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A B S T R A C T

Phase-resolved wave prediction is of vital importance for the real-time control of wave energy converters. In
this paper, a novel wave prediction method is proposed, which, to the authors’ knowledge, achieves the real-
time nonlinear wave prediction with quantified uncertainty (including both aleatory and model uncertainties)
for the first time. Moreover, the proposed method achieves the prediction of the predictable zone without
assuming linear sea states, while all previous works on predictable zone determination were based on linear
wave theory (which produces overly conservative estimations). The proposed method is developed based on
the Bayesian machine learning approach, which can take advantage of machine learning model’s ability in
tackling complex nonlinear problems, while taking various forms of uncertainties into account via the Bayesian
framework. A set of wave tank experiments are carried out for evaluation of the method. The results show
that the wave elevations at the location of interest are predicted accurately based on the measurements at
sensor location, and the prediction uncertainty and its variations across the time horizon are well captured.
The comparison with other wave prediction methods shows that the proposed method outperforms them in
terms of both prediction accuracy and the length of the predictable zone. Particularly, for short-term wave
forecasting, the prediction error by the proposed method is as much as 55.4% and 11.7% lower than the
linear wave theory and deterministic machine learning approaches, and the predictable zone is expanded by
the proposed method by as much as 74.6%.
1. Introduction

As one of the main renewable energy resources, wave energy is
expected to play an increasingly important role in the energy mix in the
future [1,2]. In order to reduce the cost of wave power, a lot of research
efforts have been spent on the modeling, simulations, and predictions
of ocean waves. The commonly-used models developed in the past
decades include WAM [3], SWAN [4], and WAVEWATCH III [5]. As the
existing works have mainly focused on the statistical wave quantities
(such as significant wave height and peak wave period), the phase-
resolved wave information is often not obtained. On the other hand, the
phase-resolved real-time wave information is of great practical interest
for the safe and optimal operation of wave energy devices. For example,
the real-time prediction of the phase-resolved wave elevations can be
used for the control of the wave energy converters (WECs) [6,7], so
that the controllers can act in advance before the waves hit the WEC
structures. Such preview-based control strategy is greatly useful for
optimizing the power generation of WECs [8,9] and the mitigation of
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their structural fatigue [10,11]. Particularly, the study in [12] showed
that the model predictive control (MPC) approach was able to provide
an average increase in power production of 36% over the standard fixed
damping control, for the investigated Azura WEC under experimental
conditions. The recent study [13] showed that short-term wave fore-
casting could enable good performance for the control of a WEC under
real-world ocean conditions obtained in field measurement campaigns.
Besides the control of WECs, the phase-resolved wave information is
also of great interest for the control of other ocean structures, such as
the load mitigation of floating wind turbines through MPC [14]. To
tackle these challenges, phase-resolved wave prediction, which aims
at predicting the wave elevations at the locations and time instants of
interest based on wave measurements at sensor locations, is becoming
a hot topic.

The earlier works on phase-resolved wave predictions were mainly
based on linear wave theory (LWT) [15,16], where the prediction
procedure can be divided into the following three steps. First, the time
vailable online 26 July 2022
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Nomenclature

BML Bayesian machine learning
BNN Bayesian neural network
COAST Coastal, Ocean and Sediment Transport Labora-

tory
CWM Choppy wave model
DFT Discrete Fourier transform
DSWP Deterministic sea wave prediction
HOS Higher order spectral method
HOS-WP Wave prediction based on HOS method
ICWM Improved choppy wave model
IFORM Inverse first order method
KL Kullback–Leibler
LWT Linear wave theory
MC Monte Carlo
ML Machine learning
MPC Model predictive control
MRMSE Mean root mean square error
NLWM-WP Wave prediction based on nonlinear wave models
NN Neural network
ReLU Rectified linear unit
RMSE Root mean square error
SCRTP Scientific Computing Research Technology Plat-

form
UQ Uncertainty quantification
WEC Wave energy converter

series of the wave measurements at the sensor location was transformed
into frequency domain through Fourier transform. Then the wave
components at specific frequencies were propagated into the location
and time of interest according to the linear dispersion relation. Finally
the wave profile was obtained by adding up the arrived wave compo-
nents. With this theoretical approach, the predictable zone can also be
determined based on the wave components’ group velocities [17,18].
As the LWT-based approach can be evaluated in real-time and can
achieve satisfactory accuracy when nonlinear effects are negligible, it
is currently the main tool in phase-resolved wave prediction [19,20].

However, nonlinear wave effects are omnipresent in real-world sce-
narios. More importantly, WECs are usually deployed at the sites where
such effects are too strong to be ignored. In order to achieve nonlinear
wave predictions, most works in the literature were based on the higher
order spectral (HOS) method [21,22]. Specifically, the prediction was
carried out by first reconstructing the initial wave conditions with
the wave measurement data as the input, and then using the HOS
method for nonlinear wave propagation [23]. This kind of approach,
hereby referred as wave prediction based on HOS method (HOS-WP),
has been employed in several studies [24,25]. However, as it is com-
putationally expensive, it is extremely challenging to achieve real-time
predictions with such an approach [26]. To alleviate the computational
costs of the HOS-WP approach while taking account of nonlinear wave
effects, wave prediction methods based on efficient, weakly-nonlinear
wave models (hereby referred as NLWM-WP) were developed. The
NLWM-WP method mainly consists of two steps, i.e. a data assimilation
procedure to obtain the model parameters and a wave propagation
procedure to make predictions [27]. In [28], a nonlinear wave predic-
tion algorithm was developed based on the Lagrangian choppy wave
model (CWM) [29]. In [27], a recently-proposed improved choppy
wave model (ICWM) [30], which showed better performance than the
CWM and the CWM2 (i.e. an extension of CWM developed in [31]), was
employed for real-time wave predictions. Comprehensive numerical
and experimental validations were also carried out in [27] where the
2

prediction performance based on the LWT, the LWT with corrected
dispersion relation, and the ICWM, were compared.

Recently, machine learning (ML) based approaches are starting to
gain attention in ocean wave predictions. Many works focused on the
phase-averaged wave information, such as the prediction of the wave
height and period, for the purposes of storm forecasting [32], vessel op-
erations [33,34], and wave power forecasting [35]. While on the other
hand, the number of studies on phase-resolved wave prediction, which
is the main focus of this paper, is still limited. In [36], a neural network
(NN) based method was proposed for the phase-resolved prediction of
unidirectional waves, where both reconstruction (i.e. the prediction at
the same time instants as the measurements) and forecasting (i.e. the
prediction at the time instants in the future) problems were addressed.
The predictable zone was also investigated based on LWT. The proposed
method was evaluated using numerical simulations and the results
showed that it performed much better than the LWT-based approach.
In [37], a similar NN-based wave prediction method was proposed for
phase-resolved wave forecasting. The proposed method was evaluated
using wave tank experiments and a set of input–output strategies were
tested to improve the prediction accuracy. The comparison results
showed that the proposed method clearly outperformed the LWT-based
approach. To summarize, the works in [36,37] both demonstrated
the great potential of the ML-based approaches in nonlinear wave
predictions.

However, a significant research gap still exists on the real-time
phase-resolved nonlinear wave prediction, as described below.

(1) The aforementioned NN-based approaches achieved determinis-
tic wave prediction without quantifying the corresponding un-
certainty. This lack of uncertainty quantification (UQ) is very
dangerous in the control of WECs in real-world conditions, be-
cause the predicted wave elevations might be totally wrong,
and the use of it with full confidence may lead to catastrophic
damage to the WECs.

(2) Despite the efforts in achieving nonlinear wave predictions,
these works still employed LWT for determining the predictable
zone, which may lead to inconsistent and overly conservative
estimation of what can be predicted [26,38]. Therefore, a con-
sistent nonlinear approach to handle both the prediction and the
predictable zone should be pursued.

(3) The work in Ref. [36] investigated both wave reconstruction and
forecasting. However, synthetic numerical data was employed
for method validations. Comprehensive experimental investiga-
tions are thus needed to evaluate the performance of ML in
realistic wave reconstruction and forecasting, taking account of
various environmental uncertainties and measurement errors.

This work focuses on the development of a novel wave prediction
method that can address these limitations. Different from the previ-
ous works that formulated the phase-resolved wave prediction as a
deterministic problem, this work takes a probabilistic approach. In
particular, this work explores, for the first time, the Bayesian machine
learning (BML) approach [39,40] for phase-resolved wave prediction,
which can take advantage of ML’s ability in tackling nonlinear prob-
lems while taking different kinds of uncertainties into account via the
Bayesian framework. As the inference of the true posterior distribution
in the Bayesian neural network (BNN) model is generally infeasible
due to its extreme computational complexity, various approximation
methods, such as Monte Carlo (MC) dropout [41] and variational
inference [42] have been proposed. Various algorithms are also being
developed to enable efficient training of BNN [43,44]. Along with
the development of modern ML hardware (e.g. GPU), the use of BNN
in various fields is just emerging and recent successes in the area
of energy research include the probabilistic wind forecasting [45],
solar irradiation forecasting [46], and natural gas hydrate dispersion
modeling [47]. In this work, BNN is employed for probabilistic, phase-

resolved, real-time reconstruction and forecasting of ocean waves. The
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Table 1
The advantages of the phase-resolved wave prediction method proposed in this work

compared with existing works in the literature.
Ref. Method Nonlinear Real-time Predictable zone UQ

[15–18] LWT No Yes Linear No
[23,24] HOS-WP Yes No Linear No
[27,28] NLWM-WP Yes Yes Linear No
[36,37] NN Yes Yes Linear No
This work BNN Yes Yes Nonlinear Yes

proposed method is designed to take account of both the aleatory un-
certainty (i.e. the uncertainty of the phase-resolved wave information)
and the epistemic uncertainty (i.e. the uncertainty due to the model’s
ability). To the best of the authors’ knowledge, this is the first time
that real-time nonlinear wave prediction is achieved with quantified
uncertainty including both aleatory and epistemic uncertainties. An-
other main advantage of the proposed method is that, by rigorously
quantifying the prediction uncertainty, the predictable zone can also
be detected automatically, avoiding the use of LWT in the predictable
zone determination. The advantages of the method proposed in this
work compared with existing works in the literature (including LWT,
HOS-WP, NLWM-WP, and NN-based approaches) are summarized in
Table 1.

To evaluate the performance of the proposed method, a set of
wave tank experiments are carried out in this work. The experiments
are carried out in the ocean basin [48] in the Coastal, Ocean and
Sediment Transport (COAST) Laboratory at the University of Plymouth,
UK, which has been used previously for various studies in wave [49,50]
and tidal [51] energy research. A total 24 experimental runs are carried
out to generate different wave environments, and the measurements
at different sensor locations are recorded. The wave predictions are
then carried out. The results show that the proposed method is able
to predict the phase-resolved wave elevations accurately. Specifically,
the prediction mean values match very well with the reference wave
elevations measured by the wave gauge, and the corresponding pre-
diction uncertainty and its variation are well captured throughout the
prediction time horizon. Moreover, the predictable zone determina-
tion is also successfully achieved by the proposed method. To further
demonstrate the performance of the proposed method, the LWT-based
and NN-based wave prediction methods are also implemented in this
work for comparison. The results show that the proposed method not
only achieves better accuracy than these methods, but also expands the
predictable zone, which is of vital importance for the control of WECs
and their load forecasting.

The main contributions and novelties of this paper are summarized
as follows:

(1) Phase-resolved real-time nonlinear wave prediction with quan-
tified uncertainty (including both aleatory and epistemic un-
certainties) is achieved for the first time. Because the previous
ML-based works [36,37] achieved deterministic phase-resolved
wave predictions without quantifying the prediction uncertainty,
it is difficult to use them for the control of WECs in real-
world conditions, as it may lead to catastrophic damage. This
work, therefore, brings vital opportunities for the safe and opti-
mal operation of WECs. The comparison of the proposed wave
prediction method with existing methods in the literature is
summarized in Table 1.

(2) As previous works all rely on LWT for predictable zone determi-
nation (which leads to overly conservative estimation), another
main novelty of this work is that it achieves, for the first time,
the prediction of the predictable zone without assuming linear
sea states.

(3) The proposed method is developed based on the variational BML
approach, which can take advantage of both the ML model’s
ability in tackling complex nonlinear problems and the Bayesian
approach’s merits in tackling all kinds of uncertainties.
3

(4) The performance of the proposed approach is evaluated through
a set of wave tank experiments. The results show that phase-
resolved wave elevation is predicted accurately, the prediction
uncertainty is captured well throughout the prediction horizon,
and the predictable zone is obtained successfully. By comparing
with the existing methods in the literature, it is demonstrated
that the proposed method not only achieves better accuracy, but
also expands the predictable zone substantially, which is vital for
the optimal control of WECs and their load forecasting.

The remaining part of this paper is organized as follows: the phase-
resolved wave prediction problem is formulated in Section 2. The
proposed BNN-based prediction method is described in Section 3. The
prediction performance is evaluated through a set of wave tank exper-
iments in Section 4. Finally the conclusions are drawn in Section 5.

2. Problem formulation

Phase-resolved wave prediction, often referred as deterministic sea
wave prediction (DSWP) in previous works, is of vital importance
for the power maximization and load mitigation of WECs and their
arrays. The preview wave information obtained by DSWP offers great
opportunities for the control of WECs before the wave arrives at the
location where the WECs are deployed. An illustration of the wave
prediction problem is given in Fig. 1, where a wave probe, marked
as A in Fig. 1(a), is installed to measure the wave elevations over
time at an upstream location. Based on the measurements, the objec-
tive is to predict the wave elevations at the downstream location of
interest, which is marked as B in Fig. 1(a). An example of the wave
measurements during a certain time period is shown in Fig. 1(b), and
the corresponding wave elevations to be predicted are illustrated in
Fig. 1(c). Denote the wave measurements at the location A from time
instant 0 to 𝑇𝑎 as

ℎ𝑎 = [ℎ𝑎0, ℎ
𝑎
1,… , ℎ𝑎𝑇𝑎 ] (1)

where ℎ𝑎𝑖 represents the wave elevation at the location A at the 𝑖th time
instant. Denote the wave elevations at location B from time instant 0
to time instant 𝑇𝑏 (𝑇𝑏 > 𝑇𝑎) as

ℎ𝑏 = [ℎ𝑏0, ℎ
𝑏
1,… , ℎ𝑏𝑇𝑎 , ℎ

𝑏
𝑇𝑎+1

,… , ℎ𝑏𝑇𝑏 ] (2)

where ℎ𝑏𝑖 represents the wave elevation at the location B at the 𝑖th time
instant. The phase-resolved wave prediction problem then states as how
to approximate the mapping 𝑓 that takes ℎ𝑎 as the input and returns
ℎ𝑏 as the output, i.e.

ℎ𝑏 = 𝑓 (ℎ𝑎). (3)

As illustrated in Fig. 1(c), the wave prediction in this work considers
both reconstruction, where the wave elevations from 0 to 𝑇𝑎 are pre-
dicted, and forecasting, where the wave elevations from 𝑇𝑎 into the
future are predicted.

The mapping 𝑓 is often modeled as deterministic in previous works,
neglecting the underlying uncertainty including both the uncertainty of
the phase-resolved wave information and the model uncertainty. Thus
only point prediction is obtained. However, as illustrated in Fig. 1(c),
the point prediction of wave elevations (which is represented by the
dashed line) and the corresponding true values (which is represented
by the solid line) can differ from each other dramatically. Thus the lack
of knowledge about the prediction uncertainty is of great danger to the
WEC deployed at the location of interest. In this work, a novel phase-
resolved wave prediction method is proposed where the prediction
uncertainty is rigorously quantified. To achieve this, the mapping 𝑓
is modeled as probabilistic instead of deterministic. The considered
wave prediction problem is thus termed as probabilistic phase-resolved
wave prediction instead of DSWP or probabilistic sea wave predic-

tion, to avoid confusion with previous deterministic prediction works
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Fig. 1. An illustration of the probabilistic phase-resolved wave prediction problem investigated in this work.
Fig. 2. An illustration of the BNN model developed in this work.

and stochastic wave modeling works focusing on the phase-averaged
quantities.

Another aspect of the wave prediction problem is the determination
of the predictable zone, i.e. given the wave measurements during
a certain time period, what is the time horizon that credible wave
prediction can be made? All the previous works have investigated
this issue based on LWT. In this work, a consistent way to determine
the predictable zone is developed with the proposed wave prediction
method, avoiding the assumption of linear sea states.

3. Methodology

A probabilistic, phase-resolved, real-time wave prediction method
is proposed in this work, based on the variational BML approach. The
proposed method is designed to achieve accurate wave prediction with
the quantification of both aleatory uncertainty and model uncertainty.
In this section, the details of the developed BNN model, its training, and
the online prediction procedure are given first. Then the LWT-based
and the deterministic NN-based wave prediction methods, which are
implemented in this work for comparison purpose, are presented.
4

3.1. Probabilistic phase-resolved wave prediction

3.1.1. BayesIan neural network model
In this work, to take account of the aleatory uncertainty, the output

of the mapping 𝑓 is modeled as a random vector where each component
is modeled as an independent Gaussian, i.e.

ℎ𝑏𝑖 ∼  (𝑚𝑖, 𝑑
2
𝑖 ), 1 ≤ 𝑖 ≤ 𝑇𝑏 (4)

where 𝑚𝑖 and 𝑑𝑖 represent the mean and the standard deviation of the
𝑖th component of the output of 𝑓 . To avoid confusion, we mention that
the output of 𝑓 here is the phase-resolved, real-time wave elevations at
the location B, which is totally different from the phase-averaged wave
elevation distributions in the stochastic modeling of ocean waves. A
BNN model, denoted as 𝑓 , is then constructed to take ℎ𝑎 as the input
and return the random vector ℎ̂𝑏 as the output, i.e.

ℎ̂𝑏 = 𝑓𝑊 (ℎ𝑎) (5)

where 𝑊 represents the training variable of the BNN. Various NN
structures in deterministic ML can also be used in the BML framework
to take advantage of the underlying data structure, such as convolu-
tional NN for image classification [52] and recurrent NN for language
processing [53]. In this work, as was in previous NN-based wave
prediction works [36,37], the fully-connected NN is employed, which
makes full connection from the model input to the model output. The
input–output mapping 𝑓𝑊 , which is illustrated in Fig. 2, can thus be
expressed as

𝑦0 = ℎ𝑎;

𝑦𝑖+1 = 𝜎(𝑊𝑖+1𝑦𝑖 + 𝐵𝑖+1), 0 ≤ 𝑖 ≤ 𝑁ℎ − 1;

𝑚 = (𝑊𝑁ℎ+1𝑦𝑁ℎ
+ 𝐵𝑁ℎ+1);

𝑑 =  (𝑊𝑁ℎ+2𝑦𝑁ℎ
+ 𝐵𝑁ℎ+2);

ℎ̂𝑏 ∼  (𝑚, 𝑑𝑖𝑎𝑔(𝑑2)) (6)

where the training variable 𝑊 includes 𝑊𝑖 and 𝐵𝑖 in all the layers
(i.e. 𝑊 = [𝑊𝑖, 𝐵𝑖], 1 ≤ 𝑖 ≤ 𝑁ℎ + 2), 𝜎 is the activation function
(which is specified as the rectified linear unit (ReLU) activation in
this work),  is the transformation function (which is specified as the
softplus function in this work) that guarantees the positivity of the
returned standard deviation, and  is the linear activation that returns
the mean values of the output. Different from the previous NN-based
wave prediction works where 𝑊𝑖 and 𝐵𝑖 are the trainable weight matrix
and the NN training aims at obtaining the optimal values of 𝑊𝑖 and
𝐵 to fit the training data, this work employs the BML framework
𝑖
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where 𝑊𝑖 and 𝐵𝑖 are random variables and the NN training aims at
btaining the posterior distributions of these random variables, i.e. the
robability distributions of these random variables given the training
ataset (including the training input and the training target).

.1.2. Model training
The BNN model is trained to infer the posterior distribution of the

raining variable 𝑊 given the training dataset. Denote a set of training
nput as
𝑎 = [(ℎ𝑎)0, (ℎ𝑎)1,… , (ℎ𝑎)𝑁 ] (7)

here (ℎ𝑎)𝑖 = [(ℎ𝑎1)𝑖, (ℎ
𝑎
2)𝑖,… , (ℎ𝑎𝑇𝑎 )𝑖] is the wave elevation at the loca-

ion A from 0 to 𝑇𝑎 at the 𝑖th wave scenario. Denote the corresponding
raining target as
𝑏 = [(ℎ𝑏)0, (ℎ𝑏)1,… , (ℎ𝑏)𝑁 ] (8)

here (ℎ𝑏)𝑖 = [(ℎ𝑏1)𝑖, (ℎ
𝑏
2)𝑖,… , (ℎ𝑏𝑇𝑏 )𝑖] is the wave elevation at the location

from 0 to 𝑇𝑏 at the 𝑖th wave scenario. Here a wave scenario denotes
particular wave environment at a particular starting time.

Given the dataset 𝐻𝑎 and 𝐻𝑏, the posterior distributions of the
raining variable 𝑊 can be expressed according to the Bayes’ rule as

(𝑊 |[𝐻𝑎,𝐻𝑏]) =
𝑃 ([𝐻𝑎,𝐻𝑏]|𝑊 )𝑃 (𝑊 )

∫ 𝑃 ([𝐻𝑎,𝐻𝑏]|𝑊 )𝑃 (𝑊 )𝑑𝑊
. (9)

Here 𝑃 (|) denotes the conditional probability. As the inference of the
true posterior distribution, as expressed by Eq. (9), is often not feasible
due to the high dimensionality of the training variable (i.e. the high
dimensionality of 𝑊 in this work) [54], variational inference has
been developed in the literature to approximate the true posterior
with variational distributions. The training of the BNN via variational
inference [55] thus aims at minimizing the Kullback–Leibler (KL)
divergence (which characterizes the difference between probability
distributions) between the variational distribution 𝑞𝜆(𝑊 ) and the true
posterior 𝑃 (𝑊 |[𝐻𝑎,𝐻𝑏]), which is defined as

KL(𝑞𝜆(𝑊 ) ∥ 𝑃 (𝑊 |[𝐻𝑎,𝐻𝑏])) = ∫ 𝑞𝜆(𝑊 ) log
𝑞𝜆(𝑊 )

𝑃 (𝑊 |[𝐻𝑎,𝐻𝑏]
𝑑𝑊 . (10)

It can be further derived as

KL(𝑞𝜆(𝑊 ) ∥ 𝑃 (𝑊 |[𝐻𝑎,𝐻𝑏])) = log(𝑃 ([𝐻𝑎,𝐻𝑏]))

+KL(𝑞𝜆(𝑊 ) ∥ 𝑃 (𝑊 )) − 𝐸𝑞𝜆 (log(𝑃 ([𝐻
𝑎,𝐻𝑏]|𝑊 ))). (11)

where 𝐸𝑞𝜆 (log(𝑃 ([𝐻
𝑎,𝐻𝑏]|𝑊 ))) denotes the expectation of

log(𝑃 ([𝐻𝑎,𝐻𝑏]|𝑊 )). As the first term in the right side of Eq. (11) does
not depend on the training variable 𝑊 , the training loss function is
finally obtained as

(𝜆) = KL(𝑞𝜆(𝑊 ) ∥ 𝑃 (𝑊 )) −
𝑁𝑡𝑜𝑡
𝑁𝑏

𝑁𝑏
∑

𝑖=1
log(𝑃 ([𝐻𝑎

𝑖 ,𝐻
𝑏
𝑖 ]|𝑊 )) (12)

for the training with mini-batch stochastic gradient descent. Here
[𝐻𝑎

𝑖 ,𝐻
𝑏
𝑖 ] represents the 𝑖th training data batch, 𝑁𝑏 is the batch size,

nd 𝑁𝑡𝑜𝑡 is the size of the whole training dataset. The interested readers
ay refer to [40,55] for further details regarding the derivation. The
NN is then trained to minimize the loss function (𝜆) to obtain the

optimal variational parameter 𝜆∗. Furthermore, Flipout [44] is used in
his work to enable efficient training. The implementation details of the
eveloped BNN model can be found in the Appendix of this paper.

.1.3. Online prediction
After training, given the wave elevations ℎ𝑎 measured at the loca-

tion A as the input, the posterior distribution of the wave elevations to
be predicted can be obtained by

𝑃 (ℎ̂𝑏|[𝐻𝑎,𝐻𝑏]) = ∫ 𝑃 (ℎ̂𝑏|𝑊 )𝑃 (𝑊 |[𝐻𝑎,𝐻𝑏])𝑑𝑊

≈ ∫ 𝑃 (ℎ̂𝑏|𝑊 )𝑞𝜆∗ (𝑊 )𝑑𝑊 . (13)
5

n practice, the prediction is carried out by sampling the training
ariable 𝑊 according to the probability distribution 𝑞𝜆∗ (𝑊 ) and then

propagating the samples through 𝑓𝑊 (ℎ𝑎) to obtain the posterior sam-
ples of ℎ̂𝑏. From these obtained samples, the posterior distribution
of ℎ̂𝑏, i.e. (𝑃 (ℎ̂𝑏|[𝐻𝑎,𝐻𝑏])), can be estimated, and various statistical
uantities of ℎ̂𝑏, such as its mean value, its standard deviation and its
5% confidence interval, can be predicted. In addition, the predictable
one can also be determined based on the samples of the predicted
ave elevations. Here, the uncertainty level, which is defined as

(ℎ̂𝑏) = 𝑞0.975(ℎ̂𝑏) − 𝑞0.025(ℎ̂𝑏), (14)

s calculated and used to characterize how certain the BNN model is
n making predictions of the wave elevations. Here 𝑞0.975 and 𝑞0.025

epresent the 97.5% and 2.5% quantiles of ℎ̂𝑏. Then the predictable
one is determined as the zone that 𝛿 is smaller than a prescribed
hreshold 𝛿0. The hyperparameters involved in the BNN model (such
s the neuron number, the learning rate, the batch size, etc.) and the
ther parameters (such as the threshold 𝛿0) are tuned empirically. Their
alues are given in the next section.

.2. Linear wave theory

The wave prediction based on LWT has been investigated and
escribed in several previous works [56,57]. The prediction procedure
an be divided into the following three steps. First, the time series
f the wave measurements at the sensor location is transformed into
requency domain through discrete Fourier transform (DFT), i.e.
𝑎 = DFT(ℎ𝑎). (15)

hen the propagation of the wave components at various frequencies
s determined according to the linear dispersion relation, i.e.
2 = 𝑔𝑘 tanh(𝑘ℎ) (16)

where ℎ is the water depth. Finally the wave prediction at the loca-
tion 𝑥𝑏 based on the measurements at the location 𝑥𝑎 is obtained by
summing up all the arrived wave components as

ℎ𝑏 =
∑

𝑖
𝑟𝑖 cos(𝑘𝑖(𝑥𝑏 − 𝑥𝑎) − 𝜔𝑖𝑡 − 𝜙𝑖) (17)

where 𝜔𝑖 = 2𝜋𝑖∕𝑁 , 𝜙𝑖 = arg(𝐹 𝑎
𝑖 ), 𝑟𝑖 = abs(𝐹 𝑎

𝑖 ), and 𝑘𝑖 is obtained via
the linear dispersion relation. Here abs and arg represent the modulus
and the argument of complex numbers.

The predictable zone can also be determined based on LWT. This is
achieved by first calculating the cutting-off frequencies 𝑓low and 𝑓high
such that most of the energy is contained between 𝑓low and 𝑓high. Then
he predictable zone is determined as

𝑥𝑏 − 𝑥𝑎)∕𝐶(𝑓high) ≤ 𝑡 ≤ 𝑇𝑎 + (𝑥𝑏 − 𝑥𝑎)∕𝐶(𝑓low) (18)

here 𝐶(𝑓low) and 𝐶(𝑓high) represent the group velocities which are
alculated by

(𝑓 ) = 1
2
2𝜋𝑓
𝑘

(1 + 2𝑘ℎ
sinh(2𝑘ℎ) ). (19)

Here in this work, following the work in [36], the cutting-off frequen-
cies are determined by including the wave components that account for
85% of the total energy.

3.3. Deterministic NN-based wave prediction

For the deterministic NN-based wave prediction, the same fully-
connected NN structure is used. However, the training variable 𝑊
becomes the weight matrix instead of random variables in BNN, and the
NN output becomes deterministic instead of probabilistic. The input–
output mapping of the implemented deterministic NN model can thus
be expressed as

𝑦 = ℎ𝑎;
0
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𝑦𝑖+1 = 𝜎(𝑊𝑖+1𝑦𝑖 + 𝐵𝑖+1), 0 ≤ 𝑖 ≤ 𝑁ℎ − 1;

ℎ̂𝑏 = (𝑊𝑁ℎ+1𝑦𝑁ℎ
+ 𝐵𝑁ℎ+1). (20)

The training of the NN model is carried out to minimize the mean-
squared error between the NN output and the training target by up-
dating the training weight matrix 𝑊 . After training, point prediction
of the wave elevations can be obtained, by simply propagating a given
input wave signal through the NN. With this deterministic NN-based
approach, the prediction uncertainty is not known. In addition, the pre-
dictable zone cannot be obtained. The previous NN-based works [36,
37] all employed LWT for the predictable zone determination, as
described in Section 3.2.

4. Results

The proposed wave prediction method is evaluated in this section,
by carrying out a set of wave tank experiments representing typical
sea conditions. In the following subsections, the experimental setup is
first presented. Then the results are given, including the predictions by
the LWT-based method, the deterministic NN-based method, and the
proposed method.

4.1. Wave tank experiments

The experiments are carried out in the ocean basin at the COAST
Laboratory at the University of Plymouth [48], which has been used
extensively in previous works on simulating ocean waves and testing
WECs [49,50]. A photo of the wave tank for carrying out the exper-
iments is given in Fig. 3(a) and the experimental setup is illustrated
in Fig. 3(b). The dimension of the basin is 35 m × 15.5 m, which
has an adjustable floor that allows different operating water depths
up to 3 m. 24 hinged wave paddles across one side of the basin are
applied to generate waves, with wave frequency in the range of 0.1 Hz
– 2 Hz. We mention that the wave frequencies in the range of 0.1 Hz -
2 Hz with the corresponding significant wave heights under the limited
lines aim at avoiding breaking waves. This is limited by the physical
capabilities of the Ocean Basin (e.g., the basin’s length and depth, the
beach located downstream of the basin, and the active wave paddles
system). Furthermore, to reduce wave reflection, a parabolic beach is
located downstream of the basin and the wave paddles are equipped
with an active absorption system.

In this work, two sea conditions, which represent the typical and
extreme conditions during a 50-year return period for the EMEC site,
are investigated. The corresponding significant wave height (i.e. Hs)
and the peak period (i.e. Tp) are reported in Table 2, which are
derived based on the data provided by ECMWF [58]. The environ-
mental characterization is performed on the EMEC site off Scotland
using 30 years of hindcast data. A 50-year contour line of the EMEC
site is then obtained, using the inverse first order method (IFORM)
together with a Weibull distribution for Hs and conditional log-normal
distribution for Tp|Hs. As described in Table 2, during the physical
tank testing two wave conditions of the EMEC site are scaled down
to 1/50th and tested: one represents the wave with high probability
of occurrence of the EMEC site (#1); the other is along the 50-year
contour line with the highest Hs referring to the extreme condition with
wave steepness of 0.0291 (#2). The limiting wave steepness is taken
as 𝑆𝑝 ≤ 1∕15 [59]. In order to avoid breaking waves, the two wave
conditions studied here are smaller than this steepness limit. Details of
the environmental characterization can be found in [60]. It is also very
interesting to note that the sea conditions considered in this work are in
a similar range of steepness as in previous wave prediction works (see,
for example, the wave steepness reported in Table 1 in [26] and the
value of Hs/Tp2 reported in Figure 1 in [36]). According to the physical
water depth of the EMEC site and the scale ratio of the testing (1/50th),
the water depth of this testing is set at 1.5 m. The tank testing setup
is described in Fig. 3(b). As shown, four twin-wire resistance wave
6

Fig. 3. The illustration of the wave tank experiments.

Table 2
The sea conditions investigated in this work.
Sea Cond. Scale model (1/50) Full model Wave steepness

Hs [m] Tp [s] Hs [m] Tp [s] 2𝜋Hs/(gTp2)

#1 0.05 1.1 2.5 7.78 0.0265
#2 0.22 2.2 11 15.56 0.0291

probes are installed to capture the wave evolution. Particularly, the
measurements at the first probe (i.e. 8.865 m downstream of the wave
paddle) and the third probe (13.8 m downstream of the wave paddle)
are used for the wave predictions in this work, which correspond to
the location A and the location B in Fig. 1 respectively. In addition, for
each sea condition, two different peak enhancement factors (i.e. 𝛾 = 1
and 𝛾 = 3.3) and six different random seeds are considered, resulting
in twelve experimental runs for each sea condition. Thus in total 24
wave scenarios are physically simulated in this work. The two peak
enhancement factors are studied to understand the effects caused by
spectral shape, where 𝛾 = 3.3 corresponds to the JONSWAP spectral
with narrow band and 𝛾 = 1 is related to the PM spectral with broader
band. For each wave scenario, in order to obtain one-hour simulation
at full scale, approximately 8.5-min physical tank testing is needed
at 1/50 scale, i.e. the time scale ratio is

√

1∕50 based on the Froude
model law. Therefore, in this work, the physical simulations are carried
out for about 9.5 min. The simulations during the first and the last
30 s are then discarded, resulting 8.5 min of well-established wave
environment, which correspond to one hour at full scale.
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Fig. 4. The results of wave prediction (including both reconstruction and forecasting) with quantified uncertainty by the proposed method for a typical wave scenario representing
the sea condition #1, including the predictions of both (a) the wave elevations, where the ground truth and the results by the LWT-based and the deterministic NN-based methods
are also shown; and (b) the predicable zones, where the solid and dashed lines represent the uncertainty level and the corresponding smoothed curve while the vertical gray line
indicates the predictable zone by the proposed method.
For the wave predictions in this work, all the quantities measured in
the scaled simulations, such as the wave elevations and the correspond-
ing time stamps, are first scaled back to the quantities at full scale.
Then the data is collected at a frequency of 2 Hz. The wave elevations
measured at the location A during the whole simulation period for
all the wave scenarios is collected as the data matrix �̃�𝑎, where �̃�𝑎

𝑖,𝑗
represents the wave elevation at the 𝑗th time step for the 𝑖th simulated
scenario. Similarly, the measurements at the location B are collected as
the data matrix �̃�𝑏 where �̃�𝑏

𝑖,𝑗 represents the wave elevation at the 𝑗th
time step for the 𝑖th scenario.

4.2. Prediction results and discussions

The wave dataset �̃�𝑎 and �̃�𝑏, as described in Section 4.1, are
divided into the training dataset (the first 85% time instants) and the
test dataset (the last 15% time instants). Based on the training dataset,
the wave prediction model developed in this work is trained to achieve
the prediction of the wave elevation at the location B from 𝑇0 to 𝑇0 +
300 s with the wave elevation at the location A from 𝑇0 to 𝑇0 + 200 s as
the input, i.e. the model is trained to achieve the wave reconstruction
and the 100 s-ahead wave forecasting simultaneously. Specifically, the
training is carried out using the first 75% of the training dataset, and
the hyperparameters (such as the NN structure, the learning rate, etc.)
involved in the developed model are tuned based on the validation
dataset (i.e. the last 25% of the training dataset). The final NN structure
is set as 400-500-600 for both the mean and the standard deviation of
the BNN output, the batch size for the mini-batch gradient descent is set
as 2048, and the Adam optimizer [61] is used where the learning rate
is set as 10−3. The training is carried out using NVIDIA RTX 6000 GPU.
The whole training process takes about 0.9 h to complete and each
7

training iteration requires about 0.33 s. This shows that the offline-
trained model can also be used for efficient online updating in practical
scenarios to tackle various uncertainties in real-ocean WEC operations.

After training, the test dataset is used for evaluating the prediction
performance including both the prediction accuracy and the uncer-
tainty characterization. Here, the predictions are carried out for all the
24 wave scenarios simulated in this work and by all the wave prediction
methods including the LWT-based method, the deterministic NN-based
method, and the proposed method. The wave elevations measured by
the wave gauge, which are assumed unavailable during the training
process, are used as the reference values to evaluate the prediction
accuracy.

4.2.1. Wave predictions with quantified uncertainty
First, the prediction performance for the whole time period, in-

cluding both wave reconstruction and forecasting, is examined. The
results are shown in Figs. 4 and 5 for two typical wave scenarios
which correspond to the sea conditions #1 and #2 respectively. The
two wave scenarios shown in Figs. 4 and 5 are from the 24 wave
scenarios simulated in this work, and the prediction results for the
other 22 wave scenarios show similar characteristics, thus omitted
here. Figs. 4(a) and 5(a) show the wave elevations predicted by the
proposed method, including both the prediction mean values and the
95% confidence interval. As shown, the prediction mean values (i.e. the
dashed–dotted line) match very well with the reference values (i.e. the
solid line), and the predicted 95% confidence interval (i.e. the gray
area) characterizes the prediction uncertainty accurately throughout
the prediction time horizon. In particular, as shown in Figs. 4 and 5, the
prediction uncertainty is very high at the left side of the time domain.
This is because at these time instants, the waves to be predicted at
the location B have already passed (thus are not captured by) the
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Fig. 5. The results of wave prediction (including both reconstruction and forecasting) with quantified uncertainty by the proposed method for a typical wave scenario representing
the sea condition #2, including the predictions of both (a) the wave elevations, where the ground truth and the results by the LWT-based and the deterministic NN-based methods
are also shown; and (b) the predicable zones, where the solid and dashed lines represent the uncertainty level and the corresponding smoothed curve while the vertical gray line
indicates the predictable zone by the proposed method.
probe at the location A. A high prediction uncertainty is also observed
at the right side of the time domain, which is because at these time
instants the waves to be predicted have not arrived at the location
A yet. As for the center part of the time domain where the waves to
be predicted are captured by the probe at the location A, a consistent
low uncertainty level is predicted throughout, and the reference values,
for the most of the time, fall within the predicted 95% confidence
interval. It is thus concluded that the wave prediction (including both
wave reconstruction and forecasting) with quantified uncertainty is
successfully achieved by the proposed method.

For comparison purposes, the predictions by the LWT-based and the
NN-based methods are also carried out and the results are included
in Figs. 4(a) and 5(a). As shown, the mean values predicted by the
proposed method match with the reference values much better than
the LWT-based method, demonstrating the great performance of the
proposed nonlinear approach compared to the linear approach, while it
is only slightly better than the deterministic NN-based method, which is
reasonable as both methods are designed based on data and ML (i.e. one
is based on probabilistic ML and the other is based on deterministic
ML). As can be seen from Figs. 4(a) and 5(a), the predictions by
all the methods show various levels of prediction errors throughout
the prediction time horizon, and the prediction can be totally wrong
beyond the predictable zone. Therefore, the wave prediction without
knowing the prediction uncertainty, which is the case for both the
LWT-based and the NN-based methods, is of great danger to the assets
deployed at real-world sea environment. Thus the unique advantage of
the method proposed in this work is that it can predict the prediction
uncertainty, as shown by the gray area in Figs. 4(a) and 5(a), along
with the prediction mean values. For future wave energy applications,
the 95% confidence interval predicted by the proposed method can be
used for the control of WECs and their load forecasting to guarantee
8

robust performance, while the other wave prediction methods can only
provide point estimation.

Moreover, it is worth mentioning that the lack of understanding and
interpretation of the ML model parameters, which is also present in
most of other ML applications in various fields, further compounds the
challenges in deploying deterministic NN-based methods in real-world
ocean conditions. For example, if the deterministic NN-based method is
employed to provide the input for the real-time WEC control, the occur-
rence of prediction errors, which cannot be physically interpreted, may
lead to unexpected hazardous behaviors of the WEC. Such issues, on
the other hand, can be mitigated by the proposed BNN-based method,
by using the prediction mean value and the confidence level at the
same time. Although the BNN-based method, like the deterministic NN,
remains lack of interpretation, its advantage is that it will know when
it is not able to make reliable predictions. Thus when such scenario
occurs, in practice, the WEC can be simply switched to a default control
strategy that does not rely on or has weak dependency on the predicted
wave elevations.

4.2.2. Predictions of the predictable zone
In addition to the wave prediction with quantified uncertainty,

the determination of the predictable zone is also achieved with the
proposed method. To achieve this, the prediction uncertainty level 𝛿,
which is defined according to Eq. (14), is calculated. The results are
shown in Figs. 4(b) and 5(b). As can be seen, there exists a sharp rise
for the value of 𝛿 at both left and right sides, which can be used to
determine the boundaries of the predictable zone. A smoothing process
(here via Gaussian kernel smoothing) is first carried out to obtain the
smoothed curve of the uncertainty level, which is shown by the dashed
line in Figs. 4(b) and 5(b). Then the predicable zone is calculated as
the zone where the uncertainty level is less than a prescribed threshold
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Fig. 6. The error distributions over the whole prediction time domain, averaged over all the simulated wave scenarios representing sea condition #1 and #2 respectively. The
results by the LWT-based and the deterministic NN-based methods are also shown for comparison.
𝛿0. Here in this work 𝛿0 is set as 𝛿min + (𝛿max − 𝛿min)∕4 where 𝛿min
and 𝛿max represent the minimum and the maximum values of 𝛿 during
the whole prediction horizon. The predictable zone finally obtained is
shown in Figs. 4(b) and 5(b). For comparison purposes, the predictable
zone determination based on LWT is also carried out and the results
are included in Figs. 4(a) and 5(a). As shown, the two approaches,
even though drastically different from each other (i.e. one is based on
the physics of linear ocean waves and the other is based on data and
ML), predict two predictable zones that cover similar time horizons.
More importantly, the zone predicted by the proposed method contains
(and is larger than) the zone predicted by LWT. This observation is
true for all the 24 wave scenarios simulated in this work. As pointed
out in previous studies [26,38], the assumption of linear sea states
leads to a more restrictive prediction of the predictable zone. Therefore,
with the proposed nonlinear method, for the first time, the predictable
zone determination is achieved without assuming linear sea states, thus
guaranteeing the wave prediction over a predictable zone larger than
all the previous works. This brings vital opportunities to the field of
the control of WECs and their load forecasting, where the length of the
forecasting time horizon is of great importance. It is worth mentioning
that this successful determination of the predictable zone is not trivial,
as no training data is known regarding the zone boundary, making
this task unachievable by all the previous ML-based wave prediction
methods.

It is worth pointing out that the identification of the predictable
zone boundaries with the proposed method relies on the parameter
𝛿0, which is empirically determined. Similarly, with the LWT-based
method in previous works, the determination of the predictable zone
relies on the empirically-determined cutting-off frequencies, which
means that a different percentage (e.g. 85% used in this and other
works [36]) of the energy content required for the cutting-off fre-
quencies would lead to a different predictable zone. This kind of
empiricalness was also briefly discussed in [36]. Because the change
from ‘predictable’ to ‘unpredictable’ is actually gradual, in practice,
it is up to the users/practitioners to determine the value of 𝛿0 for
the proposed method or the cutting-off frequencies for the LWT-based
method. In this work, the value of 𝛿0 is set as a 25% deviation from the
minimum uncertainty level. The reason of using this value is two-fold:
one is to predict the predictable zones as conservative as possible which
is achieved by choosing the value of 𝛿0 as small as possible; the other is
to choose the value of 𝛿0 so that the local oscillations of the uncertainty
level (as shown in Figs. 4(b) and 5(b)) do not hinder the identification
of the zone boundaries. This trade-off leads to the current selection
of 𝛿0. In addition, because of the above-mentioned empiricalness, a
meaningful comparison between the predictable zones by the proposed
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method and by the LWT should include both predictable zone length
and the prediction accuracy within the zone. This is because the
empirical value of 𝛿0 (or the cutting-off frequencies in the LWT-based
method) also has an impact on the evaluation of the overall accuracy
within the predictable zone. For example, it is expected that a larger
value of 𝛿0 will lead to a larger predictable zone, which will then
lead to a larger overall prediction error because the error increases
towards the zone boundaries. Therefore, in the following subsections,
the quantitative evaluation of the proposed method, in terms of both
the prediction accuracy and the predictable zone length, is carried out.
Its performance is compared with other methods, i.e. the LWT-based
and NN-based methods.

4.2.3. Quantitative evaluations of the prediction performance
To quantify the prediction accuracy of the proposed wave predic-

tion method, the error distributions over the whole prediction time
domain are first investigated. The root mean square error (RMSE) of
the predictions compared with the reference values at different time
horizons, averaged over all the simulated wave scenarios representing
sea condition #1 and #2 respectively, are calculated and the results
are given in Fig. 6. The results by LWT-based and NN-based methods
are also included for comparison. As shown, the proposed method
outperforms other methods consistently throughout the prediction time
domain, with a moderate improvement over NN-based method and
a significant improvement over the LWT-based method. Particularly,
in the center part of the time domain, the prediction error by the
proposed method is around 0.1 m and 0.3 m lower than the LWT-
based method at the sea condition #1 and #2 respectively. Towards the
zone boundaries, the prediction error by the LWT-based method rises
earlier and has a larger magnitude (i.e. the error exceeds 1.0 m and
4.0 m at the sea condition #1 and #2 respectively) than the proposed
method, demonstrating the proposed method’ ability in both extending
the predictable zone and improving the accuracy. In addition, a similar
trend at the zone boundaries is observed between the NN-based and the
proposed methods. However, because the NN-based method is not able
to predict the predictable zone, a restrictive zone by LWT is usually
imposed [36,37], limiting the NN-based method for predictable zone
extension.

To evaluate the overall prediction error, the RMSE of the predictions
compared with the reference values is then calculated, where the pre-
diction beyond the predictable zone is excluded. Here, two prediction
RMSEs are calculated, which are defined as

𝜖1 =
√

√

√

√

1
𝑇 𝑙
max − 𝑇 𝑙

∑

𝑙 𝑙

(ℎ∗𝑖 − ℎ𝑖)2 (21)

min 𝑇min≤𝑖≤𝑇max
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Table 3
The results for the whole prediction time period including both reconstruction and forecasting. Both the

MRMSEs of the wave elevation predictions and the length of the predictable zone are given. The predictable
zone cannot be obtained by the NN-based method, thus denoted as ‘‘–’’ in this table.

Sea condition Method 𝜖1 (% of Hs/2) 𝜖2 (% of Hs/2) Predictable zone length

#1
LWT 0.368 m (9.5%) 0.384 m (9.9%) 163.4 s
NN 0.311 m (8.0%) 0.317 m (8.1%) –
BNN 0.290 m (7.5%) 0.294 m (7.6%) 189.9 s

#2
LWT 1.12 m (14.4%) 1.25 m (16.1%) 172.9 s
NN 0.905 m (11.6%) 0.941 m (12.1%) –
BNN 0.785 m (10.1%) 0.816 (10.5%) 196.0 s
and

𝜖2 =
√

√

√

√

1
𝑇 𝑛𝑙
max − 𝑇 𝑛𝑙

min

∑

𝑇 𝑛𝑙
min≤𝑖≤𝑇

𝑛𝑙
max

(ℎ∗𝑖 − ℎ𝑖)2 (22)

where [𝑇 𝑙
min, 𝑇

𝑙
max] and [𝑇 𝑛𝑙

min, 𝑇
𝑛𝑙
max] represent the predictable zone pre-

dicted by LWT and the proposed method respectively, and ℎ∗𝑖 and ℎ𝑖
represent the predicted and the reference values of the wave elevation
at the 𝑖th time instant. The RMSEs are first calculated for all the wave
scenarios simulated in this work, then the mean root mean square
error (MRMSE), which is defined as the mean value of the RMSEs
averaged over the simulated wave scenarios, is calculated. The MRMSEs
are calculated separately for the wave scenarios representing the sea
condition #1 and the sea condition #2. The results are given in Ta-
ble 3, including the MRMSEs for the proposed method, the LWT-based
method, and the deterministic NN-based method. The corresponding
MRMSEs normalized by the half of the significant wave heights are also
given in Table 3. The significant wave height is used here to normalize
the prediction errors as it is directly related to the surface variance [28].
As shown, for the sea condition #1 and #2, the prediction errors (in
terms of 𝜖2) are just 0.294 m and 0.816 m by the proposed method,
while they are 0.384 m and 1.25 m by LWT and 0.317 m and 0.941 m
by the NN-based method. The proposed method clearly outperforms
other methods, whether the time horizon is restricted to the predictable
zone determined by LWT or to the one predicted by the proposed
method. More specifically, for the sea condition #1, the prediction
error by the proposed method is 21.2% and 6.8% lower than the LWT-
based and NN-based methods in terms of 𝜖1, while they are 23.4% and
7.3% in terms of 𝜖2. As for the sea condition #2, the prediction error
by the proposed method are 29.9% and 13.3% lower than the LWT-
based and NN-based methods in terms of 𝜖1, while they are 34.7%
and 13.3% in terms of 𝜖2. These results thus clearly show that the
performance improvement of the proposed nonlinear method compared
with LWT-based method is greater at the sea condition #2 (where the
improvement is around 30%) than at the sea condition #1 (where the
improvement is around 20%). This is reasonable as the waves at the
sea condition #2 (where the wave steepness is equal to 0.0291) are
actually steeper (thus with stronger nonlinear effects) than at the sea
condition #1 (where the wave steepness is equal to 0.0265). As for
the comparison of the proposed method with the NN-based method,
the BNN is only moderately better than the NN, where the prediction
error, on average, is only improved by around 10%. This is actually
expected, since the NN and the BNN are similar in tackling the wave
prediction problem, which is the updating of the training variables
(i.e. the weight matrix for the NN and the probability distributions
for the BNN) to fit the training data. More specifically, their ability
in handling nonlinearity is the same, i.e. the processing of the input
to the output via multiple layers with nonlinear activation. The BNN
can be seen as the probabilistic extension of the NN, although the
implementation details, including the training variables, the training
loss functions, etc., are different. Therefore, by design, the difference
between NN and BNN in handling nonlinear wave effects is small and
their main difference lies in the quantification of the uncertainty. There
is also a moderate performance gain of the BNN compared to the NN,
which is probably because the traditional deterministic NN is more
prone to overfitting than the probabilistic BNN.
10
The above results clearly demonstrate that the proposed method not
only achieves better accuracy in the traditionally-determined predica-
ble zone, but also is able to predict wave elevations accurately over
a larger time horizon. To further illustrate this point, the lengths of
the predictable zones predicted by LWT and the proposed method
are calculated. The predicted zone lengths are calculated for all the
wave scenarios and then averaged over the wave scenarios representing
the sea condition #1 and #2 respectively. The results are given in
Table 3. As shown, for the sea condition #1, the average length of the
predictable zone is 189.9 s by the proposed method, which is 16.2%
larger than the predictable zone by LWT. As for the sea condition #2,
the average length of the predictable zone is 196.0 s by the proposed
method, which is 13.4% larger than the predictable zone by LWT.
In conclusion, the results in Table 3 fully demonstrate the proposed
method’s performance over the LWT-based and NN-based methods, in
terms of both prediction accuracy and the extent of the predictable
zone.

In addition, the computational costs required for the different meth-
ods are given here to complete the performance comparisons. All the
wave predictions in this work are carried out using a MacBook Pro
laptop with 2 GHz Intel Quad-Core i5 processor. For all the wave
scenarios considered in this work, on average, the computational time
needed for the LWT-based method, the NN-based method, and the
proposed method are 0.017 s, 0.031 s, and 0.041 s respectively. This
shows that all these methods can achieve real-time wave predictions.
In practical applications, as long as the new measurement data at the
sensor location becomes available (i.e. it is measured every 0.5 s in this
work), it can be fed into the proposed method to predict, in real-time,
the wave elevations at the location of the WEC, which will then be
processed by a real-time controller for the optimal control of the WEC.

4.2.4. Evaluations of the method for short-term forecasting
To demonstrate the use of the proposed method for the control

of WECs and their load forecasting, the following parts focus on the
analysis of the results for wave forecasting. First, from the predic-
tion results including both wave reconstruction and forecasting, the
forecasting part is extracted and the results are shown in Figs. 7 and
8 for the wave scenarios representing the sea conditions #1 and #2
respectively. The predictable time horizons predicted by LWT and the
proposed method are also shown in Figs. 7 and 8 to illustrate how far
into the future that credible prediction can be made. As shown, the
wave elevations predicted by the proposed method and the reference
values match with each other very well and the prediction uncertainty
covers the reference values quite well throughout the prediction time
horizon, demonstrating the successful quantification of the prediction
uncertainty. The comparison between different methods shows that the
proposed method performs better than other methods throughout the
prediction time horizon. In particular, the linear approach shows clear
discrepancy with the reference values, including both the magnitude
and the phase of the predicted wave, especially when the time instant
is beyond the boundary of the LWT-based predictable zone. This is
not unexpected, as the LWT-based wave prediction and predictable
zone determination are both based on linear wave assumption. Thus
the performance is expected to deteriorate beyond the LWT-based
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Fig. 7. The results of wave forecasting with quantified uncertainty by the proposed method for a typical wave scenario representing the sea condition #1, including the predictions
of both the wave elevations and the predicable zones. The corresponding ground truth and the wave elevations predicted by the LWT-based and the deterministic NN-based methods
are also shown for comparison.
Fig. 8. The results of wave forecasting with quantified uncertainty by the proposed method for a typical wave scenario representing the sea condition #2, including the predictions
of both the wave elevations and the predicable zones. The corresponding ground truth and the wave elevations predicted by the LWT-based and the deterministic NN-based methods
are also shown for comparison.
Table 4
The results for the wave forecasting part. Both the MRMSEs of the wave elevation predictions and the

length of the predictable zone are given. The predictable zone cannot be obtained by the NN-based method,
thus denoted as ‘‘–’’ in this table.

Sea No. Method 𝜖3 (% of Hs) 𝜖4 (% of Hs) Predictable zone length

#1
LWT 0.371 m (9.5%) 0.394 m (10.1%) 34.8 s
NN 0.311 m (8.0%) 0.324 m (8.3%) –
BNN 0.279 m (7.2%) 0.287 m (7.4%) 41.6 s

#2
LWT 1.26 m (16.2%) 1.78 m (22.9%) 13.8 s
NN 0.786 m (10.1%) 0.898 m (11.5%) –
BNN 0.699 m (9.0%) 0.793 m (10.2%) 24.1 s
predictable zone. On the other hand, the wave elevations predicted
by the proposed method are still very accurate beyond the LWT-based
predictable zone, and even retain a fairly good accuracy beyond the
BNN-based predictable zone until the prediction input and output are
no longer correlated. Furthermore, as shown in Figs. 7 and 8, the most
substantial improvement of the proposed method compared with other
methods is at the time instants between the zone boundaries predicted
by LWT and the proposed method. This further demonstrates that ac-
curate forecasting of ocean waves over a consistent and larger credible
forecasting time horizon is achieved with the proposed method.

To quantify the accuracy of the proposed method for wave fore-
casting, the prediction RMSEs are calculated here, which are defined
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as

𝜖3 =
√

√

√

√

1
𝑇 𝑙
max − 𝑇𝑎

∑

𝑇𝑎≤𝑖≤𝑇 𝑙
max

(ℎ∗𝑖 − ℎ𝑖)2 (23)

and

𝜖4 =
√

√

√

√

1
𝑇 𝑛𝑙
max − 𝑇𝑎

∑

𝑇𝑎≤𝑖≤𝑇 𝑛𝑙
max

(ℎ∗𝑖 − ℎ𝑖)2 (24)

for the forecasting horizons determined by LWT and the proposed
method respectively. The prediction MRMSEs are given in Table 4. As
can be seen, the proposed method outperforms other methods in terms
of both forecasting accuracy and the extent of the forecasting horizon.
The prediction errors (in terms of 𝜖 ) by the proposed method are only
4
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0.287 m and 0.793 m for the sea condition #1 and #2, while they
are 0.394 m and 1.78 m by the LWT and 0.324 m and 0.898 m by
the NN-based method. More specifically, for the sea condition #1, the
prediction error by the proposed method is 24.8% and 10.3% lower
than the LWT-based and the deterministic NN-based methods in terms
of 𝜖3, while they are 27.2% and 11.4% in terms of 𝜖4. And for the sea
condition #2, the prediction error by the proposed method are 44.5%
and 11.1% lower than the LWT-based and the deterministic NN-based
methods in terms of 𝜖3, while they are 55.4% and 11.7% in terms of
𝜖4. These results thus illustrate that, similar to the wave prediction for
the whole time period, the performance improvement for the short-
term wave forecasting by the proposed method over LWT is greater at
the sea condition #2 (where the nonlinear wave effects are stronger)
than at the sea condition #1. In addition, the average forecasting time
horizons by the proposed method are 41.6 s and 24.1 s for the sea
condition #1 and #2, while they are only 34.8 s and 13.8 s by the LWT-
based method. The forecasting time horizon is thus expanded with the
proposed method by 19.5% and 74.6% for the sea condition #1 and
#2 respectively. It is therefore concluded that the proposed method
is able to achieve wave forecasting with greater accuracy and over a
predictable horizon substantially larger than previous works.

5. Conclusions

In this paper, the probabilistic, phase-resolved, real-time prediction
of ocean waves was investigated, where the prediction uncertainty, in-
cluding both the aleatory uncertainty (i.e. the uncertainty of the phase-
resolved wave information) and the epistemic uncertainty (i.e. the
uncertainty due to the model’s ability), was rigorously quantified. The
proposed method was developed based on BML approach, which can
take advantage of the ML model’s ability in tackling complex nonlinear
systems while taking various kinds of uncertainties into account via
the Bayesian framework. Different from the previous wave prediction
works focusing on the point estimation of the wave elevations, this
work formulated the phase-resolved wave prediction as probabilistic
and the proposed method was designed to predict the probability
distributions of the wave elevations, so that various quantities (such
as the prediction mean value and the 95% confidence interval) can be
predicted. In addition, based on the proposed wave prediction method,
a new way to predict the predictable zone was also proposed. As all the
previous works determined the predictable zone based on LWT (which
leads to overly conservative estimations), this work achieved, for the
first time, the prediction of the predictable zone without assuming
linear sea states.

To evaluate the proposed method, a set of wave tank experiments
were carried out, where in total 24 wave scenarios were physically sim-
ulated. The LWT-based and the deterministic NN-based wave prediction
methods were also implemented for comparison. The prediction results
for the whole time period, including both wave reconstruction and
forecasting, were first examined. The results showed that the phase-
resolved wave elevations predicted by the proposed method matched
with the experimental data accurately, and the prediction uncertainty
and its variations across the time horizon were also well captured
throughout the prediction time period. In particular, the maximum
value of the MRMSEs of the wave elevation predictions normalized by
the half of the significant wave height was 10.5% for the proposed
method, while it was 16.1% for the LWT-based method and was 12.1%
for the deterministic NN-based method. More importantly, the time
horizon where credible prediction can be achieved was enlarged by
the proposed method, compared with previous works which were all
based on LWT for predictable zone determination. More specifically,
the results showed that the predicable zones were enlarged by 16.2%
and 13.4% respectively for the sea conditions #1 and #2 considered in
this work.

To demonstrate the use of the proposed method for the control
of WECs and their load forecasting, the prediction performance for
12
the forecasting part was then analyzed. The results showed that the
proposed method was able to achieve wave forecasting with greater ac-
curacy and over a substantially larger forecasting horizon. Particularly,
the maximum value of the normalized prediction MRMSEs was 10.2%
for the proposed method, while it was 22.9% for the LWT-based method
and was 12.1% for the deterministic NN-based method. Moreover,
compared with previous works, the proposed method expanded the
credible forecasting time horizons by 19.5% and 74.6% for the sea
conditions #1 and #2 respectively.

Based on the proposed method and the findings of this paper,
several important directions for future works are described below. (1)
In order to tackle various uncertainties in real-world ocean conditions,
such as the potential change of the WEC locations and the significant
change of sea states, comprehensive investigations are needed includ-
ing the implementation of an online model updating process and the
development of a transfer learning strategy from wave tanks to real
oceans. (2) This work investigated three real-time wave prediction
methods, i.e. the LWT-based, NN-based, and the proposed BNN-based
methods. It is also interesting to carry out comparison studies with the
methods based on weakly nonlinear wave models (such as the choppy
wave model). Such studies will be very helpful in understanding the
nonlinear wave effects (such as the nonlinear wave phase velocity and
the nonlinear wave shape) in the phase-resolved wave prediction and
the corresponding predictable zone determination. (3) The wave tank
experiments in the current work consider the uni-directional waves.
Future works may involve the investigation of the three-dimensional
wave field predictions where complex spatiotemporal wave features
are present. (4) To tackle the occurrence of freak waves, the training
and validation of the proposed method with real-world wave data
containing both typical wave conditions and freak waves, are also of
great practical interest. (5) Finally, based on the accurately predicted
wave information and its uncertainty, the uncertainty-aware preview-
based WEC control strategies are an interesting direction to explore in
the future.
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Appendix. The implementation details of the machine learning
models

The ML models in this work, including the deterministic NN and
the BNN, are implemented in Python (version 3.8.6) using the ML
package Keras (version 2.4.3) [62] with TensorFlow (version 2.4.1)
backend [63]. In addition, TensorFlow Probability (version 0.12.2), a li-
brary for probabilistic reasoning and statistical analysis in TensorFlow,
is used to facilitate the construction of the BNNs.

The data is standardized by a standard scaler (which transforms
the data by removing its mean value and scaling to unit variance)
before being fed into the ML model. In addition, a data generator is
implemented which extracts the training input and the training target
by mini-batches from the whole training dataset, and is then used to
train the ML models via the fit_generator method in Keras. The Adam
optimizer [61] is used for the training. For the tuning of the hyperpa-
rameters, a set of values are tested in this work: the training batch sizes
from [512, 1024, 2048], the learning rates from [10−3, 10−4], and the
NN structures from [400-500-600, 400-1000-600, 400-2000-600, 400-
500-500-600, 400-1000-1000-600, 400-2000-2000-600]. A grid search
procedure is carried out and the final values used in this work are 10−3

for the learning rate, 400-500-600 for the NN structure, and 2048 for
the batch size.
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