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Offshore wave and wind energy
development in the Southern Hemisphere
will remain optimal between 20°E and
180°E by 2100

Check for updates

Xiaohu Zhao 1,2, Guohe Huang 3,4 , Yongping Li2, Chen Lu5, Chuyin Tian6, Tangnyu Song7,
Xiong Zhou2, Wenchang Tang2 & Bo Pang2

Wave and offshore-wind energies offer promising alternatives to fossil fuels, yet their combined
potential under climate change remains poorly understood. Here we assess how climate changemay
affect this potential over the comingcentury, usingoutputs from fifteenglobal climatemodels included
in the Coupled Model Intercomparison Project Phase 6 and an empirical method to refine model
projections. We identify two oceanic bands between 40°S and 60°S with high combined energy
potential. Notably, the region between20°E and180°E is projected to remain favorable for both energy
sources. We also conduct a multi-level analysis to show how improved climate modeling enhances
predictions of renewable energy resources. These findings provide valuable insights for policymakers,
industry stakeholders, and researchers seeking to enhance the resilience and sustainability of
renewable energy systems.

The pressing imperative to transition from fossil fuels to renewable energy
sources stems from escalating concerns about climate change. Among
various renewable energy alternatives, wave and offshore-wind energies
have received significant attention due to their immense untapped
potentials1–3. The combined utilization of wave and offshore-wind energies
offers the opportunity to increase the overall efficiency and reliability of
renewable energy systems4,5. Moreover, it has the potential to reduce
operating costs and optimize power generation6. However, the impacts of
climate change on atmospheric and oceanic dynamics can alter wind pat-
terns and wave characteristics, and thus the spatiotemporal availability and
accessibility of wave and offshore-wind energy resources1,7,8. A compre-
hensive understanding of such impacts is essential for the effective planning,
design, and operationof offshore renewable energy systems. It can also serve
as a cornerstone for informing policy decisions aimed at achieving a sus-
tainable and resilient energy transition.

The previous studies9–11 were focused on combined potentials of wave
and offshore-wind energies for individual regions and/or historical periods.

Most existing studies focus on nearshore regions or areas with immediate
technical and economic feasibility, often neglecting the broader spatial
context and long-term resource availability. However, to inform compre-
hensive renewable energy planning, it is crucial to explore energy resources
beyond current limitations. There was a scarcity of research on such
potential for multiple regions or relevant projections for the future. More-
over,multiple climatemodels and emission scenarioswere considered in the
previous studies12–14; they were mostly based on conventional sensitivity
analyses. However, there was no report in investigating the significance of
the variations among the simulated potentials of wave and offshore-wind
energies under multiple emission and climate-model scenarios and, more
importantly their interrelated settings.

Therefore, to address the above challenges, the objective of this study is
to comprehensively evaluate the combined potentials of wave and offshore-
wind energies at a global scale in the upcoming century under changing
climatic conditions. This study extends the analysis beyond the constraints
of current technical and economic feasibility to capture the complete spatial
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distribution and long-term availability of combined wave and offshore-
wind energy resources. This will be accomplished based on the integrated
consideration of multiple climate models and emission scenarios and their
interrelationships through multi-level factorial analysis. This study
encompasses the following components: (a) ensemble simulation of the
potentials for global wave and offshore-wind energies for the periods of
2031–2060 and 2071–2100, based on fifteen Coupled Model Inter-
comparison Project Phase 6 (CMIP6) models under three climate-change
scenarios (i.e., SSP1-2.6, SSP2-4.5, and SSP5-8.5), (b) assessment of com-
bined potentials of wave and offshore-wind energies in the upcoming
century under three climate-change scenarios, based on the ensemble-
simulation results, and (c) analysis for the variations of the simulated
potentials of wave and offshore-wind energies undermultiple emission and
climate-model scenarios and their interrelated settings through the devel-
opment of a multi-level factorial analysis approach.

Results
Evaluation of modeling performance
Before investigating the renewable energy potential, the performance of the
developed empirical Bayesian ensemble downscaling model should be
evaluated. The general goal for climate projections is to maximize the
projected accuracy and reliability. The coefficient of determination (R2)
and mean absolute percentage error (MAPE) are used in this study to
evaluate the accuracy of deterministic projections. These metrics are cal-
culated based on downscaled outputs and ERA5 reference data for
2005–2014. The individual empirically downscaled CMIP6 global climate
model (GCM) outputs, which form the input ensemble for the Bayesian
model averaging (BMA), already demonstrate considerable skill. For
example, for peak wave period (pp1d), these model outputs exhibit a
MAPE below 2% across 68% of areas, with an R2 exceeding 0.977 (Sup-
plementary Fig. 1). Notably, the EC-Earth3-Veg-LR model demonstrates
MAPE< 2% over 77% of areas (Supplementary Fig. 1i). Similarly, for
significant height of combined wind waves and swell (swh), all models
produce MAPE < 2% over 56% of areas, with R2 greater than 0.993
(Supplementary Fig. 2). For 100m wind speed (ws100), the downscaled
results from all models exhibit MAPE < 6% across more than 66% of areas,
and R2 exceeding 0.962 (Supplementary Fig. 3). The subsequent applica-
tion of BMA to this multi-model ensemble further enhances predictive
skill and provides robust probabilistic projections (Fig. 1). The BMA
ensemble exhibits high accuracy, particularly for wave climate parameters.
Specifically, the R2 for pp1d and swh are 0.988 and 0.997, respectively. The
corresponding domain-averaged MAPE values are 1.26% for pp1d and
1.68% for swh, with MAPE remaining below 2% across the majority
(>70%) of areas for both variables (Fig. 1a, b). For ws100, the BMA
ensemble achieves an average MAPE of 4.55%, with values below 6% in
over 75% of areas, although higher errors (>10%) are noted in specific
regions, such as from the equator to the South Pacific (Fig. 1c).

To demonstrate the reliability of the model, the coverage, interval
width, and ratio of coverage and interval width are evaluated for several
confidence levels (10%, 20%, 40%, 75% and 95%) (Fig. 2). The coverages for
pp1d, swh, and ws100 at the 40% confidence interval are greater than 80%.
For the ensemble projection of swh, the coverage is greater than 60% at the
10%confidence interval.Comparing the ratio of coverage and intervalwidth
for swh andws100, the ensemble projection of swhhas twice the coverage of
ws100 at the samenarrow confidence interval (10%). These indicate that the
developedmodel is reliable for pp1d, swh, andws100 projections, especially
for swh.

Historical high wave and offshore-wind energy potentials and
their combined potentials
A high energy potential location is defined as having energy surpassing the
90th percentile of global energy potential during the corresponding period.
Understanding the spatial distribution of regions with both high wave and
offshore-wind energypotentials is crucial for optimizing resourceutilization
and making informed decisions. Notably, our study uniquely emphasizes
mid-ocean areas, which, while demonstrating high theoretical energy
potential, face significant practical constraints under current conditions. By
adopting an optimistic outlook on future technological progress, we aim to
provide a comprehensive assessment of these regions, thereby highlighting
their long-term strategic importance for renewable energy planning.
Additionally, characterizing the specific features of wave and offshore-wind
energy potentials within these regions under climate change can provide
valuable insights for promoting these energy sources as viable and sus-
tainable alternatives.

Figure 3 depicts the spatial distribution of regions with high wave
energy potential, offshore-wind energy potential, and locations suitable for
their combined development during the baseline period (1985–2014).
During the baseline period, the region with high wave energy potential
predominantly spans from latitudes 40°S to 60°S and longitudes 10°E to
70°W (Fig. 3a). Notably, areas where wave energy potential exceeds 95 kW/
m predominantly occur in the southern Indian Ocean. Furthermore, the
areas characterized by high offshore-wind energy potential align latitudin-
ally with regions of highwave energy potential and span across theWestern
Hemisphere. In contrast to wave energy, the central Indian Ocean, western
Arabian Sea, central Pacific Ocean, and Caribbean Sea all exhibit high
offshore-wind energy potential (Fig. 3b). Regions with high offshore-wind
energy potential are predominantly situated in the southern Indian Ocean
and southeastAtlanticOcean,while regionswithhighwave energypotential
are mainly located in the southern Indian Ocean and Pacific Ocean. The
regions characterized by both high offshore-wind and wave energy poten-
tials are situated along two distinct bands between latitudes 40°S and 60°S
(Fig. 3c). The presence of high wave and offshore-wind energy potentials at
high latitudes in the Southern Hemisphere, particularly within the latitu-
dinal bands of 40°S to 60°S, is strongly influenced by the Southern

Fig. 1 | Spatial validation of the downscaled climate model ensemble. The maps
show the spatial distribution of mean absolute percentage error (MAPE) for the
validation period (2005–2014). The MAPE is calculated by comparing the Bayesian
Model Averaging (BMA) ensemble of downscaled CMIP6 model outputs

against the ERA5 reference data. The error distributions are shown for: a Peak wave
period (pp1d); b Significant height of combined wind waves and swell (swh);
and c 100 m wind speed (ws100).
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Hemisphere Annular Mode (SAM), also known as the Antarctic
Oscillation15. The SAM, characterized as a large-scale pattern of atmo-
spheric variability in the SouthernHemisphere, plays a significant role in the
weather and climate patterns of the high and middle latitudes in the
SouthernHemisphere16. This influence extends to thewave energy potential
and offshore-wind energy potential.

Future changes in high wave and offshore-wind energy
potentials
The future high offshore renewable energy potential is assessed
during two periods (2031–2060, 2071–2100) under three climate

change scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5). The future
spatial distribution of high wave energy potential closely resembles
that of the baseline period, with a concentration in the latitudinal
bands of 40°S to 60°S and within the Indian and Pacific Oceans
(Fig. 4). Across different future periods and scenarios, it is projected
that areas with wave energy potential exceeding 95 kW/m will
experience varying degrees of decrease compared to the baseline
period. Specifically, during 2071–2100 under SSP5-8.5, the decrease is
anticipated to exceed 50% (Fig. 4f). The wave energy potential in the
region between 120°W and 160°W is expected to increase in the
future and exceed 95 kW/m. Furthermore, the area of this region is

Fig. 2 | Reliability assessment of the developed empirical Bayesian ensemble
downscaling model. The figure evaluates the model’s reliability in simulating peak
wave period (pp1d), significant height of combined windwaves and swell (swh), and
100 m wind speed (ws100). a–c Coverage at 10%, 20%, 40%, 75%, and 95%

confidence intervals for pp1d (a), swh (b), and ws100 (c). d–f Interval width at
corresponding confidence levels for pp1d (d), swh (e), and ws100 (f). g–i Ratio of
coverage to interval width for pp1d (g), swh (h), and ws100 (i).
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projected to be larger during 2071–2100 compared to 2031–2060,
with a greater increase in area at a higher greenhouse gas emission
scenario. For instance, under SSP5-8.5, the area expansion is pro-
jected to reach 40.42% during 2071–2100. Unlike wave energy
potential, the spatial layout of future high offshore-wind energy
potential will change compared to the baseline period, with changes
towards a more elongated latitudinal distribution (Fig. 5). Compared
to the baseline period, during 2031–2060, the two bands of high
offshore-wind energy potential between 40°S and 60°S are projected
to extend eastward and westward, respectively, with a tendency to
form a continuous and complete band (Fig. 5a, c, e). By 2071–2100,
under SSP5-8.5, these two bands will be connected to form a nearly
complete band of high offshore-wind energy potential (Fig. 5b, d, f).
The future high offshore-wind energy area in the central Indian
Ocean is projected to progressively decrease compared to the baseline
period, and it may even cease to exist entirely under SSP5-8.5 by
2071–2100 (Fig. 5f). The offshore-wind energy potential in the waters
south of Hawaii is anticipated to experience an increase in both area
and magnitude, surpassing the levels observed during the baseline
period. Specifically, the area with high offshore-wind energy potential
is expected to expand by 77.13 % under SSP5-8.5 during 2071–2100.
Concurrently, the region’s offshore-wind energy potential is pro-
jected to rise by up to 40.67 %.

Deterministic and probabilistic projections of locations for
combined development of wave and offshore-wind energy
The deterministic and probabilistic projections of locations for combined
development of wave and offshore-wind energy during two future periods
(i.e., 2031–2060 and 2071–2100) under three climate change scenarios (i.e.,
SSP1-2.6, SSP2-4.5, and SSP5-8.5) are obtained from BMA approach. The
overlap region in Fig. 6 provides valuable insight into the areas where the
BMA deterministic and probabilistic projections exhibit a consensus,
indicating locations with favorable conditions for harnessing significant
energy from both wave and offshore-wind resources. This consensus sug-
gests ahigh level of confidence in thepotential for combineddevelopmentof
wave and offshore-wind energy in these areas. Furthermore, the observed
distribution of these consensus areas between 20°E and 180°E signifies that
the agreement between the BMAdeterministic and probabilistic forecasts is
prevalent across this longitudinal range. This widespread consensus sup-
ports the notion that the identified regionswithin this range offer promising
opportunities for the simultaneous utilization of wave and offshore-wind
energy resources. The variations observed in the cyan, blue, and red areas

highlight the divergence between the deterministic and probabilistic pro-
jections, enabling a comprehensive understanding of the uncertainties
associated with forecasting future sites for high wave and offshore-wind
energies. The divergence between the BMA deterministic and probabilistic
predictions for future highwave energy and offshore-wind energy regions is
primarily observed in the longitude ranges of 0 to 20°E, 0 to 10°W, and along
the edges of the consensus region. The BMA deterministic projection
effectively captures the essential characteristics of the spatial distributions,
providing a representation of the anticipated locations for combined
development of wave and offshore-wind energy in the future. The con-
vergence of two prominent regions featuring high wave energy and
offshore-wind energy potentials is projected to occur in the future, parti-
cularly during 2071–2100, under high emission scenarios such as SSP5-
8.5 (Fig. 6f).

To analyze the characteristics of the probability density function
(PDF) for high wave energy and offshore-wind energy under chan-
ging climate conditions, the kernel density estimation method17 is
implemented. This approach enables the estimation of the PDF,
providing insights into the distribution of these energy variables. The
future high wave energy potential exhibits an increased probability of
falling below 85 kW/m when compared to the baseline period
(Fig. 7a, c). The probability of falling below 85 kW/m is more sig-
nificant under higher concentration emission scenarios, such as
under SSP5-8.5 for 2071–2100, with an increase of up to 26.27%
compared to the baseline period (Fig. 7c). In contrast, the probability
of wave energy potential exceeding 90 kW/m is projected to decline
in future periods, with reductions exceeding 7.16%. Additionally,
mean high wave energy potential is expected to decrease by 1.21 kW/
m, 1.53 kW/m, and 2.07 kW/m (1.66 kW/m, 2.95 kW/m, and
4.98 kW/m) during 2031− 2060 (2071− 2100) under SSP1-2.6,
SSP2-4.5, and SSP5-8.5, respectively. The probability of high
offshore-wind energy potential in the range of 0.4–0.6 kW/m2 is
expected to increase during 2031–2060 compared to the baseline
period, with a maximum increase of 4.42%. The probability of high
offshore-wind energy potential exceeding 0.45 kW/m2 is projected to
increase during 2071–2100 (Fig. 7d). In contrast to high wave energy
potential, the mean high offshore-wind energy potential is projected
to increase in future periods. Specifically, this increase is estimated at
approximately 0.03 kW/m2 under SSP1-2.6, 0.06 kW/m2 under SSP2-
4.5, and 0.09 kW/m2 under SSP5-8.5 during 2071− 2100. The
probability of wave energy potential exceeding 90 kW/m within the
combined development areas is expected to decrease in the coming

Fig. 3 | Spatial distribution of high wave and offshore-wind energy potentials during the baseline period (1985–2014). a Regions with high wave energy potential.
b Regions with high offshore-wind energy potential. c Locations with potential for combined wave and offshore-wind energy development.
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periods, with a maximum reduction of up to 27.99% (Fig. 8a, c). The
probability of future offshore-wind energy potential in these areas at
both low and high values will increase (Fig. 8b, d). Specifically, under
SSP5-8.5, the probability of offshore-wind energy potential exceeding
0.7 kW/m2 will increase during 2071–2100, with a rise of
19.00% (Fig. 8d).

Multi-level factorial analysis of the uncertainty sources in wave
and offshore-wind energy potential projections
Multi-level factorial analysis is used to investigate the uncertainties asso-
ciatedwithprojectedwave andoffshore-wind energypotentials, considering
variations indifferent climatemodels and climate change scenarios. Figure 9
presents the spatial distribution of the dominant contributing factor, box-
plots of the contributing factors and the statistical significance of climate
models for wave and offshore-wind energy potentials. Climate models are
identified as the dominant source of uncertainty for bothwave andoffshore-
wind energy potentials in most of the world (Fig. 9a, b). Climate change
scenariosdominate theuncertainty in theprojectedwave energypotential in
areas within the southern IndianOcean, northern PacificOcean, andNorth
Atlantic (Fig. 9a). For the offshore-wind energy potential projections,

climate change scenarios dominate the uncertainty in areas within the
south-central Indian Ocean, the western Pacific, and the western North
Atlantic (Fig. 9b). For wave energy potential projections, the spatial mean
contributions explained by climate models, climate change scenarios, and
the interrelated settings of climate models and climate change scenarios are
70.13%, 5.98%, and 4.60%, respectively (Fig. 9c). Similarly, for offshore-
wind energy potential, the spatial mean contributions of climate models,
climate change scenarios, and the interrelated settings of climatemodels and
climate change scenarios are 70.47%, 5.84%, and 5.10%, respectively
(Fig. 9d). Notably, the spatial mean contribution of inter-decadal variation,
treated as an error term in this study, to wave and offshore-wind energy
potentials is 19.28% and 18.59%, respectively. It underscores the consider-
able impact that inter-decadal variationhasonbothwave andoffshore-wind
energy potentials. Climate models play a significant role in projecting wave
and offshore-wind energy potentials in nearly every grid cell (Fig. 9e, f).

Conclusions
Transitioning to a low-carbon or even zero-carbon energy system is a key
strategy for mitigating global warming that relies on the expansion of
renewable energy. Wave and offshore-wind energies are promising

Fig. 4 | Spatial distribution of regions with high wave energy potential under future climate scenarios. a, b Projections under SSP1-2.6 for 2031–2060 (a) and 2071–2100
(b). c, d Projections under SSP2-4.5 for 2031–2060 (c) and 2071–2100 (d). e, f Projections under SSP5-8.5 for 2031–2060 (e) and 2071–2100 (f).

https://doi.org/10.1038/s43247-025-02437-4 Article

Communications Earth & Environment |           (2025) 6:477 5

www.nature.com/commsenv


renewable energy sources, but their vulnerability to climate dynamics
remains a critical issue. There is a notable lack of comprehensive and
detailed assessments of the impact of global climate change on these energy
sources. Our analysis therefore extends beyond conventional regional stu-
dies to evaluate global-scale variability and long-term potential of wave and
offshore-wind resources under future climate scenarios. To address this
knowledge gap, we employ an empirical Bayesian ensemble downscaling
method using data from fifteen sets of CMIP6 GCMs and the ERA5 rea-
nalysis to investigate the characteristics of wave and offshore-wind energy
potentials under three climate change scenarios. The spatial distribution of
high wave energy potential is projected to remain consistent with the
baseline period, concentrated between latitudes 40°S and 60°S, particularly
in the southern Indian Ocean and Pacific Ocean. However, there is a pro-
jected decrease in areas with wave energy potential greater than 95 kW/m,
especially under SSP5-8.5 during 2071–2100. On the other hand, the
offshore-wind energy potential shows a spatial shift characterized by an
expansion of the latitudinal distribution and the formation of continuous
high potential zones between 40°S and 60°S. In addition, certain regions,
such as the central Indian Ocean, may experience a gradual decrease in

offshore-wind energy potential. The BMA approach provides deterministic
and probabilistic projections for the combined development of wave and
offshore-wind energy, highlighting consensus areas where both resources
can be harnessed effectively. These consensus regions offer promising
opportunities for the simultaneous utilization of wave and offshore-wind
energy resources, particularly between 20°E and 180°E. Projected average
wave energy potential declines, whereas average offshore-wind energy
potential is expected to increase, particularly under SSP5-8.5 during
2071–2100. It should be noted that regions with high offshore-wind energy
potential often coincide with harsh weather conditions, which may chal-
lenge the structural resilience and long-term operation of offshore energy
devices, and while offshore-wind energy is currently more efficient and
commercially viable, wave energy systems can provide complementary
benefits, for example by mitigating wave-induced loads on floating wind
turbines, thereby underscoring the potential of integrated hybrid systems
under future energy scenarios. Multi-level factorial analysis shows that cli-
mate models are the primary source of uncertainty in wave and offshore-
wind energy potential projections, underscoring the importance of advan-
cing climate modeling. These findings contribute to a comprehensive

Fig. 5 | Spatial distribution of regions with high offshore-wind energy potential under future climate scenarios. a, b Projections under SSP1-2.6 for 2031–2060 (a) and
2071–2100 (b). c, d Projections under SSP2-4.5 for 2031–2060 (c) and 2071–2100 (d). e, f Projections under SSP5-8.5 for 2031–2060 (e) and 2071–2100 (f).
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assessment of thewave andoffshore-wind energies, enabling stakeholders to
make informed choices and develop effective strategies to harness and
manage these renewable energy resources in a changing climate.

Methods
Data
Large-scale atmospheric variables from fifteen CMIP618 climate
models including surface upward sensible heat flux (hfss), sea level
pressure (psl), surface downwelling shortwave radiation (rsds), near-
surface wind speed (sfcWind), near-surface air temperature (tas),
eastward near-surface wind (uas), northward near-surface wind (vas),
sea surface temperature (tos), water flux into ocean (wfo), sea surface
height above geoid (zos), are used as predictors for the empirical
downscaling model in this study. Three shared socioeconomic

pathways (i.e., SSP1-2.6, SSP2-4.5, and SSP5-8.5) are considered in
this study. Monthly outputs of 100 m wind speed (ws100, calculated
from 100m u- and v-components of wind), significant height of
combined wind waves and swell (swh), and peak wave period (pp1d)
are retrieved from the latest generation ECMWF reanalysis dataset
(ERA5)19. ERA5 is proven to be one of the reliable global reanalysis
products by previous studies and is widely used as a reference dataset
to improve the accuracy and reliability of climate model simulations.
The CMIP6 model outputs are empirically downscaled and ensem-
bled using ERA5 outputs to generate reliable wave and offshore-wind
simulations. Both CMIP6 and ERA5 reanalysis outputs are bilinearly
re-gridded to 1° × 1° grids to match the spatial resolution. The
empirical downscaling and Bayesian ensemble model are trained and
calibrated in the training period (1985–2004). The models trained in

Fig. 6 | BMA deterministic and probabilistic projections of locations suitable for
combined development of wave and offshore-wind energy under future climate
scenarios. a, c, eProjections for the period 2031–2060 under SSP1-2.6, SSP2-4.5, and
SSP5-8.5, respectively. b, d, f Projections for the period 2071–2100 under SSP1-2.6,

SSP2-4.5, and SSP5-8.5, respectively. Cyan indicates the BMA deterministic pro-
jection; blue and red denote the lower bound (LB) and upper bound (UB) of the
BMA 95% projection interval, respectively; orange indicates the overlap of deter-
ministic and probabilistic projections.
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each grid are then evaluated in the validation period (2005–2014).
Offshore renewable energy potential in the baseline period
(1985–2014) and two future periods (2031–2060, 2071–2100) are
assessed in this study. Detailed information on the climate models
and reanalysis used in this study is provided in Supplementary
Table 1.

Bayesian ensemble of empirical downscaling climate model
outputs
High uncertainty stems in atmospheric variable simulations of global cli-
mate models (GCMs)20,21. To generate robust model projections, empirical
downscaling and Bayesian ensemble approaches are used in this study,
using ERA5 reanalysis as reference. The linear regression is applied to
empirically downscale the CMIP6 model simulations. The empirical
downscaling models can be expressed by the following form.

Ydownscaled ¼ EDðXhfss;Xpsl;Xrsds;XsfcWind;Xtas;Xuas;Xvas;Xtos;Xwfo;XzosÞ
ð1Þ

where Ydownscaled denotes the predictands, X… represents the large-scale
atmospheric predictors from the raw CMIP6 outputs. ED(·) denotes the
empirical downscaling model.

Different climate models may advance in different aspects of
climate processes or patterns, while no individual climate model or
combination of climate models can be superior to others under all
conditions. Reliable climate ensemble projections are needed for
adaption or mitigation actions to global warming. Bayesian model
averaging (BMA)22,23 is widely used to generate reliable probabilistic
ensemble projections by competing several climate model

projections. BMA ascertain consensus projections by weighted
averaging individual model projections based on their posterior
probabilities24. The statistical inference scheme of BMA is assigning
higher weights to better performing model simulations than the
worse acting ones. The weights can reflect the relative contributions
of models to simulation skill. The Bayesian probabilistic ensemble
projection of a climate variable y can be represented by the following
expression.

pð yj f ;RÞ ¼
XN
i¼1

pð f ijRÞpið yj f i;RÞ ð2Þ

where pð yj f ;RÞ denotes the probability density function of y given the
individual model output (fi) and reference dataset (R), pðf ijRÞ indicates the
posterior probability of model output (fi) referring the correct projection
given the reference dataset (R), and piðyjf i;RÞ denotes the posterior dis-
tribution of y given the individual model output (fi) and reference dataset
(R). The posterior model probability pðf ijRÞ is known as weights, so
that

PN
i¼1pðf ijRÞ ¼

PN
i¼1wi ¼ 1.

The posterior mean and variance of BMA projection can be expressed
as:

E½ yjO; f � ¼
XM
m¼1

pð f ijRÞ � E½ pið yj f i;RÞ� ¼
XN
i¼1

wif i ð3Þ

Var½yjR; f � ¼
XN
i¼1

wi f i �
XN
i¼1

wif i

 !2

þ
XN
i¼1

wiσ
2
i ð4Þ

Fig. 7 | Probability density functions (PDFs) of
regions with high wave and offshore-wind energy
potentials. a, cWave energy potential during
2031–2060 and 2071–2100, respectively. b, d
Offshore-wind energy potential during 2031–2060
and 2071–2100, respectively.
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where σ2i is the expected variance related to the individual model output (fi)
conditioned on reference dataset (R). The BMA variance can be decom-
posed into two components: the between-model and the within-model
variance.Thenon-BMAensemble approach canonly consider the between-
model variance, consequently generating under-dispersive projection.

The BMA approach assumes that the conditional probability dis-
tribution piðyjf i;RÞ is Gaussian. Box-Cox transformation method25 is used
to transform both the model projections and reference data close to the
Gaussian distribution. The parameter set (θ ¼ fwi; σ i; i ¼ 1; 2; . . . ;Ng)
can be estimated through maximizing the log-likelihood function:

lðθÞ ¼ log
XN
i¼1

wi � piðyjf i;RÞ
" #

ð5Þ

The expectation-maximization (EM) algorithm26 is used in this study
to obtain the analytical solution of the parameter set. The probabilistic
ensemble projections can be derived by competing individual model
projections:

Step1:Generate a valueof i fromthenumberset f1; :::;Ngbasedon the
probability set fw1; . . . ;wNg.

Step 2: Generate a value of yj from the conditional probability density
function piðyjf i;j;RÞ.

Step 3: Repeat Steps (1) and (2) K times. The K is set to be 100 in
this study.

Step 4: Set j ¼ jþ 1. If j reaches M, stop; else go to Step (1).
Coverage and interval width are fundamental metrics in evaluating

BMA ensemble simulations for climate forecasting. Coverage measures the
reliability by assessing how often observed values fall within the predicted

intervals, while interval width indicates the precision of the forecasts, with
narrower intervals being preferable for decision-making.

Calculation of wave and offshore-wind energy potentials
Waveenergypotential canbe estimated through thewave energyflux (Pwave,
kW/m)27,28.

Pwave ¼
1

64π
ρwaterg

2H2
s Tp ð6Þ

where ρwater is the water density, which can be assumed to be a constant
value of 1023.6 kg/m3 at standard sea water conditions29; g indicates the
gravitational acceleration (9.81m/s2 in this study);Hsdenotes the significant
wave height; Tp is the peak wave period.

Wind energy density (Pwind, kW/m2) is a widely used measure of
offshore-wind energy potential, which is defined as:

Pwind ¼
1
2
ρairVwind ð7Þ

where ρair indicates the air density, which is typically assumed to be a
constant value of 1.213 kg/m3 at standard climate conditions30; Vwind

denotes the offshore-wind speed at the 100m hub height.
High energy potential is defined using a threshold-based approach in

this study. A location of high energy potential is identified as location which
the energypotential is above the 90th percentile of the global energy potential
over the correspondingperiod. Location for combineddevelopment (LCD) is
a location with both high wave (Lwave) and offshore-wind (Lwind) energy

Fig. 8 | Probability density functions (PDFs) of
high wave and offshore-wind energy potentials in
locations identified for combined development. a,
cWave energy potential during 2031–2060 and
2071–2100, respectively. b, d Offshore-wind energy
potential during 2031–2060 and 2071–2100,
respectively.
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potentials.

LCD ¼ Lwave \ Lwind ð8Þ

Multi-level factorial analysis
Due to uncertainties in climate model structure and/or climate change, the
climate projections produced by multiple climate models can be distinctly
different. Multiple GCM-SSP combinations can produce different offshore
renewable energy potential projections, with disparities especially pro-
nounced at regional scales. Thus, themulti-level factorial analysis approach
is developed to characterize associated uncertainties in the offshore
renewable energy potential projections. The uncertainty sources of CMIP6
models (GCM) and climate change scenarios (SSP), as well as their inter-
related settings (GCM× SSP), are investigated throughmulti-level factorial
analysis at each grid. The factorial design information is presented in
Supplementary Table 2. The total variability of the projections can be par-
titioned into the following components31:

SStotal ¼
Xa
i

Xb
j

Xc
k

y2ijk �
y2:::
abc

; y::: ¼
Xa
i

Xb
j

Xc
k

yijk ð9Þ

SSA ¼ 1
bc

Xa
i

y2i:: �
1
abc

y2:::; yi:: ¼
Xb
j

Xc
k

yijk i ¼ 1; 2; :::; a ð10Þ

SSB ¼ 1
ac

Xb
j

y2:j: �
1
abc

y2:::; y:j: ¼
Xa
i

Xc
k

yijk j ¼ 1; 2; :::; b ð11Þ

SSAB ¼ 1
c

Xa
i

Xb
j

y2ij: �
1
abc

y2::: � SSA � SSB; yij:

¼
Xc
k

yijk i ¼ 1; 2; :::; a; j ¼ 1; 2; :::; b

ð12Þ

SSIDV ¼ SStotal � SSA � SSB � SSAB ð13Þ

where A, B, and IDV represent the climate models, climate change
scenarios, and inter-decadal variability with a, b, and c available
choices; yijk denotes the projection with the choice of ith CMIP6
model, jth climate change scenario, and kth period. The contribution
(CX) of each scheme or the interrelated setting (X) to the total
variability can be defined as:

CX ¼ SSX
SStotal

× 100% ð14Þ

The sum of squares due to inter-decadal variability are assumed
to be errors/residuals (SSerror). The statistical significance of climate
models, climate change scenarios, and their interrelated settings can

Fig. 9 | Analysis of contributing factors and climate model significance for wave
and offshore-wind energy potentials. a, b Spatial distribution of dominant con-
tributing factors. c,dBoxplots of contributing factor values: center red line (median),

box (IQR, 25th–75th percentiles), whiskers (1.5×IQR), gray points (outliers).
e, f Statistical significance of climate models. Columns correspond to wave energy
(left) and offshore-wind energy (right), respectively.
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be determined by F-test assuming that the residuals are normally and
independently distributed.

FIX ¼ SSIX=df IX
SSerror=df error

ð15Þ

where dfIX and dferror denote the degree of freedom for contributing factors
(IX) and errors, respectively. A contributing factor is considered significant
if the calculated p-value is smaller than the predefined significance level
(0.05 in this study).

Data availability
Monthly outputs from the latest global reanalysis dataset ERA5 can be
obtained from the European Centre for Medium-RangeWeather Forecasts
(ECMWF, https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-
v5). The outputs from GCMs are downloaded from the Coupled Model-
ing Intercomparison Project (CMIP6) data set archive (https://esgf-node.
llnl.gov/search/cmip6/). The data for generating the figures in this study are
available at https://doi.org/10.5281/zenodo.15543845.

Code availability
The scripts generated during this study are available upon request from the
corresponding author.

Received: 12 February 2025; Accepted: 3 June 2025;

References
1. Gernaat,D.E.H. J. et al. Climatechange impactson renewableenergy

supply. Nat. Clim. Change 11, 119–125 (2021).
2. Lu, T. et al. India’s potential for integrating solar and on- and

offshore wind power into its energy system. Nat. Commun. 11,
4750 (2020).

3. Dvorak, M. J., Stoutenburg, E. D., Archer, C. L., Kempton,
W. & Jacobson, M. Z. Where is the ideal location for a US East
Coast offshore grid? Geophys. Res. Lett. 39, L06804 (2012).

4. Gao, Q. et al. Assessment of wind and wave power characteristic and
potential for hybrid exploration in Australia. Renew. Sustain. Energy
Rev. 168, 112747 (2022).

5. Wen, Y., Kamranzad, B. & Lin, P. Joint exploitation potential of
offshorewind andwave energy along the south and southeast coasts
of China. Energy 249, 123710 (2022).

6. Musgrove, P. J. Energy analysis of wave-power and wind-power
systems. Nature 262, 206–207 (1976).

7. Breivik, Ø., Aarnes, O. J., Abdalla, S., Bidlot, J.-R. & Janssen,
P. A. E. M. Wind and wave extremes over the world oceans
from very large ensembles. Geophys. Res. Lett. 41, 5122–5131
(2014).

8. Wilkie, D. & Galasso, C. Impact of climate-change scenarios on
offshorewind turbine structural performance.Renew.Sustain. Energy
Rev. 134, 110323 (2020).

9. Bethel, B. J. Joint Offshore Wind and Wave Energy Resources in the
Caribbean Sea. J. Mar. Sci. Appl. 20, 660–669 (2021).

10. Lin, Y.-H. & Fang, M.-C. An Integrated Approach for Site Selection of
Offshore Wind-Wave Power Production. IEEE J. Ocean. Eng. 37,
740–755 (2012).

11. Onea, F., Ciortan, S. & Rusu, E. Assessment of the potential for
developing combinedwind-waveprojects in the Europeannearshore.
Energy Environ 28, 580–597 (2017).

12. Lira-Loarca, A., Ferrari, F., Mazzino, A. & Besio, G. Future wind and
wave energy resources and exploitability in theMediterranean Sea by
2100. Appl. Energy 302, 117492 (2021).

13. Ribeiro, A. et al. Assessment of Hybrid Wind-Wave Energy Resource
for the NW Coast of Iberian Peninsula in a Climate Change Context.
Appl. Sci. 10, 7395 (2020).

14. Ibarra-Berastegui, G., Sáenz, J., Ulazia, A., Sáenz-Aguirre,
A. & Esnaola, G. CMIP6 projections for global offshore wind
and wave energy production (2015–2100). Sci. Rep. 13, 18046
(2023).

15. Marshall, A.G.,Hemer,M.A.,Hendon,H.H.&McInnes,K. L.Southern
annular mode impacts on global ocean surface waves. Ocean Model
129, 58–74 (2018).

16. Lee, D. Y., Petersen, M. R. & Lin, W. The Southern Annular Mode and
Southern Ocean SurfaceWesterlyWinds in E3SM. Earth Space Sci 6,
2624–2643 (2019).

17. Rosenblatt, M. Remarks on Some Nonparametric Estimates of a
Density Function. Ann. Math. Stat. 27, 832–837 (1956).

18. Eyring, V. et al. Overview of the Coupled Model Intercomparison
Project Phase 6 (CMIP6) experimental design and organization.
Geosci. Model Dev. 9, 1937–1958 (2016).

19. Hersbach, H. et al. The ERA5global reanalysis.Q. J. R.Meteorol. Soc.
146, 1999–2049 (2020).

20. Tian, C. et al. Northward Shifts of the Sahara Desert in Response
to Twenty-First-Century Climate Change. J. Clim. 36, 3417–3435
(2023).

21. Song, T., Huang, G. &Wang, X. Neglected Spatiotemporal Variations
of Model Biases in Ensemble-Based Climate Projections. Geophys.
Res. Lett. 49, e2022GL098063 (2022).

22. Raftery, A. E. Bayesian Model Selection in Social Research. Sociol.
Methodol. 25, 111–163 (1995).

23. Raftery, A. E., Gneiting, T., Balabdaoui, F. & Polakowski, M. Using
Bayesian Model Averaging to Calibrate Forecast Ensembles. Mon.
Weather Rev. 133, 1155–1174 (2005).

24. Duan,Q., Ajami,N.K.,Gao,X. &Sorooshian,S.Multi-model ensemble
hydrologic prediction using Bayesian model averaging. Adv. Water
Resour. 30, 1371–1386 (2007).

25. Box, G. E. P. & Cox, D. R. An Analysis of Transformations. J. R. Stat.
Soc. Ser. B Methodol. 26, 211–252 (1964).

26. Dempster, A. P., Laird, N. M. & Rubin, D. B. Maximum Likelihood from
Incomplete Data Via the EM Algorithm. J. R. Stat. Soc. Ser. B
Methodol. 39, 1–22 (1977).

27. Bishop, C. T. & Donelan, M. A. Chapter 4 Wave Prediction Models. in
Elsevier Oceanography Series (eds. Lakhan, V. C. & Trenhaile, A. S.)
vol. 49 75–105 (Elsevier, 1989).

28. Dean, R. G. & Dalrymple, R. A.Water Wave Mechanics for Engineers
and Scientists 2 (World Scientific, Singapore, 1991).

29. Llovel, W., Balem, K., Tajouri, S. & Hochet, A. Cause of Substantial
GlobalMeanSea Level RiseOver 2014–2016.Geophys. Res. Lett. 50,
e2023GL104709 (2023).

30. Lei, Y. et al. Co-benefits of carbon neutrality in enhancing and
stabilizing solar and wind energy. Nat. Clim. Change 13, 693–700
(2023).

31. Song, T., Huang, G.,Wang, X. & Zhou, X. Factorial Sensitivity Analysis
of Physical Schemes and Their Interactions in RegCM. J. Geophys.
Res. Atmospheres 125, e2020JD032501 (2020).

Acknowledgements
This research was supported by the Natural Science Foundation
(52221003), the National Key R&D Program of China
(2023YFC3206503), the Natural Science Foundation (52279002,
52279003, U2040212), MWR/CAS Institute of Hydroecology, and
Natural Science and Engineering Research Council of Canada.

Author contributions
X.Z. and G.H. conceived the study. X.Z. performed the data analysis. X.Z.
andC.L. led thewriting of this study, with discussion and improvement from
Y.L., C.T., T.S., X.Z., W.T and B.P.

Competing interests
The authors declare no competing interests.

https://doi.org/10.1038/s43247-025-02437-4 Article

Communications Earth & Environment |           (2025) 6:477 11

https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://esgf-node.llnl.gov/search/cmip6/
https://esgf-node.llnl.gov/search/cmip6/
https://doi.org/10.5281/zenodo.15543845
www.nature.com/commsenv


Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s43247-025-02437-4.

Correspondence and requests for materials should be addressed to
Guohe Huang.

Peer review information Communications Earth & Environment thanks
StefanoSusini and theother, anonymous, reviewer(s) for their contribution to
the peer review of this work. Primary Handling Editors: I-Yun Hsieh and
Aliénor Lavergne. A peer review file is available

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if you modified the licensed material. You
do not have permission under this licence to share adapted material
derived from this article or parts of it. The images or other third party
material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to thematerial. If material
is not included in thearticle’sCreativeCommons licenceandyour intended
use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by-
nc-nd/4.0/.

© The Author(s) 2025

https://doi.org/10.1038/s43247-025-02437-4 Article

Communications Earth & Environment |           (2025) 6:477 12

https://doi.org/10.1038/s43247-025-02437-4
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/commsenv

	Offshore wave and wind energy development in the Southern Hemisphere will remain optimal between 20°E and 180°E by 2100
	Results
	Evaluation of modeling performance
	Historical high wave and offshore-wind energy potentials and their combined potentials
	Future changes in high wave and offshore-wind energy potentials
	Deterministic and probabilistic projections of locations for combined development of wave and offshore-wind energy
	Multi-level factorial analysis of the uncertainty sources in wave and offshore-wind energy potential projections

	Conclusions
	Methods
	Data
	Bayesian ensemble of empirical downscaling climate model outputs
	Calculation of wave and offshore-wind energy potentials
	Multi-level factorial analysis

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




