other
WEC devices [30]. However, the interaction between waves, especially
irregular waves, and OWSCs is complex, highly stochastic, and non-
linear. Models such as latching and model predictive control (MPC)
exhibit poor robustness and are highly dependent on the accuracy of
the predictive model. Inaccurate models can significantly affect perfor-
mance [31]. In the past decade, with the rapid advancement of artificial
intelligence (AI), deep reinforcement learning (DRL) has demonstrated
significant capabilities in the field of active flow control [32]. DRL
combines artificial neural networks (ANN) and reinforcement learning
(RL). Since ANN uses nonlinear activation functions and can effec-
tively fit any function, DRL, compared to traditional RL, enhances
the exploration and capture of high-dimensional state spaces, making
it suitable for WSI problems [33]. Research on optimizing WECs us-
ing DRL employs potential wave theory as the environment. Studies
have shown that DRL can enhance the energy harvesting efficiency of
WECs [34,35]. Additionally, compared to directly using computational
fluid dynamics (CFD) as the environment, this approach significantly
reduces the time required to train the ANN. However, potential wave
theory is less effective at capturing the coupling effects between mul-
tiple physical fields. Only Liang et al. [36] have combined 2D CFD
with DRL to optimize the wave energy conversion of horizontal floating
cylinders under irregular waves.

In this paper, we will first establish a new platform that combines
CFD with DRL. Based on our previous work, we will use SPHinXsys, a
multi-physics library based on the SPH method, and Simbody as the nu-
merical computation platform for the bottom-hinged OWSC [37]. Given
that mainstream DRL platforms like Tianshou employ neural networks
such as PyTorch, which are based on the Python environment, we will
use Pybind11 to package the relevant OWSC code into a dynamic link
library for invocation in the OpenAl Gymnasium environment [38].
This standardized environment will facilitate the direct application
of various DRL algorithms available on the Tianshou platform, en-
abling us to explore the impact of these algorithms on performance
improvement. The remainder of this paper is organized as follows:
Section 2 introduces the Riemann-based SPH method for FSI modeling
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in SPHinXsys and Simbody. Section 3 discusses the details of our CFD-
DRL framework, the DRL training environment, and the mainstream RL
algorithms. Section 4 analyzes the performance differences of various
DRL algorithms, explores the applicability of 3D numerical computa-
tions and different wave period to the policies, verifies that the adaptive
damping coefficient policy can be applied to random irregular waves,
and investigates the feasibility of wave energy optimization under the
dual OWSC systems.

2. Numerical modeling
2.1. Governing equations

In the Lagrangian framework, the mass and momentum conserva-
tion equations for incompressible and viscous fluid can be written as

d
dp —pV v,
! @
dv 1 2
— =—=Vp+vViv+g
dt p

Here, p is the density of the fluid, v the velocity, p the pressure, v
the kinematic viscosity, and g is the gravity. An artificial isothermal
equation of state (EoS) is used to close the system of Eq. (1)

p=c2p-p"), )

where p° is the initial density, ¢ = 10v,,, the artificial speed of
sound [39]. v,,,, = 24/gh is the maximum anticipated particle velocity
in the flow, g = |g|, h the water depth.

Eq. (1) can be discretized as

dp; W,
@ = LV e e
ij
3
dv,- v;j OWj;
— —vw .
ar z,: Zp,p, rij or; T8

Here, m; and p; are the mass and density of particle i, V; the particle
i = Vv; — v; particle relative velocity, and y is the dynamic
viscosity. Also, VW,; = e;;(0W (r;;, h)/dr;;) with e; = r;;/r;; and r;; =
r;—r;, and W, ; Tepresents the Kernel gradient [40]. Besides, U* and P*
are the solutions of the one-dimensional Riemann problem constructed
along the line pointing from particle i to j. The left and right initial
states of the Riemann problem can be reconstructed as

(o, Up, Pp,cp) = (pi,—V; - €, P ),

(pr-Ug, Pg,cp) = (Pj, -V eijvpj,cj)~

The linearized Riemann solver coupled with the weighted kernel
gradient correction (WKGC) [41] is adopted to solve this Riemann
problem

volume, v

(€3]

preUp +prepUp + P — Py

pLCL + PRCR
P = prer PrB; + preg PLﬁ; +prepprerfUr — Ug)
prer + PRCR

U* =

)

where the low dissipation limiter § = min(3max(U; — Ug,0)/c, 1), ¢ =
(prer + prer)/(pr + pr), the correction matrix B, = o|B; + (1 — o)L,
B, = (=X;r; ® VW,;¥p' = (Ap7!, T the identity matrix, w; =
|A;] /(0.3 + |A]).

2.2. Dual-criteria time stepping

In order to improve computational efficiency, dual-criteria time-
stepping method is adopted. Specifically, the update frequency of the
particle configuration is controlled by the advection criterion, while the
integration of pressure relaxation is determined by a smaller time step
size based on the acoustic criterion. Following Zhang et al. [42], the
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time step size of the advection criterion 47,;, and the acoustic criterion
At,. are

h2
» =)

Aty = CFL,; min(
v

|max

h
Aty = CFL, (———),
a aC(c+ |V|max)

where CFL,; =025 and CFL,. =0.6.

(6)

2.3. SPHinXsys and Simbody coupling

The fluid density p; will be initialized firstly at the beginning of the
advection time step 4z,, as
W,
p; = max(p*, P’ S—5), ™
W
where p* denotes the density before re-initialization and p° represents
the initial reference value. The viscous force f,, is also computed at
this stage. Subsequently, pressure relaxation is carried out over the next
several acoustic time steps 47, using the position-based Verlet scheme
proposed by Zhang et al. [43]
ntl 1 dp; .1
p; P = P:’ + _Atac(d_tl)n+27
i (8)

nt+s
r, =1+ Atzu vi.
The partlclze s velocity v;, density p;, and position r; are updated to

the mid-points as

V. _V +At ( )n+l

1
prtt = pfl+2 + lAtac(—)"Jr* )

1
it = r,+2 + ;At“vf‘“.
Then, the forces acting on the flap of the OWSC will be computed,
which are composed of two main components, the pressure force f,,
and the viscous force f,,, as

_22 A +p biba T Paliy
p
a4 10)
W,
, =2 VV —=
ZV or,

ai

Here, the subscript a denotes the solid particle index. The imaginary
pressure p¢ and velocity v¢ read as follows

d + p; max (0, ( _dva) n)(r, - m)
P, =pitp; , (8 i ai > 11

vd =
Vo =2V, —v,

where n represents the normal direction of the solid body to fluid. The
total force and total torque z acting on the flap can be written as

= Y= Y (M, + 1),

aEN aeN
(12)
=Y (r,—re) xf,
aeN

where N denotes the total number of solid particles and rg; is the
position vector of the flap mass center.

At the end of each time step, the total force and total torque
calculated from SPHinXsys are transmitted to Simbody for solving the
Newton-Euler equations

F = ml, %Y

dt 13)
T= JO? - de

where m is the mass of the flap, I, the identity matrix, J, the moment of
the inertia about the center of mass, w the angular velocity and k, the
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Fig. 2. The 2D water tank geometry for wave generation verification.

damping coefficient. After updating the position, velocity, and normal
direction, the new kinematic state will be imported back to SPHinXsys,
and the loop will continue.

It is worth noting that during the computation of Eq. (13), the k,
is variable within a specific range, and it can be rapidly implemented
through the damping update definition in Simbody.

2.4. Wave generation

A piston-type wave maker is used to generate the regular and
irregular waves [44]. For fluid particles around the wall region, the
interaction is determined by solving a one-sided Riemann problem
along the wall-normal direction [42] where the left state is defined

(pr,Up, Pp) = (pj,—my, - v;, p;), 14

where n,, is the normal direction of the wall, and i represents the

fluid particles. The right state of the velocity U, and pressure Py are

assumed as
Up=-U; +2u,,

R L w (1 5)

Pr =Py +pg 1y,

where u,, is wall velocity, r;,, =r,, —r;, p; is computed from Eq. (2).
The displacement function of the wave maker r, for regular waves

relies on

r, = EsinQu ft+wy),
_ H(sinh(2kh) + 2kh) (16)
~ sinh(2kh) tanh(2kh)

Here, E is the wave stroke, f the wave frequency, y the wave phase, H
the wave height, and & the water depth. The wave number k followed
by the dispersion relation [45]

®* = gk tanh(kh), a7

where w = 2z f is the wave angular frequency.

For irregular waves, the JONSWAP spectrum exhibits a more con-
centrated wave energy than the Pierson-Moskowitz spectrum, making
it more effective in describing the energy distribution of waves in the
developmental stage [5]. Considering that OWSCs are predominantly
placed in nearshore areas, where waves are typically in this devel-
opmental stage, it is appropriate to use the JONSWAP spectrum to
generate irregular waves [46]

S() =B HIT, 72 expl=1.25(T, /)™y, T
_ 0.0624(1.094 — 0.019151Iny;)
"~ 0.230 +0.0336y, — 0.185(1.9 + y,)~!’

18)

J

where H), is the main wave height, 7, the peak wave period, f = o/2x
the wave frequency, and y; = 3.3 the peak enhancement factor, §;
dependent on the peak frequency f, = 1/T, [47]. Our study em-
ployed a combination of N random regular waves to simulate nonlinear
waves. The wave number k, for each regular wave was consistent with
Eq. (17). The displacement equation ry can be written as

N
rFy = ZE(f,,)cos(Zﬂfnt+l//,,). 19

n=1

Here, E(f,) = 2S,(f)Af, fi = 0 Hz, fy =3[y, Af = 1/T,yy with
T,,:a the total time of simulation, v, represents the random phases, and
S,,(f,) is defined as

4sinh®(kh)

In addition, to prevent numerical divergence caused by excessive
movement of the wave maker during the initial computation, we in-
troduced a relaxation time f,,, = 1 s, and the final wave maker
displacement function is as follows

(20)

. 7t
s1n(7)rN, t < tox

rn 21D

rns 1> 1y
Also, to mitigate the impact of wave reflection off the wall on the
motion of the OWSC, the wave—particle velocity v in the damping zone

is given by

v = v,(1.0 — adt(

TR0, (22)
| =T

r 0

v, the fluid particle velocity at the entrance of the damping zone, the

reduction coefficient « is set as 5.0, ry and r; are the initial and final
position vectors of the damping zone.

2.5. Numerical model validation

In this section, we verify the accuracy of generating regular and
irregular waves and validate the numerical simulations of the 2D and
3D OWSC.

The geometry of the 2D numerical simulation is shown in Fig. 2.
The total length of the tank L is 15 m, the water depth 4 0.691 m, and
the damping zone is 4.47 m long. The parameters of the second-order
Stokes wave are H = 0.2 m and wave period T = 2 s [45]. As shown in
Fig. 3, our numerical result of wave frequency and amplitude is very
close to the analytical solution [45], which indicates that the wave is
generated correctly.

Furthermore, we set three different particle resolutions from coarse
to fine. The resolution of dp = 0.015 m not only improves the ac-
curacy of the calculation results but also reduces the computation
time. Therefore, this resolution will be used for all subsequent 2D
simulations.

In Fig. 4, the typical parameters for irregular waves are H, =
02 m and T, = 2.0 s. Note that T,,, is set for 40 s and 100 s for
comparison. The frequency spectrum is obtained by applying the Fast
Fourier Transform (FFT) to the free surface height, as shown in Fig. 5.
Notably, our numerical results demonstrate a high degree of agreement
with the analytical results derived from the JONSWAP spectrum, and
for RL training, T,,,,, = 40 s is set for one training episode.

The present method for modeling wave interaction with the OWSC
is validated in both 2D and 3D. The water tank and OWSC geome-
tries are based on the experiment conducted at Queen’s University
Belfast [18], as shown in Fig. 6. The length, width, and height of the
wave tank are 18.4 m, 4.58 m, and 1.0 m. The flap shape of the OWSC
is simplified as a box-type with the dimensions of 0.12 m x 1.04 m X
0.48 m. It is set at 7.92 m far from the wave maker in the x direction
and the middle in the z direction. The water depth 4 is 0.691 m, and
the hinge height is 0.16 m. The mass and inertia of the flap are 33 kg
and 1.84 kg m?. The damping coefficient k, is set to 20. In addition,
we set three free surface height sensors in the x direction, which are
WP04 (3.99 m), WP05 (7.02 m), and WP12 (8.82 m).
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Fig. 3. Comparison of free surface heights under different resolutions at x = 4.0 m with theoretical results.
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Fig. 4. Time series of the free surface elevation at x = 0.2 m for the irregular wave.
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Fig. 5. Comparison between the analytical JONSWAP spectrum of Eq. (18) and the SPH spectrum corresponding to different time series.
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Fig. 6. Schematic of the wave tank and the OWSC mode.

The wave maker creates a simple harmonic wave with the wave
height H = 0.2 m and wave period T = 2 s. The simulation parameter is
1 : 25 in scale, and the results presented herein have been converted to
full scale as in Ref. [27]. The 2D simulation and training is computed
on a Mac OS system, with an Apple M1 Max core and 32 GB RAM,
while the 3D simulation is carried on a Windows system, with an AMD
Ryzen 9 7950X core and 48 GB RAM. The total fluid particle numbers

are 40027 and 1.542 million, for 2D and 3D simulations, respectively.
From Fig. 7, we can see that WP04 is far away from the flap, so the
interaction of the wave and flap has little influence on the free surface
height, and our results show that the wave maker can generate an
accurate sine wave with minor errors. WP05 and WP12 are set near the
flap, and we can find that our simulations can capture the influence
of interaction on free surface height in both places. Furthermore, by
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Fig. 7. Comparison of free surface elevations for wave height H = 5.0 m and wave period T = 10 s at different wave probes. (a) x =3.99 m for WP04, (b) x = 7.02 m for WPO05,

and (c) x = 8.82 m for WP12.
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Fig. 8. Comparison of the flap rotation.

comparing the free surface heights at WP05 and WP12, it is evident
that the free surface height significantly decreases after passing through
the OWSC, indicating an energy reduction. This reduction indirectly
demonstrates that a portion of the energy has been converted into
wave energy. Fig. 8 shows that the flap rotation simulation results are
consistent with the experiment. The 3D results are much better than
2D simulations, where antisymmetric diffracted waves traveling in all
directions, including tangentially to the flap, can induce near-resonant
phenomena that enhance the exciting torque on the converter [48].

Notably, a 2D simulation requires only 1.2 min of computing time
for 12 s of physical time calculation, whereas a 3D simulation de-
mands 4.5 h. Given that each DRL training session necessitates at least
200 episodes, we employ 2D simulations for training and utilize 3D
simulations for policy validation.

3. Direct deep reinforcement learning

Fig. 9 provides an overview of the platform. The DRL training
process consists of two key components: the environment and the
agent. The sampled state vector from SPHinXsys is normalized and
passed to the agent. The reward is calculated based on the change in
state between two consecutive time steps and the variation in reward
parameters during the action application. We show a typical framework
of the DRL algorithm: soft actor critics (SAC), which takes actor—critic
architecture [49]. The policy network (actor) outputs actions fed into
Simbody and critic networks in real-time. The critic networks evaluate
the quality of these actions, and the smaller Q; is chosen to update
the policy network with gradient ascent. The critic networks will be
updated with target networks using gradient descent.
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3.1. DRL environments

The numerical simulation environment, observation probes, and
action transition functions are created using SPHinXsys. The standard
DRL environment is built based on OpenAl’s Gym library in Tian-
shou [50], which includes two essential functions: reset and step.
In the reset function, the numerical environment is initialized, and
the initial observations are collected using probes. The step func-
tion receives action values from the DRL algorithm, passes them to
SPHinXsys for numerical calculations under the current action, collects
new observations, and gets the reward.

Rabault et al. [51] show that more observations will give the agent
more information to update its network and improve the training
result. Therefore, 38 observations are set as the state vector s, from
the environment to capture the structure of the regular wave and its
impact on the flap. The components of the observations are based on
two parts, as shown in Fig. 10. The first part is the wave properties,
including velocity and free surface height at five positions, starting from

x = 3.0 m to x = 7.6 m, which is close to one wavelength. Another 5
points from y = 0.3 m to y = 0.7 m on the front panel of the OWSC
device are also set to get the wave velocity. The second part is the
characteristics of the flap, including flap rotation and angular velocity,
and damping coefficient k,; of the PTO system. Besides, it is ideal that
the observations from 2D and 3D simulations can be close. Thus, the
observation positions are set on the middle plane in the z-axis as shown
in Fig. 6, and only x-axis and y-axis properties are considered.

In the present work, the action a, in one action time step 7, = 0.1 s
of variation in the damping coefficient |4k,| <25 N m s/rad. However,
directly changing the damping coefficient has the potential risk to
the computation divergence. Therefore, the current numerical damping
coefficient k) and the subsequent numerical damping coefficient k;“
have a simple linearly increasing change of Ak,/M during the time
step of 1,/M. Considering that the 4r,, = 0.00021 s, M = 10 is
sufficient to ensure accuracy in the 2D simulation. Note that a large
damping coefficient will make the flap’s rotation challenging. A small
damping coefficient will result in larger deflection angles, which may
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Table 1
The variations of the total wave energy conversion E, in terms of damping coefficients.
ks (N m s/rad) 10 20 30 40 45 50 60 70 80 90 100
E ) 195.19 281.38 309.56 321.26 321.96 316.52 310.86 300.92 291.02 279.37 267.47

f Wave height probe

*  Wave velocity point

Fig. 10. Two main components of the observation vector.

cause the OWSC to break in real applications. In the present work,
0 < k; (N m s/rad) < 100 is applied. As observed in Fig. 8, we
can see that even if the damping coefficient is set to O, the most
extensive rotation of the flap is 50°, which is smaller than the critical
value. Although the entire OWSC can still run under extreme boundary
conditions, a penalty term is given in the reward as P* = -1 -
[(ky + Aky < 0)V (kg + Aky > 100)].

Based on Senol and Raessi’s work [52], the instance energy harvest-
ing in one action time step can be defined as

M-1
Ptake—off = z k;(@)z (23)
n=0

Here, Q, is the flap angular velocity. It is evident that larger P,/
means more instantaneous wave energy harvesting by the OWSC. The
study of Zhang et al. [27] shows that the average wave energy har-
vesting factor (CF) of 3D OWSCs can reach a peak when k; is around
40 N m s/rad. Combined with Table 1, the verification results show
that in the case of 2D OWSC, the total wave energy conversion reaches
a maximum value at k), = 45 N m s/rad. Then, the instance energy
harvesting in one action time step with k7, is recorded as the baseline
Pyseiine iN the reward to help the agent distinguish good from harmful
actions. The final reward can be calculated as

rp = Ptakefaff - Pbaseline + P*. 24

3.2. DRL algorithms

RL algorithms can be broadly categorized into two types: on-policy
and off-policy. On-policy algorithm updates its policy network after
one episode and uses the newly updated policy to collect data in the
next episode. The typical algorithm is proximal policy optimization
(PPO) [53]. On the other hand, the policy for updating and collecting
is different for the off-policy algorithm. The typical methods are twin
delayed deep deterministic policy gradient (TD3) [54] and SAC.

More specifically, the action value function O, (5 @) and the state
value function V, (s,) can be defined as:

0, (5,0 a,) =B, 1Y (ririlsi.a)],
t=n . (25)
Vi) =By o [ (I,
t=n

where 7, is the policy network with parameter 6, y, € [0, 1] the discount
factor for the future reward, and Y, 7,r, usually defined as return G,,.
The policy network plays an important role in the optimization process,
as its input is the current state s,, and its output is the action a, or

the probability density function of the action z,(|s,). The action value
function Q,, (s,.a,) represents the expected return obtained by taking
action a, in the current state s, and then following the policy z,. The
state value function V, (s,) represents the expected return obtained by
following the policy 7, and the current state s,,.

3.2.1. The PPO algorithm

The core of the PPO algorithm is to build an objective function J to
characterize the return G, under the parameter 6 of the current policy
network. The best policy and return are obtained by updating 6 to
maximize the objective function. Based on the Policy Gradient Theorem
(PGT), the objective function J(#) can be written as [53]

”H(Qn | S,,)
S0 =B, ply g, 172

A" (s, a,)]], (26)

where D is the replay buffer, 6, the old parameter of the policy
network. Also, A™%(s,,a,) is the advantage function which can be
defined as

T T
A (5,,0,) =1, + 7V, % (1) — v, % (5,), @27

where V;a“ (s,) is the estimated value of state s, by the critic network
with parameters ¢, the superscript 7, indicates that the data is col-
lected using the policy employed during the kth iteration, and y is the
discount factor. The advantage function will not affect the expectation
but improve the policy’s performance [55]. A key feature of PPO is the
clipped surrogate objective, which is designed to prevent huge policy
updates. The objective function of J(0) is then rewritten as follows

JO) =E, p [Eaﬂﬁk [min (rg(s,. a,),
clip(ry(s,. a,). 1 =0, 14 06)) - A% (s, a,)]] . (28)

where ry(s,, a,) = my(a,ls,)/ 7y, (a,ls,), and ¢ = 0.2.
The critic network ¥, in PPO is primarily used to represent the state
value function and its loss function is defined as

2
L@ =E, o [(qu(s,,) =y + 1V, ) ] (29)

3.2.2. The TD3 algorithm

The TD3 algorithm is based on policy gradient methods, where the
policy network r, outputs actions a, directly. The value networks Q,
called critics, provide value estimates based on s, and a, suggested
by the policy network. TD3 employs two value networks to mitigate
overestimation issues and obtains more reliable value estimates using
the minimum value predicted by the two networks [54]. Each network
(the policy and the two value networks) is paired with a corresponding
target network. Therefore, a total of six networks are utilized during
the training process.

The objective function of a TD3 policy network is defined as

JO =B, p [0y, (5000050 (30)

Also the loss for the critic networks is given by temporal difference
(TD)

2
L&) =E, [(Q@.(S,,,a,,) -) ] =12 @31)
Here, the target value y, = r, +y min;_; » Qg (S,41, Ty (S,41) + €), where

O, means the target critic network, 7, the target policy network and
e is the truncated Gaussian noise.
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Fig. 11. Free surface height in front of the flap for training and testing.

100 T T T T T

-100

Total reward

-200

300 . . . .
0 40 80 120 160 200

Episodes

Fig. 12. Total reward curves in the training process with three agents.

3.2.3. The SAC algorithm

SAC consists of a policy network that outputs an action proba-
bility density function, two value networks, and two target networks
corresponding to the value networks.

In the PPO state space exploration primarily relies on sampling
from the action probability distribution output by the policy network,
whereas TD3 achieves exploration by artificially adding noise to the
output of the action. Compared with the PPO and TD3 algorithms,
the SAC algorithm incorporates the entropy of the policy into the
state-value function, encouraging exploration by maximizing the return
regularized by entropy

Vi () = B o [ (rirl5,) + BH(zg(5,))]), (32)
t=n

where f is the regularization coefficient.
The objective function of the policy network is

JO)=E, p [Tlinz Qg (,.d,) = plog ;z(,(a,,|s,,)] : (33

where G, is the sample from zy(-|s,,).
Also, the loss for the critic networks is also calculated by TD, while
with a different definition of y,

2
L@)=E, [(Q(/)i(sn,an) ) ] Q=12
(34
Yn =Ty +7 <f£f% Q¢;(Sn+17dn+1) - ﬁlogﬂﬂ(an.u |Sn+1)> s

here where 4, is the sample from 7zy(-|s,, ).

Table 2

Basic hyperparameters of different DRL algorithms.
Algorithm PPO TD3 SAC
Activation function tanh tanh tanh
Learning rate (a) 3e—4 3e—4 le-3
Steps per epoch 2048 2048 2048
Batch size 256 256 256
Discount factor (y) 0.99 0.99 0.99
Soft update (r) - 0.005 0.005

4. Result

4.1. Study of DRL algorithms

Initially, three typical DRL algorithms are trained:.e., PPO, TD3,
and SAC. The parameters of the policy and critic networks under the
three algorithms are consistent, with two hidden layers and 512 neu-
rons in each layer. Other settings of the neural network and algorithm
hyperparameters are shown in Table 2.

Fig. 11 illustrates the free surface height at x = 7.6 m in front of
the flap. It is observed that around the 4-s mark, the wave reaches and
interacts with the flap. Consequently, the training phase is initiated at
the 4-s mark and continues until the 24-s mark, encompassing 20 s and
200 actions. The testing phase extends over 40 s, incorporating 400
actions.

The overall reward curves with standard deviation shadows are
depicted in Fig. 12. The training consisted of 220 episodes, with TD3
and SAC requiring the pre-collection of data for the first 20 episodes,
a process of gathering initial data before the actual training. Pre-
collection resulted in oscillations around —80 in the reward curves
during this phase. However, both algorithms quickly identified effec-
tive energy enhancement strategies within the first ten episodes after
training commenced. Considering TD3 incorporates noise artificially to
enrich exploration, it displayed instability and only began to stabilize
after 90 episodes.

On the other hand, SAC explored and converged to optimal strate-
gies by approximately 60 episodes with entropy regularization. PPO,
not requiring initial data collection, showed a slower but steady im-
provement from the beginning, converging to effective strategies
around 80 episodes. From the reward trends observed between episodes
160 and 220, SAC demonstrates its best performance with the slightest
standard deviation, indicating superior stability over other two algo-
rithms. In addition, since the incident wave is regular, the dynamic
curve of the damping coefficient is also periodic, as shown in Fig. 13.
It can be observed that the overall fluctuation of the PPO algorithm is
substantial, whereas the TD3 algorithm converges to a locally optimal
solution due to insufficient exploration. Therefore, SAC will be applied
for subsequent agent training.

Fig. 14 presents the velocity field in the x-direction and the motion
state of the flap under both fixed and dynamic damping coefficients,
and Fig. 15 focuses on quantitatively analyzing the flap’s rotation
and angular velocity. It can be observed that the adaptive change of
the damping coefficient does not alter the flow field structure or the
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Fig. 14. Free surfaces and wave-structure interactions in one wave period. The fluid particles are colored by velocity magnitude on the x-axis.

angular amplitude of the flap, while shift the equilibrium position of the
flap, from —1.81° to 4.31°. Further analysis indicates that the periodic
characteristics of the free surface height at the flap are consistent
with the damping coefficient of the PTO system. When the wave crest
passes, the damping coefficient increases to its peak value. Given that
the energy density of the wave crest is high, the angular velocity
is reduced slightly, leading to an overall improvement in the PTO
system, as shown in Fig. 15(c). In addition, the wave energy density
of the trough itself is lower than that of the peak, and some energy
has already been absorbed during the crest phase. Maintaining a high
damping coefficient during this phase would rapidly decrease angular
velocity. Although reducing the damping coefficient can increase the
flap’s angular velocity, the PTO system’s power output still decreases
compared to a constant damping coefficient. Overall, as shown in Fig.
16(b), during a complete wave period, the average energy harvesting
by the dynamic damping system is 27.3 J, compared to 24.4 J captured
under the optimal constant damping coefficient, resulting in a 10.61%
improvement in wave energy harvesting.

The energy harvesting efficiency of the OWSC can be quantified by
CWR [25,52]

P, out

CWR = B

(35)

Here, P, is the capture of instantaneous energy within a wave period
and P, is the mean incident power of unidirectional regular waves

10

Table 3
Comparison of constant and adaptive damping coefficients for different wave types.

Fixed k, (%) DRL (%)
2D regular wave 13.12 14.68
3D regular wave 34.15 41.86
2D irregular wave 86.79 92.38
based on the linear theory
T ..
1 period
P = / kg2 dt
Tperiod 0 (36)
H?Bw 2kh
Py =" 1+ = ),
16k sinh(2kh)

with B denoting the width of the flap. Currently, CWR under optimal
constant damping coefficient is 13.12%, and 14.68% for the adaptive
damping coefficient in 2D simulations, as shown in Table 3.

4.2. Effects of 3D simulations

Previous studies have shown that fixed flaps in 2D simulations
simplify the diffraction waves, which are theoretically equal in size to
the incident waves and opposite in direction. This results in standing
waves forming on the windward side of the flap [48]. In 3D simulations,
diffraction waves propagate in all directions, and antisymmetric shear
waves along the flap can trigger near-resonance, enhancing the torque



M. Ye et al.

Renewable Energy 246 (2025) 122887

[—Fa=145 (N -m - 5 / rad) —SAC]|]

PN P

9 14 19 24 29 34 39 44
t (s)
(a) Rotation of the flap

2 E T T T T T T T y
[ |-»»-»k,l =45 (N - m - s / rad) —SACI—
_1F ]
Z 1
T ofb ]
=P A
S L ]
-l v/ W/ 3
2 b I I I I I I I ]

4 9 14 19 24 29 34 39 44

t (s)
(b) Angular velocity of the flap
100 T T T T T T T ]
F |—»»-»k,l =45 (N -m-s /rad) —SACI—
__T5F R
= ]
< S0r .
& F ]
25F .
N

(c) Instantaneous power capture

Fig. 15. Influence of the damping coefficient on the (a) rotation of the flap, (b) angular velocity of the flap, and (c) instantaneous power capture.
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Fig. 18. Comparison of the damping coefficient with the same policy under 2D and 3D simulations.

acting on the converter. Therefore, 3D simulations can more accurately
capture the motion characteristics of the OWSC device in actual opera-
tion. In this section, we conduct experiments in a 3D environment with
the policy obtained from a 2D training environment. Notably, Zhang
et al. [27] have proved that in 3D simulations, k;, = 40 N m s/rad is
the optimal constant damping coefficient.

As shown in Fig. 17, the dynamic changes in the damping coefficient
do not alter the structure of the flow field in the 3D simulations. Also, as
shown in Fig. 18, the output of the damping coefficient in both 2D and
3D simulations is essentially consistent. This consistency indicates that
the 2D assumption can accurately represent the coupling effect between
the waves and the OWSC, and it also demonstrates the robustness of the
trained policy network, which can be applied in real-world scenarios.

Similar to the 2D simulation, Fig. 19 shows that under adaptive
damping control, the equilibrium position of the flap shifts to the left
by 11.46°, approaching nearly vertical position to the base. Considering
the fluid incompressibility, this shift increases the force perpendicular
to the flap, as illustrated in Fig. 19(a). A control period is assumed to
begin when the flap rotates to the far left, with the wave crest reaching
the flap. During the first quarter of the period, the damping coefficient
continues to rise. Due to the increased thrust on the flap, the angular
velocity remains almost unchanged compared to the constant damping
coefficient, enhancing energy harvesting. As the wave trough passes,
the force on the flap decreases, and the reduction in the damping
coefficient helps maintain the flap’s angular velocity. Since the energy

12

of the wave crest is inherently higher than that of the trough, the
overall energy harvesting improves due to the difference in energy
levels, as shown in Fig. 16(b). Over a complete wave period, the
average energy harvesting by the dynamic damping system is 77.88 J,
compared to 63.55 J under the optimal constant damping coefficient,
resulting in a 22.54% improvement. Also, in 3D simulation, CWR under
optimal constant damping coefficient is 34.15% and 41.86% with the
adaptive damping coefficient.

4.3. Optimization under different wave periods

It is well-established that fixed damping coefficients in vibration
absorbers are suboptimal under off-resonance conditions. In this sec-
tion, we first apply the optimized policy, trained under baseline wave
conditions (T 2 s,H = 0.2 m), to scenarios where either the
wave period is altered (T = 3 s) or the wave amplitude is increased
(H 0.4 m). The results, shown in Fig. 20, indicate that when
the wave period changes, the policy’s adaptability decreases, yielding
only a limited improvement in energy harvesting (3.73%). In contrast,
when the wave amplitude varies, the policy remains highly adaptive,
achieving a notable enhancement in energy capture (14.24%).

We train the policy using waves with periods of T 1 s and
T = 3 s, respectively, and perform a comparative analysis against the
results obtained from training with 7" = 2 s, as shown in Fig. 21. The
results indicate that the wave energy density increases as the wave
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Fig. 19. Effects of different policies on (a) vertical force on the flap, (b) rotation of the flap, (c) angular velocity of the flap, and (d) instantaneous power capture.

period increases. However, the energy difference between wave crests
and troughs becomes more pronounced. Since the strategy primarily
enhances energy capture efficiency by leveraging the energy in the crest
region, the optimization effect becomes more significant with longer
wave periods. Overall, energy harvesting improved by 1.6%, 8.8%, and
13.75% under the three wave periods, compared to the optimal fixed
damping coefficient. Furthermore, for T = 3 s, the variation in damping
exhibits the same periodic characteristics as the wave itself, as shown
in Fig. 22. This suggests that for regular waves, the damping variation
period is identical to the wave period, although the magnitude of the
damping variation differs. This observation is expected, as an increase
in wave period while maintaining a constant wave height results in
higher overall wave energy. Consequently, the optimal fixed damping
coefficient increases, leading to corresponding adjustments in damping
variation.
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4.4. Optimization under irregular waves

In this section, we investigate optimization problems under irregular
wave conditions, the most common scenarios encountered in practical
engineering applications. Considering the strong nonlinearity of the
induced motion of the OWSC under irregular waves, the number of
observation points increases. The initial observation position of the free
surface height is set at x = 3.5 m, with one point placed every 0.264 m
for total 17 probes. The locations of observation points for wave speed
are also increased accordingly, and the value of the observation vector
increased to 74 at last. In addition, to verify that the policy network can
resist the random characteristics of irregular waves, two sets of random
seeds are used to characterize the wave phases in Eq. (19) during
the training and testing stages while H, and T, remained unchanged.
The relation between the total energy conversion and linear damping
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Fig. 23. The free surface height in front of the flap and the corresponding damping coefficient under the (a) training wave (c) testing wave, and the difference of instantaneous
energy harvesting AE = E, — E4, under the (a) training wave (c) testing wave.

coefficient for irregular waves is shown in Table 4. It is clear that with 0.2 m throughout the entire period, which is also the region where
ks = 60 N m s/rad, the energy harvesting factor is the highest. the wave energy is primarily concentrated. The dynamic response of

From Fig. 23(a), it can be observed that, compared to regular waves, the damping coefficient is related to the free surface height. When the
less than one-third of the free surface heights of irregular waves exceed peak period occurs, the damped vibration also increases accordingly.
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The variations of the total energy conversion in terms of damping coefficients.

k,; (N m s/rad) 10 20 30 40 50 60 70 80 90 100
E,un (J) 195.21 290.79 340.34 365.88 378.75 383.36 382.02 379.29 377.94 368.95
E,, (I 206.12 300.77 350.17 378.48 383.89 390.49 381.86 376.41 368.35 363.64
} 350m M Wave maker ™ Fluid M Damping Wall ® Flap
X
Flapl Flap2

Fig. 24. The geometry of the dual OWSC system. The overall structure has stayed the same. Only the length of the plane where the base is located has been increased.

Table 5
The influence of the spacing on the total energy conversion of dual OWSCs.
Ax (m) 2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75 4.0
E, (J) 449.01 366.32 422.91 526.69 608.52 661.68 675.47 650.44 541.84
This relationship can also be observed in the test section, indicating 600 650 700 750 800 850 900

that the agent can accurately capture the wave characteristics under
the specific spectrum.

Further combined with Fig. 23(b), we can see that compared with
the constant damping coefficient, the difference in energy harvesting is
mainly concentrated in the peak period, which is essentially consistent
with the improvement of energy harvesting by regular waves. The near-
simple harmonic damping motion will improve Capture energy in the
crest section and reduce energy harvesting in the trough section. For
secondary period waves, since the instantaneous energy they carry is
small, the response of the damping coefficient will not cause signifi-
cant changes in flap motion and energy harvesting. This part of the
energy cannot be effectively improved. Therefore, over the entire 40-s
period, the wave energy harvesting increased by 24.67 J, an increase of
6.42%, compared to the energy harvesting under a constant damping
coefficient. In addition, for the average incident energy of the irregular
wave, Eq. (36) is modified as

N 2
pgH; Bw;
Py = . 1+
0 ;0 16k;

2k;h
sinh(2k;h) )
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CWR under optimal constant damping coefficient is 86.79% and
92.38% for the adaptive damping coefficient.

4.5. Study of dual OWSC system

The dual OWSC system is illustrated in Fig. 24. Previous research
has indicated that for a dual OWSC system, the maximum total energy
conversion is achieved when the spacing between the two OWSCs is
seven-eighths of the wavelength [13]. In this section, we initially set
the damping coefficients of both flaps to 50 N m s/rad to investigate
the impact of different spacings on total energy conversion. As shown
in Table 5, when the spacing is 3.5 m, approximately three-quarters of
the wavelength, the total energy conversion reaches its maximum.

Subsequently, the effect of varying damping coefficient combina-
tions on the total energy harvesting at the identified optimal spacing
is investigated, as depicted in Fig. 25. The analysis reveals a linear
relationship between the damping coefficient of the OWSC-2 and the
total energy conversion, with higher damping coefficients leading to
a gradual increase in energy harvesting. Conversely, for the OWSC-
1, the total energy conversion initially increases with the damping
coefficient, reaching a peak before declining. Notably, the peak value
occurs around k;; = 20 N m s/rad, and this peak remains unaffected
by variations in k,,. Therefore, for the subsequent RL training, the
condition with k;; = 20 N m s/rad and k;, = 80 N m s/rad is established
as the baseline. Given the strong nonlinear characteristics of the dual
OWSC system and the observed lower wave energy harvesting by the
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Fig. 25. The variations of the total energy conversion in terms of the damping
coefficients in dual OWSCs.

OWSC-2, the damping coefficient of the OWSC-2 is held constant during
training. This approach allows us to focus on optimizing the damping
coefficient of the OWSC-1. The RL training commences at the 24th
second, a point in time when the wave-structure interactions have
stabilized, meaning the system has reached a steady state in terms of
energy harvesting and conversion.

The training results are illustrated in Fig. 26. The damping co-
efficient variation is consistent with the trend of free surface height
changes before the flap, demonstrating apparent periodicity that aligns
with previous research findings. Further analysis based on Fig. 27
reveals that, after 39 s, the system’s state is stabilized. An increase
in the damping coefficient during the wave peak phase significantly
reduces the angular velocity, resulting in only a limited increase in
energy harvesting during the peak. Conversely, reducing the damp-
ing during the trough phase does not enhance the angular velocity,
which remains lower than under constant damping conditions. This
reduction in energy harvesting during the trough phase leads to a
notable decrease in overall energy acquisition over the entire wave
period, thereby failing to improve energy harvesting efficiency. During
the 60-s test period, the energy harvesting for the OWSC-1 using the
adaptive damping coefficient was 1560.37 J, compared to 1626.52 J
with constant damping, representing a reduction of 4.07%.
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Fig. 27. The influence of the damping coefficient on the (a) angular velocity of the first flap, and (b) instantaneous power capture.
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Fig. 28. The influence of the damping coefficient

Additionally, for the OWSC-2, where the damping coefficient re-
mained unchanged, the energy harvesting efficiency dropped signifi-
cantly from 362.94 J to 197.91 J, a decrease of 45.47%, as shown in
Fig. 28. This indicates that after the wave passes through the OWSC-1
with adaptive damping, the energy loss is more significant than with
constant damping. Combined with Fig. 29, it is evident that under
constant damping, significant harmonics are generated between the
two OWSCs, which is beneficial for enhancing energy harvesting.

Therefore, in the dual OWSC system, the nonlinear characteristics
are pronounced, and single damping control is insufficient to improve
overall wave energy acquisition efficiency. Moreover, the 2D simu-
lations constrain the design and optimization of the OWSC layout,
necessitating further analysis and discussion in subsequent work.

on the instantaneous power capture of the OWSC-2.
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5. Conclusion

This paper establishes a framework coupling a CFD environment
based on an open-source SPH-based library with DRL, aimed at opti-
mizing the adaptive damping coefficient of the PTO system in OWSCs
for wave energy conversion. Initially, the wave-making model and the
numerical model of WSI were validated. Subsequently, the performance
of various RL algorithms for the optimization process was investi-
gated. The results indicated that SAC considers policy entropy, bal-
anced exploration, and exploitation well and provides effective policies
to enhance wave energy conversion.

For regular waves, the strategy primarily utilizes the difference in
energy density between wave crests and troughs. Increasing energy
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Fig. 29. The spectrum diagram at x = 8.2 m.

harvesting during the crest phase and reducing it during the trough
phase achieves a positive net energy harvesting over each wave period.
The policy trained in 2D simulations can be effectively applied in 3D
simulations. Although the 2D simulations simplify wave diffraction and
result in a slight decrease in calculated CWR, they accurately capture
the coupling characteristics between waves and OWSCs, allowing DRL
to learn practical policies that are robust and transferable. This provides
a theoretical foundation for validation in experiments. Moreover, the
training strategy optimized for a specific wave period remains effective
under variations in wave height. However, its performance deterio-
rates when the wave period changes. Notably, the optimization effect
becomes more pronounced with longer wave periods.

The DRL algorithm could still learn effective energy conversion
optimization policies for irregular waves, primarily targeting regular
waves with high energy density in the main period. The optimization
principle is similar to that for regular waves, with limited enhancement
in energy harvesting from the dynamic damping response for waves in
the secondary period due to their lower energy density.

Finally, this paper explores the optimization of wave energy ab-
sorption in a dual OWSC system. The interaction between incident
waves and OWSCs in the dual system generates harmonics with strong
nonlinearity. Optimization focused on the primary OWSC showed that
using similar optimization policies cannot enhance energy harvesting,
as it significantly reduces the wave energy density between the OWSCs,
leading to a substantial decrease in energy absorption by the secondary
OWSC and an overall reduction in the system’s energy harvesting.
Therefore, considering the dynamic response of a single OWSC’s damp-
ing coefficient is insufficient to optimize the energy conversion in
complex dual OWSC systems.

Future work will introduce multi-agent reinforcement learning to
directly learn corresponding energy optimization strategies for various
OWSC layouts in 3D simulations.
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