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A B S T R A C T

We present a novel convolutional neural network (CNN) algorithm to reconstruct turbulence statistics in the 
wake of marine hydrokinetic (MHK) turbine arrays installed in large meandering rivers. To train the CNN, we 
utilize large eddy simulation (LES) data depicting the wake flow from a single row of turbines. Once trained, the 
CNN is deployed to forecast the wake flow of MHK turbine arrays under different hydrodynamic conditions and 
for varying waterway plan-form geometry. Validation of the CNN predictions are conducted using independently 
performed LES. Our findings demonstrate the capacity of CNN to accurately predict the wake flow of MHK 
turbine arrays at significantly reduced computational cost compared to LES. Additionally, the comparison be
tween CNN and unsteady Reynolds-averaged Navier-Stokes (URANS) simulation exhibits a notable advantage of 
CNN in prediction efficiency and accuracy. This research highlights the potential of CNN to establish reduced- 
order models for facilitating control co-design and optimization of MHK turbine arrays within natural 
environments.

1. Introduction

Horizontal-axis marine hydrokinetic (MHK) turbines have been 
widely used in tidal farms to extract tidal stream energy. Deployment of 
turbine arrays can increase the efficiency of energy production while 
minimizing the cost. Due to hydrodynamic interactions between the 
wakes of individual turbines and hydro-morphodynamics interactions 
over erodible beds, the layout of turbine arrays not only could affect 
their performance, but also could impact the ambient aquatic environ
ment and waterway ecosystem (Gotelli et al., 2019). An opportune siting 
and yaw of turbines can mitigate and even eliminate these effects. Musa 
et al.(2018) used a quasi-field scaled experiment to demonstrate the 
impacts of the MHK turbine arrays on the migrating sediment bed, 
verifying that an appropriate siting of turbines will not jeopardize the 
river’s geomorphic equilibrium and the turbine foundation’s structural 
safety. Musa et al.(2020) used the yawed turbines to deflect the wake 
away from the riverbank in the experiment, preventing bank erosion 
with a minimal loss of power production. Modali et al.(2021) studied the 
near-wake characteristic of the yawed turbine and showed that the 
available kinetic energy of the downstream turbine could increase by 
over 50 % by taking the staggered configuration and yawing the 

upstream turbine. Those researchers highlighted the importance of 
optimizing the layout of MHK turbine arrays and yaw angles before 
deployment.

Chawdhary et al. (2017) investigated the wake flow of TriFrame 
configuration of turbines using large-eddy simulation (LES) with the 
curvilinear immersed boundary method (CURVIB), revealing the unique 
wake characteristics of the TriFrame configuration and its advantage in 
power production over three independent single turbines. Chawdhary 
et al. (2018) also simulated a 30-turbine MHK turbine array deployed in 
the East River in New York City using LES with CURVIB, demonstrating 
the possibility of MHK energy harvesting from large-scale rivers. How
ever, the computational cost of such high-fidelity modeling prohibited 
their application for array optimization tasks.

Simplified models based on two-dimensional (2D) partial differential 
equations are more practical for water flow. Zhang et al. (2021) used a 
2D tidal stream turbine yaw model based on the shallow water equations 
and Sequential Least Squares Programming algorithm to optimize the 
layout and yaw of the tidal turbine array from the aligned arrangement, 
increasing the energy output by over 80 %. Zhang et al. (2020) opti
mized the staggered turbine array around Zhoushan Islands using a 2D 
model based on OpenTidalFarm, increasing the energy extraction by 
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6.8 %. However, such 2D models oversimplify the vertical wake struc
tures and replace turbines with the rotor disc model, which neglects the 
blade effects and provides a low resolution of wake characteristics.

To enable efficient optimization of MHK turbine arrays, 
González-Gorbeña et al. (2018) developed a surrogate-based optimiza
tion (SBO) method based on three-dimensional (3D) numerical experi
ments. This approach first constructs a surrogate model of design 
variables using a series of 3D numerical simulation results and then 
applies mathematical optimization to the surrogate model. However, 
the number of required numerical simulations is about 10 times the 
number of design variables; consequently, the computational cost would 
still be relatively high when more design variables are considered.

Recent advancements in machine-learning techniques have moti
vated researchers to explore data-driven algorithms for efficient fore
casting of complex turbulent flows. For instance, Guo et al. (2016)
utilized a convolutional neural network (CNN) autoencoder (CNN-AE) 
to model the steady flow field around bluff bodies directly, avoiding the 
costly high-fidelity simulations in steady flow scenarios. Fukami et al. 
(2019), (2020) employed a hybrid down-sampled skip-connection/
multi-scale CNN algorithm to reconstruct high-resolution flow fields 
from low-resolution data, which could help to run a less expensive, 
low-fidelity simulation without sacrificing high-fidelity data. However, 
the super-resolution approach is still in the very early stages. Zhang et al. 
(2022a) applied a CNN autoencoder to predict 3D turbulence statistics 
in a meandering river, which bypassed the long sampling time for 
time-averaging. The data-driven approaches have also been extended to 
wind turbine wake predictions. Ti et al. (2020), (2021) developed an 
artificial neural network (ANN) to forecast velocity deficit and turbu
lence kinetic energy (TKE) in turbine wakes, and Zhang et al. (2022b)
reconstructed time-averaged turbine wake flow and predicted power 
production curves using CNN. Despite these efforts, there remains a gap 
in the literature concerning the development and application of 
data-driven algorithms for predicting MHK turbine farm wakes in 
large-scale riverine environments.

In this study, we proposed a novel machine learning approach that 
can more efficiently predict the high-fidelity mean flow field and tur
bulence statistics of MHK turbine farm wakes in large-scale riverine 
environments, as shown in Fig. 1. We employ data from large eddy 
simulation (LES) to develop and validate CNN models for predicting 
MHK turbine wake flow fields in large meandering rivers. For a given 
configuration, the LES is executed until initial transient decay and 
physically meaningful instantaneous flow fields emerge in the simula
tions. Subsequently, a trained CNN is employed to bypass the long LES 

computational time required to collect data to obtain converged mean 
flow and turbulence statistics. The simulation time required to obtain 
converged statistics can be especially long in brute-force LES of flows 
characterized by slowly evolving coherent structures, as is the case in 
large meandering rivers. The instantaneous flow field data are fed into 
the CNN at the input layer, while the time-averaged data are recon
structed from the output layer. The comparison between the CNN pre
dictions and the LES results revealed that the developed CNN 
autoencoder algorithms are promising for predicting time-averaged 
wake flow from hydrokinetic turbines at significantly reduced compu
tational costs compared to brute-force LES.

In addition, we also performed an unsteady Reynolds-averaged 
Navier-Stokes (URANS) simulation in one of our validation cases to 
compare the accuracy and efficiency against the trained CNN model. 
The comparison exhibits a higher efficiency and accuracy of the CNN 
autoencoder algorithm than URANS based model. Hence, this study 
demonstrates that the proposed machine learning algorithms enable 
efficient, high-fidelity predictions of MHK turbine arrays’ wake flow in 
large-scale riverine environments; and thus, they could offer a robust 
computational framework for tidal farm layout optimization in real-life 
settings.

This paper is organized as follows. Section 2 presents the numerical 
models for preparing the training and validation data of the turbulence 
flow in large-scale rivers with embedded MHK turbines. Section 3 de
scribes the test cases and computational details of the high-fidelity 
simulations. Section 4 describes the CNN autoencoder algorithm and 
the training and prediction workflow. Section 5 presents the results and 
discussion, after which Section 6 presents the conclusion of this study.

2. Numerical model

We used our in-house open-source model, the Virtual Flow Simulator 
(VFS-Geophysics) code, to generate the simulation data of MHK turbine 
wake flow fields in large meandering rivers. The VFS-Geophysics has 
LES and URANS modules to resolve the hydrodynamics of the 
meandering rivers. The LES module uses the spatially-filtered Navier- 
Stokes equations and continuity equations as the governing equations to 
resolve the 3D incompressible turbulent flow, and the URANS module 
uses the k − ω model to close the Navier-Stokes equations and continuity 
equations. To handle the curved geometry of the river, the equations are 
transformed from Cartesian coordinates {xi} into generalized curvi
linear coordinates 

{
ξi}. The non-dimensional form of the equations, in 

compact tensor notation, reads as follows (Khosronejad and 

Fig. 1. : Workflow of the proposed CNN autoencoder algorithm. ULES is the instantaneous velocity of the LES computed fully developed turbulent flow. UCNN is the 
CNN predicted time-averaged velocity. 1/2UUCNN is the CNN predicted turbulence kinetic energy.
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Sotiropoulos, 2020): 
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tensor, p is the pressure, Re is the Reynolds number, and fl is the body 
force. In the LES module, τij is the sub-grid stress tensor (Kang et al., 
2011) modeled using the dynamic Smagorinsky sub-grid scale (SGS) 
model (Smagorinsky, 1963). In the URANS module, τij is the Reynolds 
stress of the k − ω model (Wilcox, 1994). The governing equations for the 
k − ω model read in generalized curvilinear coordinates as follows 
(Khosronejad et al., 2011): 
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where μt is the dynamic eddy viscosity, ρ is the density, and the closure 
coefficients are given as α = 5/9, β = 3/40, β∗ = 9/100, and σ∗ = 1/2. 
The Reynolds stress tensor is calculated using the Boussinesq hypothesis 
as follows (Khosronejad et al., 2011): 

τij = − 2μtSij +
2
3

ρkδij (6) 

where Sij is the Reynolds averaged strain-rate tensor.
The governing equations are discretized in space on a hybrid 

staggered/non-staggered grid arrangement using second-order accurate 
central differencing for the convective terms and second-order accurate, 
three-point central differencing for the divergence, pressure gradient, 
and viscous-like terms (Gilmanov and Sotiropoulos, 2005). The time 
derivatives are discretized using a second-order backward differencing 
scheme (Kang et al., 2011). The discrete flow equations are integrated in 
time using an efficient, second-order accurate, fractional step method
ology: it is coupled with a Jacobian-free, Newton-Krylov solver for the 
momentum equations and a generalized minimal residual method 
(GMRES) solver enhanced with the multigrid method as a precondi
tioner for the Poisson equation. The hydrodynamic modules of the 
VFS-Geophysics model have been extensively validated against the 
laboratory and field scale measurements elsewhere (e.g., see (Kang 
et al., 2020; Khosronejad et al., 2011, 2020a,b; Zhang et al., 2022a)).

The rotor blades of the MHK turbines are parametrized using the 
standard actuator line model (ALM) (Yang et al., 2017, 2015). In this 
approach, the turbine rotor blades are modeled by a straight rotating 
actuator line. The blades are divided into elements in the radial direc
tion, and the forces on each blade element are calculated based on local 
inflow velocity, lift, and drag coefficients of 2D airfoils obtained from 
tabulated files. The interaction between the rotor blades and the flow is 
represented by forces on the actuator line. In order to take into account 
the nacelle effect without resolving the surrounding boundary layer, the 
nacelle is parametrized by the nacelle actuator surface model (ASM) 
(Yang and Sotiropoulos, 2018). The force acting on the actuator surface 

is decomposed into normal and tangential components. The tangential 
force acting on the actuator surface is assumed to be proportional to the 
local incoming velocity, and the empirical friction coefficient parame
terizes the effects of the surface geometry and near-wall turbulence.

3. Test case description and computational details

This section describes the data preparation of the large-scale wa
terways with embedded MHK turbines for training and validating the 
proposed CNN algorithm. Two virtual large-scale meandering rivers and 
three turbine configurations were considered, as shown in Fig. 2. The 
river geometry is generated using a standard geometric model for the 
centerlines of meandering rivers (Parker et al., 1983; Abad and Garcia, 
2009; Khosronejad et al., 2022). River 1 is 2110 m long, and river 2 is 
2740 m long. Both rivers are 100 m wide and 3.3 m deep. MHK turbines 
are located at the mid-depth of the bend of the waterway. Each MHK 
turbine has a three-bladed rotor of diameter D = 1.5m and a cylindrical 
nacelle of 0.3 m diameter. The foil shape of the rotor blade is NACA 4412 
hydrofoil. The nondimensional tip speed ratio (TSR) of the turbines is 4. 
In Fig. 2a, three MHK turbines (marked as solid lines) are aligned and 
spaced evenly in the spanwise direction at the mid-length of river 1 
(1055 m from the inlet). Fig. 2b has two more turbines positioned 16D 
downstream of the first row in a staggered manner. Fig. 2c shows two 
rows of turbines at the mid-length of river 2 (the upstream row of tur
bines is 1370 m from the inlet), spaced evenly in the spanwise direction 
and 16D in the streamwise direction. The bulk velocity of river 1 and 
river 2 is 2.04 m s− 1 and 10.2 m s− 1, respectively. The geometry and 
hydrodynamic details are presented in Table 1.

The flow in the meandering river is solved over the curvilinear 
structured grid system, which fits the curved geometry of the virtual 
river. A mesh-independent study is conducted over the training case 
(Fig. 2a) to determine the grid size. Three grid systems in different 
resolutions are tested, as shown in Table 2. Grid nodes are distributed 
uniformly in all three directions. We compared the profile of non
dimensionalized time-averaged velocity magnitude U/Ub along the 
spanwise direction at 3D downstream of the turbine in the mid-depth of 
the river in Fig. 3. The result demonstrates that the coarser mesh 1 
cannot sufficiently resolve the wake of the turbine, but the medium 
mesh 2 and the finer mesh 3 can provide satisfactory results with the 
same high accuracy. Therefore, we decided to use the grid resolution of 
the medium mesh 2, which has a spacing of 0.32, 0.20, and 0.165 m, 
respectively, in the streamwise, spanwise, and vertical directions, to run 
the LES of the three cases. Regarding the turbine rotor diameter of 
1.5 m, the turbine rotor is resolved by 8 and 9 grid nodes in spanwise 
and vertical directions, respectively. The simulation time step Δt =
0.05H/Ub is elaborated to give a Courant–Friedrichs–Lewy number less 
than 1. Details of the discretization parameters are shown in Table 3.

The inlet and the outlet of the waterways are carried out using the 
periodic boundary conditions. The side walls and the flatbed of the 
waterway apply the no-slip boundary condition. The free surface of the 
river is described using the rigid-lid assumptions. The rotor blades are 
parameterized using the ALM, and the nacelle is parameterized using the 
nacelle ASM.

3.1. The CNN autoencoder for flow reconstruction

The proposed reconstruction algorithm is equivalent to finding a 
mapping F from 3D instantaneous snapshots to 3D turbulence statistics 
field: 
(
ui, p, ui

ʹuj
ʹ) = F (xi, ui, p) (7) 

where xi denotes the coordinate components, and ui and p are instan
taneous velocity components and pressure from an arbitrary timestep. ui 

and p represent mean velocity components and mean pressure. uiʹujʹ are 
the six components of Reynolds stresses. The mapping F aims to 
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minimize the difference between the predicted quantities and the 
ground truth. In this study, the CNN autoencoder is used as a surrogate 
model for the mapping F since it is widely used for its efficiency in 
processing high-dimensional grid-like data (Santoni et al., 2023; Zhang 
et al., 2022b, a).

3.2. CNN autoencoder algorithm

The CNN autoencoder contains two parts: an encoder maps the high- 
dimensional input field quantities to feature maps in the latent space 
with reduced dimensions, and a decoder reconstructs the output field 
quantities from the latent space. The encoder is built by convolutional 
layers defined by Zhang et al. (2022a) as the following: 

yn = σ
(
∑

m
km,n ∗ xm + bn

)

(8) 

where xm and yn respectively denote the mth input channel and the nth 
output channel of the layer, km,n is the convolutional kernel, ∗ denotes 
the convolution operator, and bn is the bias of the nth output channel. 
Each layer can contain multiple input and output channels that corre
spond to different input and output feature maps. Specifically, the first 
layer’s input channels correspond to the multiple input quantities. 
Consequently, m × n convolutional kernels are applied to extract the nth 
feature of the mth input channel. Convolutional kernel traverse through 
the layer’s input data with a stride greater than one to reduce the 
dimension of the feature map. Additionally, a padding is applied to each 
layer’s input to fine tune the output dimension. The convolutional 
kernel km,n and the bias bn are learnable parameters, which the values 
will be updated during the training process to minimize the objective 
function. After each convolutional layer, a leaky rectified linear unit 
(ReLU) function σ is applied to the model, which is given by Maas et al. 
(2013): 

σ(y) =
{

y, y > 0

0.01y, y < 0
(9) 

The decoder is built by transposed convolutional layers which is the 

Fig. 2. : Schematic of the virtual meandering river for the training (a) and validation (b) and (c) of the CNN. Solid lines in the virtual river mark the turbines. Flow is 
from left to right.

Table 1 
Geometrical and hydrodynamic characteristics of the virtual testbed rivers. H, B, 
and L are the mean-flow depth, width, and length of the meandering testbed 
rivers, respectively. D is the rotor diameter of the MHK turbines. Ub is the bulk 
velocity of the river. Re is Reynolds numbers.

River1 River2

H (m) 3.3 3.3
B (m) 100 100
L (m) 2110 2740
D (m) 1.5 1.5
Ub (m s− 1) 2.04 10.2
Re 6.74×107 3.37×108

Table 2 
Mesh information of the mesh independence study.

Nx × Ny × Nz Δx (m) Δy (m) Δz (m) Number of nodes

Mesh 1 5237× 397× 17 0.40 0.252 0.206 35,344,513
Mesh 2 6601× 501× 21 0.32 0.2 0.165 69,449,121
Mesh 3 8317× 629× 24 0.254 0.158 0.132 130,784,825

Fig. 3. : Results of the mesh independence study. Profiles are the non
dimensionalized time-averaged velocity magnitude along the spanwise direc
tion at 3D downstream from the turbine in the mid-depth of the river case I. Ub 
is the bulk velocity. y/H is the distance from the inner bank normalized by the 
mean flow depth.

Table 3 
Discretization parameters of the meandering rivers. Nx, Ny, and Nz are the 
number of computational grid nodes in streamwise, spanwise, and vertical di
rections, respectively. Δx, Δy, and Δz are the spatial resolution in streamwise, 
spanwise, and vertical directions, respectively. z+ is the vertical resolution in the 
wall unit, and Δt is the temporal resolution.

River1 River2

Nx × Ny × Nz 6601× 501× 21 8565× 501× 21
Δx (m) 0.32 0.32
Δy (m) 0.20 0.20
Δz (m) 0.165 0.165
z+ >1000 >1000
Δt 0.05H/Ub 0.05H/Ub
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adjoint operation of convolution. The transposed convolutional layers 
can reconstruct the high-dimensional data from the lower-dimensional 
feature maps. The input and output dimensions are the reverse of the 
corresponding convolutional layers.

The training process of the CNN autoencoder is to investigate the 
optimal set of parameters km,n and bn that minimize the objective 
function. By adopting the naïve data-driven approach, the objective 
function would be the mean square error (MSE) of the discrepancy be
tween the predicted results and the ground truth, as follows: 

Loss = MSE(ψCNN − ψLES) (10) 

where ψCNN and ψLES are the variables obtained from the CNN and LES, 
respectively.

The architecture of the CNN autoencoder used in the present study is 
shown in Fig. 4 and Table 4. The encoder is composed of four 3D con
volutional layers (Conv3d). The decoder has three 3D transposed con
volutional layers (convT3d) followed by a convolutional layer. A coarse 
grid search was conducted over the hyperparameter space to determine 
the number of layers, channels, kernel sizes, and strides by maximizing 
the generality and performance of the trained model.

3.3. Model training

To produce the training and validation dataset for the CNN, we 
carried out LES of the three cases shown in Fig. 2. A series of LES were 
first conducted to produce the fully converged instantaneous flow field. 
The convergence of instantaneous flow field results was determined by 
monitoring the time history of the LES-computed total kinetic energy of 
the flow field. Subsequently, the LES were continued for t = 800H/Ub to 
time-average the flow field, generating statistically converged turbu
lence statistics; that is, the mean flow velocity field and Reynolds 
stresses. The convergence of the time-averaged results was achieved 
using the time-history analysis method reported in Khosronejad et al. 
(2020). Then, the instantaneous velocity field snapshots, the 
time-averaged velocity, and the Reynolds stress fields were used for the 
training and validation of the CNN. Instantaneous velocity field snap
shots were saved at every interval of Δtsave = 5H/Ub, and a total of 80 
snapshots of case I were used for training. Because the turbine wake is 
only a small part of the entire domain, to reduce the training cost and 
make the trained CNN model focused on the turbine wake, we extracted 
the results in a subdomain that ranges from 17D upstream of the first 
row of turbines to 90D downstream for training. Each subdomain con
tains 501×501×21 grid nodes along the streamwise, spanwise, and 
vertical directions, respectively.

The workflow to predict the mean flow field and Reynolds stresses 
using CNN is shown in Fig. 5. First, the LES generates the instantaneous 
snapshots of velocity (u, v, w) and pressure field (p). Then, every five 
consecutive instantaneous LES snapshots were averaged to ensure that 
all relevant coherent structures at various time scales are incorporated in 

the training process. We note that a range of coherent flow structures 
induces such variations: 1) structures present in the incoming turbulent 
flow, 2) turbine wake meandering, and 3) structures induced by the 
geometry of the waterway. We performed a series of numerical experi
ments to determine the minimum number of instantaneous snapshots 
and their temporal interval separation to minimize the training error of 
the CNN. The averaged input variables are denoted as u5, v5, w5, p5. 
Since the LES results are stored in the curvilinear structured mesh sys
tem, the data are 3D matrices which can be directly processed by the 
convolutional layers. The trainings were conducted using Intel Haswell 
CPU. The training process utilized 80 training samples from different 
LES time steps of case I with batch size 4. The Adam optimizer was 
employed in the proposed algorithm. The learning rate of the training 
had an initial value of 0.01 with a decay rate of 0.7 in a step size of 400 
training epochs. The training ran over 700 epochs until the loss curve 
plateaued, costing around 64 CPU hours. The validation case I was used 
as the validation data during the training.

The Reynolds stresses are predicted by a separately trained CNNAE2. 
In our analysis, compared to predicting the mean velocity fields and 
Reynolds stresses using a single multi-task CNN, a separately trained 
CNN for Reynolds stresses requires a smaller model and less training cost 

Fig. 4. The flowchart of the CNN autoencoder.

Table 4 
Architecture of the CNN autoencoder.

Layer Channel Kernel Stride Padding

1 Conv3d (input, 8) (3, 3, 3) (1, 1, 1) (1, 1, 1)
2 Conv3d (8, 16) (3, 3, 3) (2, 2, 2) (1, 1, 1)
3 Conv3d (16, 32) (3, 3, 3) (2, 2, 2) (1, 1, 1)
4 Conv3d (32, 64) (3, 3, 3) (2, 2, 2) (1, 1, 1)
5 ConvT3d (64, 32) (4, 4, 4) (2, 2, 2) (1, 1, 1)
6 ConvT3d (32, 16) (4, 4, 4) (2, 2, 2) (1, 1, 1)
7 ConvT3d (16, 8) (4, 4, 4) (2, 2, 2) (2, 2, 2)
8 Conv3d (8, output) (3, 3, 3) (1, 1, 1) (0, 0, 0)

Fig. 5. The workflow of the mean velocity and Reynolds stresses prediction 
using CNN.
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and has a higher predicting accuracy. Different from CNNAE1, the in
puts of CNNAE2 are the cross multiplication of velocity fluctuation 
components. For instance, the input of the streamwise normal stress uʹú  
is calculated as follows: 

uʹú = (u5 − uCNN)(u5 − uCNN) (11) 

where the uCNN is the predicted time-averaged streamwise velocity 
component of CNNAE1. Then, the six Reynolds stress components are 
predicted by CNNAE2. Owing to the nature of the turbulent river flows, 
the Reynolds stresses in the wake region of the MHK turbines are two 
orders of magnitude greater than in other areas of the flow. Such sig
nificant heterogeneity leads to an unsuccessful initial training of the 
CNN. To address this issue, we employed a pre-processing approach to 
render the distribution of second-order statistics more homogeneous. 
Instead of using uʹú nd ú ú  as the input and the output of CNNAE2, we 
used their cubic roots: 

̅̅̅̅̅̅̅
ú ú3

√
and 

̅̅̅̅̅̅̅
ú ú3

√
, respectively. Then, the output of 

CNNAE2 would be post-processed to produce the final results. The 
training of the CNNAE2 used the same hyperparameters as CNNAE1 and 
ran over 1200 epochs using around 130 CPU hours.

Next, the trained CNN models were examined by the two validation 
cases II and III, with different river geometry, Reynolds number, and 
MHK turbine configurations. The benchmark data for the validation 
studies were obtained from the LES of the validation cases. The accuracy 
of the predictions was assessed via the percentage of relative mean ab
solute error (RMAE), defined as such (Zhang et al., 2023): 

RMAE =
1
N
∑N

i=1

⃒
⃒ψ i(LES)− ψ i(CNN)

⃒
⃒

⃒
⃒ψ i(LES)

⃒
⃒

× 100% (12) 

where ψ i(CNN) and ψ i(LES) are the CNN and LES predicted variables, 
respectively, at the computational node i, and N is the total number of 
computational nodes. To further evaluate the performance of the pro
posed algorithm, we also conducted a URANS simulation on validation 
case III and compared the URANS results against the prediction results of 
the proposed algorithm.

4. Results and discussions

4.1. Mean flow predictions

The validation results of the trained CNNAE1 model are shown in 
Figs. 6 to 9. Figs. 6 and 7 compare the mean velocity magnitude U =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
u2 + v2 + w2

√
and mean pressure p contours of the two validation cases. 

Four cross sections at 3D, 6D, 12D, and 24D downstream of the last row 
of turbines are marked as I, II, III, and IV, respectively. The top view 
contours are taken from the hub height level, and the side view contours 
are taken from the cross sections I and III. As seen in Figs. 6a and 7a, the 
velocity deficits in the wakes of turbines are captured by the CNN, 
marking the satisfactory performance of the trained algorithms. To 
examine the accuracy of the predictions, we illustrate in Figs. 8 and 9 the 
spanwise profiles of U and p along the cross sections I to IV at the hub 
height. Figs. 8a and 9a show that the velocity deficits in the wakes are 
slightly underestimated. Compared to validation case I, which has the 
same river geometry and Reynolds number, the overestimation of wake 
velocity in validation case II is more significant. This is due to the 
inevitable generalization error of the machine learning method. One 
possible approach to reduce this discrepancy is to employ more training 
cases with different turbine configurations. The URANS results of vali
dation case III are also presented in Figs. 7 and 9 for comparison. 
Comparing to the CNN predictions, the URANS results seriously over
estimated the velocity near the inner band (y/H=0). The underestima
tion of the velocity deficits in the wakes is also more significant.

Moreover, Table 5 presents the prediction errors of the CNN and 
URANS compared to the LES results for validation cases II and III. 
Generally, the prediction errors of CNN are lower than those of URANS, 
which marks the better performance of the CNN algorithm.

4.2. Prediction of turbulence statistics

A separate CNNAE2 was trained to predict the second-order statistics 
of the turbulent wake flows using the instantaneous velocity fluctuations 
calculated from the LES instantaneous velocity snapshots, and the CNN 

Fig. 6. Contours of the normalized mean velocity and mean pressure of validation case II. The present subdomain is extracted from 17D upstream of the first row of 
turbines to 90D downstream. Top views are taken from the hub height. Side views are taken from cross-sections at 6D and 24D downstream of the last row of 
turbines, marked by the dashed lines I and III. The bulk velocity Ub is 2.04 m s− 1. The density of water ρ is 1000 kg m− 3. Flow is from left to right.
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predicted mean velocity. For simplicity, instead of plotting all six Rey
nolds stresses, the contours of the TKE obtained from the predicted 
Reynolds stresses (TKE = 1/2(uʹuʹ+v́ v́ +wʹwʹ)) by the CNN were 
compared against the LES results in Figs. 10 and 11. As seen in Fig. 10, 
the CNN has successfully reconstructed the TKE in the wakes of MHK 
turbines in both validation cases. The profiles across the width of the 
waterway in Fig. 11 show that the high TKE peaks were accurately 
captured in both validation cases. In comparison, the URANS result of 
validation case III significantly underestimated the TKE in the wakes. 
The CNN has also accurately reconstructed the TKE distribution in the 

background flow although the variation is infinitesimal compared to the 
TKE in the wakes. This impressive performance is attributed to the cubic 
root preprocessing. In comparison, the URANS neglected the back
ground TKE distribution. The advantage of the CNN over URANS is also 
demonstrated in Table 6. The relative error of the CNN prediction is 
about half of the URANS results of validation case II. We also note that 
the relative error of case III is higher than case II because of the over
estimation of the TKE near the inner bank in the background flow, as 
seen in the range of y/H=0–6 in Fig. 11. This overestimation was caused 
by the generalization error in different rivers and could be reduced by 

Fig. 7. Contours of the normalized mean velocity and mean pressure of the validation case III. The present subdomain is extracted from 5D upstream of the first row 
of turbines to 90D downstream. Top views are taken from the hub height. Side views are taken from cross-sections at 6D and 24D downstream of the last row of 
turbines, marked by the dashed lines I and III. The bulk velocity Ub is 2.04 m/s. The density of water ρ is 1000 kg/m3. Flow is from left to right.

Fig. 8. Profiles of the normalized mean velocity and mean pressure of validation case II. Profiles are along the dashed lines marked by I, II, III, and IV in the contours 
of the corresponding case in Fig. 6, which are at 3D, 6D, 12D, and 24D downstream the last row of turbines, respectively. The bulk velocity Ub is 2.04 m/s. The 
density of water ρ is 1000 kg/m3. y/H is the distance from the inner bank normalized by the mean flow depth H of 3.3 m.
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including more river geometries in training samples. However, this 
overestimation did not affect the prediction of the wakes.

In conclusion, the trained CNN can successfully predict the 3D wake 
flow fields of MHK turbine arrays in large-scale meandering rivers. The 
mean velocity, mean pressure, and TKE profiles obtained from the CNN 
predictions agree well with the LES results. And the statistical error 
indices demonstrated the accuracy of the CNN predictions.

Now, we focus our attention on the computational cost of these wake 
flow predictions. On average, brute-force LES requires over 3.5 × 104 

CPU hrs to generate the converged time-averaged wake flow field of 
each case, and URANS requires around 1.08 × 104 CPU hrs. The trained 
CNN algorithms, however, requires about 60 CPU sec to reconstruct the 
wake flow fields. Considering the training cost of about 120 CPU hrs and 
the cost of LES to produce instantaneous flow fields (i.e., 0.95 × 103 CPU 
hrs) for the training inputs of the CNN, the total computational cost of 
the proposed CNN is about 0.97 × 103 CPU hrs, which is a small fraction 
of that of brute-force LES or URANS. Therefore, given the accuracy of the 
proposed CNN algorithms and their computational costs, the proposed 
approach could enable reliable and affordable predictions of the wake 
flow field of large-scale tidal farms, and provide efficient prediction 
tools to optimize the layouts of the MHK turbine arrays in real-life sites.

5. Conclusion

We examined the capabilities of the CNN autoencoder algorithms to 
predict the turbulence statistics of the 3D wake flow field of MHK tur
bine arrays in a large-scale meandering river. Three turbine 

configurations in two different virtual meandering rivers were consid
ered as the training and validation cases for the CNN. The training case 
was a single row of three turbines located at the apex of the meander. In 
contrast, the two validation cases were two rows of turbines with 
aligned and staggered wakes in two different rivers and under different 
Reynolds numbers. The LES with ALM of the three cases were conducted 
to produce the training and validation dataset of the CNN. A CNN is first 
trained to predict the first-order turbulence statistics of the tidal farms’ 
wake flow field. To do so, we considered the LES-computed instanta
neous and time-averaged flow fields as the CNN algorithm’s input and 
output arrays, respectively.

Furthermore, a separate eight-layer CNN was trained to predict the 
second-order turbulence statistics using the inputs derived from the 
predictions of CNN. In the training process, the inputs came from cross 
multiplication of velocity fluctuations derived from the instantaneous 
LES results and the CNN-predicted time-averaged results. At the same 
time, the LES-computed normal Reynolds stresses were set as the output. 
The trained CNN was then employed to predict the second-order tur
bulence statistics of the validation cases. The CNN’s predictions were 
compared against the time-averaged flow field results of separately done 
LES and URANS. The trained CNN can successfully predict the 3D wake 
flow fields of MHK turbine arrays in large-scale meandering rivers. The 
overall computational costs associated with the CNN algorithms is 
roughly 2.8 % of the LES. Compared to URANS, the proposed CNN al
gorithms can generate the time-averaged flow field with higher accuracy 
using fewer computational resources, demonstrating its advantage over 
the URANS approach. Therefore, the proposed CNN algorithms provide 
efficient prediction tools to optimize the layouts of the MHK turbine 
arrays in real-life sites.
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density of water ρ is 1000 kg m− 3. y/H is the distance from the inner bank normalized by the mean flow depth H of 3.3 m.

Table 5 
RMAE for the first-order turbulence statistics predicted by CNN and URANS in 
the two validation cases II and III. U is the time-averaged velocity magnitude. Ub 
is the bulk velocity of the river. p is the mean pressure. ρ is the density of water.

CNN URANS

Validation II U / Ub 0.91 % -
p / ρU2

b 4.93 % -
Validation III U / Ub 3.18 % 5.85 %

p / ρU2
b 18.32 % 18.10 %
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Fig. 10. Contours of the normalized TKE of (a) validation case II and (b) validation case III. The presented subdomain is extracted from (a) 17D upstream of the first 
row of turbines to 90D downstream, and from (b) 5D upstream of the first row of turbines to 90D downstream. Top views are taken from the hub height. Side views 
are taken from cross-sections at 6D and 24D downstream the last row of turbines, marked by the dashed lines I and III. The bulk velocity Ub is 2.04 m s− 1. Flow is 
from left to right.

Fig. 11. Profiles of the normalized TKE of (a) validation case I and (b) validation case II. Profiles are along the dashed lines marked by I, II, III, and IV in the contours 
of the corresponding case in Fig. 10, which are at 3D, 6D, 12D, and 24D downstream of the last row of turbines, respectively. The bulk velocity Ub is 2.04 m s− 1 y/H is 
the distance from the inner bank normalized by the mean flow depth H of 3.3 m.

Table 6 
RMAE for the 2nd order turbulence statistics predicted by CNN and RANS in the 
two validation cases II and III. TKE is the turbulence kinetic energy. Ub is the 
bulk velocity of the river.

CNN URANS

Validation II TKE/ U2
b 5.06 % -

Validation III TKE/ U2
b 17.49 % 34.00 %
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