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Abstract: Integrating point absorber wave energy converters (PAWECs) and an offshore floating
wind platform provide a cost-effective way of joint wind and wave energy exploitation. However,
the coupled dynamics of the complicated hybrid system and its influence on power performance are
not well understood. Here, a frequency-domain-coupled hydrodynamics, considering the constraints
and the power output through the relative motion between the PAWECs and the semi-submersible
platform, is introduced to optimize the size, power take-off damping, and layout of the PAWECs.
Results show that the annual wave power generation of a PAWEC can be improved by 30% using
a 90◦ conical or a hemispherical bottom instead of a flat bottom. Additionally, while letting the
PAWECs protrude out the sides of the triangular frame of the platform by a distance of 1.5 times the
PAWEC radius, the total power generation can be improved by up to 18.2% without increasing the
motion response of the platform. The PAWECs can reduce the resonant heave motion of the platform
due to the power take-off damping force. This study provides a reference for the synergistic use of
wave and wind energy.

Keywords: absorber wave energy converter; floating wind platform; hybrid system; wave power;
hydrodynamic performance

1. Introduction

Wave energy, characterized by high energy density and predictability, is regarded
as one of the potential renewable energy sources [1]. More than a thousand novel wave
energy converters (WECs) have been designed [2], which can be roughly categorized into
the oscillating water column (OWC) [3–5], the oscillating body [6,7], and the overtopping.
However, the high cost of the operation and maintenance of WECs impedes their com-
mercial use. Researchers have actively sought solutions to reduce the cost and improve
the power performance of WECs. A plausible way is to combine the WECs with existing
marine structures [8–10].

Combining WECs with a floating offshore wind platform to form a hybrid system
brings several benefits. The seas with abundant wind resources are also rich in wave energy
resources [11], providing a feasible premise for hybridization. The wind platform could
provide an installation base and share moorings, grids, and maintenance with the WECs,
which reduces the cost of the WECs. In return, the WECs may form a protective shield
between the incident waves and wind turbines, reducing direct wave impact on the support
structures and creating a more stable operating environment for the wind turbines [12–15].
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The generated wave power could also compensate for the power output shortage due to
downtime [16].

Till now, most of the wind–wave hybrid system concepts have resulted from the
renowned EU FP7 MARINA platform project [17]. The power and dynamic performance of
these hybrid systems were primarily explored. M’zoughi et al. [18] studied a hybrid system
consisting of two OWCs and an NREL 5MW wind turbine. They showed that OWCs
reduced the pitch motion of the platform and the fore-aft displacement of the tower top, im-
proving the stability of the platform. Further, Aboutalebi et al. [19] proposed a novel barge
platform with four OWCs, which oscillated less than the original barge platform in the
prescribed range of waves. Compared with OWCs, the oscillating body WECs are easier to
be integrated onto a wind platform without retrofitting too much of the platform. The rep-
resentative hybrid systems consisting of oscillating body WECs are SFC (Semi-submersible
Flap Combination) [20,21] and STC (Spar Torus Combination) [22]. Michailides et al. [20]
found that the flap WECs did not affect the mooring tension, the nacelle acceleration, or
the bending moment in the tower base of SFC. Subsequent experiments on SFC under
extreme wave conditions showed no strong nonlinear hydrodynamic phenomenon was
observed [21]. Other hybrid systems, including flap WECs, are the WaveStar series [23].
However, Karimirad and Michailides [24] showed that the flap WECs could increase the
overall wave excitation moment hence the pitch motion of the wind turbine. On the other
hand, the hybrid systems consisting of heaving oscillating body WECs do not suffer from
this instability increase, therefore, are a more preferred hybridization form.

The hybrid systems consisting of heaving WECs and a floating wind platform have been
extensively studied numerically, most of which are in the time domain. Muliawan et al. [22]
used a combined time-domain toolkit SIMO/ TDHMILL3D to analyze the coupled dynamics
of STC under joint wind and wave loads. The generated wind and wave energy were
pointed out to be synergized well under given operational conditions. Cheng et al. [25]
studied the hybrid system of a spar-type VAWT (vertical-axis wind turbine) and an annular
WEC using a time-domain SIMO-RIFLEX-DMS toolkit based on potential flow theory
and Morrison equation. Compared with a single VAWT, the WEC promoted the power
output and reduced the mooring tension and low-frequency responses in heave and pitch.
Ren et al. [26] studied the TWWC (TLP-WT-WEC-Combination) hybrid system through a
time-domain scheme modeled in ANSYS/AQWA module. Wang et al. [27] combined an
OC4 semi-submersible platform with an annular heaving WEC on the central column of the
platform. The investigation was also carried out in the time domain using ANSYS/AQWA.
The constraint between the WEC and the platform was modeled as a fender, which is time-
consuming in computation. They found that the WEC with a concave bottom generated
more power and moved mildly [28].

Compared with the time-domain models, the frequency-domain models are more
effective in works such as optimizing layouts of WECs in the hybrid system. Hu et al. [29]
proposed a frequency-domain model with a fixed platform to vigorously investigate the
influence of the diameter-to-draft ratio and layouts of several WECs on the power perfor-
mance and external loads on the hybrid system consisting of a WindFloat platform and
heaving cylindrical point absorber WECs. They developed a fast optimization method to
determine the size and layouts of the WECs according to the operational condition. Further,
Zhou et al. [30] expanded the investigation on the influence of WEC bottom shapes and
found that a hemispherical bottom brings the most power generation, better than a conical
bottom and much better than a flat bottom. Later, Zhou et al. [31] established a more
complete frequency-domain model supplemented by the previous, considering constrained
dynamics and multiple DoF motion responses.

Although the frequency-domain model in Hu et al. [29] and Zhou et al. [30] was
quick in optimizing the WECs and wave loads analysis, the platform is fixed for simplicity.
Only the heave motion of the WECs is considered, whereas the coupled dynamics and
the effect of mooring in the hybrid system are not included. In real situations, there
are constraints between the WECs and the platforms, and the hybrid system can move
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in multiple degrees of freedom (DoFs), which are important in determining the power
generation and dynamic features of the hybrid system. In this paper, these important
effects are studied through a hybrid system consisting of an OC4 wind platform and several
heaving point absorber WECs using this frequency-domain coupled hydrodynamic model
proposed by Zhou et al. [31]. The novelties are: first, the influence of bottom shape and
size of the WECs on the power performance and dynamic response of the hybrid system
are explored; second, the WECs are further deployed protruding the triangular frame of the
wind platform. The influence of the protruding length on the performance of the system is
investigated, which are rarely seen in previous studies. An optimal layout of the WECs
is yielded.

The rest of the paper is structured as follows. Section 2 describes the configuration
of the platform and WECs. Section 3 introduces the constrained coupled multi-body
model based on potential flow theory with viscous correction in the frequency domain.
Section 4 investigates the influence of WEC bottom shapes and layout on both wave power
performance and motion response of the hybrid system. Finally, conclusions are presented
in Section 5.

2. Configuration of the Hybrid System
2.1. Floating Wind Platform and WECs

A hybrid system consisting of a floating wind platform and multiple heaving wave
energy converters is illustrated in Figure 1. The widely applied OC4-DeepCwind semi-
submersible platform [32], installed with a 5 MW wind turbine above the central column,
is selected as a representative of the present hybrid system. Its key parameters are shown
in Table 1. Heaving WECs with power take-off (PTO) systems are arranged on the sides of
the platform between the pontoons. The platform allows six-degree-of-freedom motions
for various incident waves, whereas the WECs, constrained by PTO systems, can only slide
along the vertical poles on the pontoons, consequently generating electricity through the
relative heave motion against the platform.
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Figure 1. Diagram of the hybrid system consisting of an OC4-DeepCwind semi-submersible plat-
form and multiple heaving WECs: (a) Side view; (b) Top view. 

  

Figure 1. Diagram of the hybrid system consisting of an OC4-DeepCwind semi-submersible platform
and multiple heaving WECs: (a) Side view; (b) Top view.

Table 1. Main dimensions of OC4-DeepCwind semi-submersible platform.

Parameter Symbol

Diameter of main column R0 6.5 m
Diameter of offset (upper) columns R1 12 m

Diameter of base columns R2 24 m
Diameter of pontoons and cross braces R3 1.6 m
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Table 1. Cont.

Parameter Symbol

Spacing between offset columns L0 50 m
Total draft D0 20 m

Height of upper columns D1 26 m
Height of base columns D2 6 m

Elevation of main column above SWL H0 10 m
Elevation of offset columns above SWL H1 12 m

Height of tower Hwind 77.6m
Total platform mass M0 1.3473 × 107 kg

Position of mass center below water surface CM0 13.46 m
Total roll moment of inertia (about mass center) I22 + I33 6.827 × 109 kg·m2

Total pitch moment of inertia (about mass center) I11 + I33 6.827 × 109 kg·m2

Total yaw moment of inertia (about mass center) I11 + I22 1.2236E × 1010 kg·m2

Resonance period in surge direction Tsurge 104.7 s
Resonance period in heave direction Theave 17.5 s
Resonance period in pitch direction Tpitch 20.6 s

2.2. Mooring System

A three-catenary mooring system is assorted to the platform (Figure 2). The property
and arrangement of the mooring lines can be referred to in Ref. [32]. The mooring system
is converted to an equivalent stiffness matrix (Table 2) by the open-source code Mooring
Analysis Program (MAP) [33] for the coming frequency-domain analysis.
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Figure 2. Diagram of mooring arrangement.

Table 2. Equivalent mooring stiffness matrix.

Surge Sway Heave Unit Roll Pitch Yaw Unit

Surge 6.08 × 104 −2.51 × 10−2 −2.84 × 10−2 kg·s−2 4.72 × 101 −1.05 × 105 6.25 × 10−1 kg·m·s−2·rad−1

Sway 2.40 × 10−1 6.08 × 104 −1.21 × 10−2 kg·s−2 1.05 × 105 4.66 × 101 1.46 × 100 kg·m·s−2·rad−1

Heave −2.40 × 10−2 2.61 × 10−1 1.83 × 104 kg·s−2 2.76 × 10−1 1.44 × 10−1 9.40 × 101 kg·m·s−2·rad−1

Roll 4.71 × 101 1.06 × 105 −2.63 × 10−2 kg·m·s−2 8.38 × 107 3.00 × 103 1.96 × 101 kg·m2·s−2·rad−1

Pitch −1.06 × 105 4.70 × 101 1.04 × 10−1 kg·m·s−2 −2.93 × 10−3 8.38 × 107 1.27 × 101 kg·m2·s−2·rad−1

Yaw 5.19 × 10−1 1.47 × 100 −9.38 × 101 kg·m·s−2 2.58 × 101 1.55 × 101 1.12 × 108 kg·m2·s−2·rad−1
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2.3. Wave Environments

The WECs are designed, and the power performance of the hybrid system is evaluated
according to field wave data measured at the Shidao site in Shandong Province, China.
The joint probability distribution Sij of wave height Hi and wave period Tj is given in
Table 3. The average wave period T = 5.18 s is chosen for the WECs design to capture the
maximum power.

Table 3. Joint distribution of wave height and wave period at Shidao in Shandong Province, China
(unit: %).

Hi(m)

Sij Tj(s)
3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 Sum

0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
0.3 0.1 2.4 3.2 1.5 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 7.6
0.4 0.2 10.3 15.8 5.4 1.5 0.4 0.1 0.0 0.0 0.0 0.0 0.0 33.8
0.5 0.0 3.6 7.5 5.3 2.2 0.9 0.5 0.2 0.1 0.0 0.0 0.0 20.3
0.6 0.0 1.8 3.8 3.3 2.1 0.4 0.4 0.1 0.1 0.0 0.0 0.0 12.1
0.7 0.0 0.6 2.6 2.2 0.9 0.1 0.2 0.1 0.1 0.0 0.0 0.0 7.0
0.8 0.0 0.2 2.2 1.4 0.9 0.1 0.0 0.0 0.1 0.0 0.0 0.0 5.0
0.9 0.0 0.1 1.1 1.0 0.8 0.2 0.1 0.1 0.0 0.0 0.0 0.0 3.5
1.0 0.0 0.1 0.6 0.9 0.7 0.2 0.1 0.0 0.1 0.0 0.0 0.0 2.6
1.1 0.0 0.0 0.2 0.6 0.6 0.1 0.0 0.0 0.0 0.0 0.1 0.1 1.7
1.2 0.0 0.0 0.1 0.5 0.5 0.1 0.0 0.0 0.0 0.0 0.1 0.0 1.4
1.3 0.0 0.0 0.0 0.4 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 1.0
1.4 0.0 0.0 0.0 0.3 0.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0 1.0
1.5 0.0 0.0 0.0 0.2 0.4 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.8
1.6 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.6
1.7 0.0 0.0 0.0 0.1 0.2 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.6
1.8 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3
1.9 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.3
2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.2
2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

Sum 0.3 19.1 37.3 23.3 12.0 3.4 2.1 1.0 0.9 0.3 0.3 0.2 100.0

3. Mathematical Model
3.1. Coupled Motion Equation of the Hybrid System

Frequency analysis is usually carried out with the following assumptions: the fluid
is inviscid, incompressible, and irrotational, and the wave amplitude is small. The linear
wave theory is applicable. The PTO systems and the mooring system are also modeled as
linear. Hu et al. [29] developed a numerical model based on potential flow theory with
viscous correction in the frequency domain, assuming the platform is fixed. However, when
the floating platform moves, hydrodynamic interactions between the semi-submersible
platform and WECs will be too sophisticated to be ignored, and the motion equation given
by Hu et al. [29] cannot be suitable. Therefore, coupled motion equations considering
complex interactions must be deduced to accurately describe the relative motion between
multiple floating bodies.

The system, without considering the constraints, has 6(N + 1) motion modes, wherein
the first 6N are assigned to the WECs, and the last six are to the platform. The motion
equation for the i-th (i = 1, . . . , 6N) mode of the WECs in incident wave with angular
frequency ω is

6(N+1)

∑
j=1

[
−ω2(mij + µij

)
− iω

(
λij + bvis,ij

)
+ Cij + kstiff,ij

]
xj −

6(N+1)

∑
j=1

iωbPTO,ijxj = fex,i + δL,i fL,i (1)
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and the motion equation for the i-th (i = 6N + 1, . . . , 6(N + 1)) mode of the platform is

6(N+1)

∑
j=1

[
−ω2(mij + µij

)
− iω

(
λij + λvis,ij

)
+ Cij + kstiff,ij

]
xj −

6(N+1)

∑
j=1

iωbPTO,ijxj = fex,i −
N−1

∑
n=0

δL,6n+i−6N fL,6n+i−6N (2)

where mij, µij, λij, and Cij are the elements of the mass, added mass, radiation damping,
and hydrostatic restoration coefficient matrix in the ij-th mode, respectively. bPTO,ij is the
ij-th term of the PTO damping matrix BPTO. kstiff,ij is the ij-th term in the mooring stiffness
matrix Kstiff, listed in Table 2. xi, f ex,i, and f L,i represent wave-excited motion response,
wave excitation force, and constraint forces. ΣδL,6n+i−6N f L,6n+i−6N is the total constraint
force exerted by the WECs. For more details on the present implementation, readers can
refer to Zhou et al. [31].

According to the continuous displacement condition at the connection between WECs
and the platform, Sun et al. [34] introduced the constraint matrix D and obtained the
following matrix equation.

L = −ω2(m + µ)− iω(λ+ λvis + BPTO) + C + K (3)

[
L6(N+1)×6(N+1) DT

6(N+1)×5N
D5N×6(N+1) 0

][
ξ6(N+1)

fL,5N

]
=

[
fex,6(N+1)

0

]
(4)

in which L is the coupling equation of the motion of the platform and WECs after removing
the binding force. The constraint matrix D can be expressed as

D5N×6(N+1) =



ε1D1
1 · · · 0 · · · 0 εN+1D1

N+1
...

. . .
... 0

...
...

0 · · · εnDn
m · · · 0 εN+1Di

N+1
... 0

...
. . .

...
...

0 · · · 0 · · · εNDN
N εN+1DN

N+1

 (5)

3.2. Power Generated by WECs

The wave power Pn(T) generated by the n-th WEC is

Pn(T) =
1
2

(
2π

T

)2
bn

PTO,3|zrel,n|2 (6)

where zi is the relative heave displacement between the i-th WEC and the platform. The nu-
merical scheme for searching for optimal PTO damping has been proposed by Hu et al. [29],
with detailed explanations given in our previous work [31].

The total wave power Ptotal(T) of the WEC array and the annual wave power per unit
weight Ptotal(year) are

Ptotal(T) =
N

∑
n=1

Pn(T) (7)

Ptotal(year)(T) =
Mj

∑
j=1

Mi

∑
i=1

(
Hi
2

)2
× Ptotal(Tj)× Sij (8)

where Pn is the wave power of the n-th WEC under optimal PTO damping. Mi and Mj are
the numbers of wave height and wave period listed in Table 3. Hi, Tj, and Sij are the wave
height, wave period, and the joint distribution introduced in Table 3.

3.3. Validation

Figure 3 compares the motion obtained from the above model with the published
WEC-Sim results from Ruehl et al. [34]. The maximum difference in motion response is
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beneath 3.0%. The overall agreement verifies the validity of the present model in simulating
the multi-floating-body coupled constraint motion.
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Figure 3. Comparison of the relative heave motion between WEC and spar and pitch motion be-
tween the present results and the published numerical results using WEC−Sim code: (a) Relative 
heave motion (bpto = 1200.0 kN·s/m, T = 8.0 s); (b) Pitch motion (bpto = 0.0 kN·s/m, T = 12.0 s).  

4. Numerical Results and Discussions 
In the numerical calculation of this hybrid system, the interaction of hydrodynamic 

forces, restraining forces, and PTO forces between the platform and the wave energy de-
vice are considered, while the influence of aerodynamic forces is ignored. The water depth 
h equals 200 m, and the wave height H is 2 m. The wave period range of the incident 
regular wave is taken as 3.0~20 s. The constrained motion satisfying the linear assumption 
ensures that, except for the heave direction, the motion of WECs in other directions is the 
same as that of the platform. Additionally, the linear PTO stiffness is set as 0, and the 
optimal PTO damping corresponds to the value when wave power generation reaches the 
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4. Numerical Results and Discussion

In the numerical calculation of this hybrid system, the interaction of hydrodynamic
forces, restraining forces, and PTO forces between the platform and the wave energy device
are considered, while the influence of aerodynamic forces is ignored. The water depth
h equals 200 m, and the wave height H is 2 m. The wave period range of the incident
regular wave is taken as 3.0~20 s. The constrained motion satisfying the linear assumption
ensures that, except for the heave direction, the motion of WECs in other directions is the
same as that of the platform. Additionally, the linear PTO stiffness is set as 0, and the
optimal PTO damping corresponds to the value when wave power generation reaches the
maximum in the sea state with different wave periods.

4.1. Geometric Configurations of WECs

The geometric configuration of WECs will affect the synergistic performance of the
hybrid system. Inspired by Zhou et al. [30], WECs with a flat bottom, conical bottom
with conical angle α = 90◦, and hemispherical bottom are explored. The dimensionless
method [29] is an optimal choice to quickly determine the size of WECs, according to the
typical or average wave frequency ωp of the wave environment and the given value of
diameter draft ratio 2r/d (r and d are the radius and draft of each WEC).

d = g
(

ωn(2r/d)
ωp

)2

(9)

Setting the working period at T = 5.18 s, the dimensions of WEC with cylindrical
bottom corresponding to different diameter draft ratios (2r/d = 3.0, 2.5, 1.5, 1.0) are obtained
by the dimensionless method. Additionally, keeping the draft equivalent, dimensions of
WECs with 90◦ conical bottom and hemispherical bottom corresponding to cylindrical WEC
can be calculated, given in Table 4. The total damping, radiation damping, and viscosity
correction coefficient fλ,vist can be obtained from the Star CCM+ free decay test [35,36].
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Table 4. Parameters of WECs with different bottom shapes.

2r/d Bottom
Shape d1 * (m) d2 * (m) 2r (m) n

Total
Damping
(kg·s−2)

Radiation
Damping
(kg·s−2)

fλ,vist

3.0
flat 3.779 0.000 11.338

6
1.7639 × 105 9.1514 × 104 1.93

90◦ conical 1.890 5.669 11.338 1.2728 × 105 1.2470 × 105 1.02
hemispherical 0.000 5.669 11.338 1.2448 × 105 1.2939 × 105 0.98

2.5
flat 4.016 0.000 10.040

6
1.2577 × 105 5.9640 × 104 2.11

90◦ conical 2.343 5.020 10.040 8.3451 × 104 7.7353 × 104 1.08
hemispherical 0.669 5.020 10.040 7.9106 × 104 7.7482 × 104 1.02

1.5
flat 4.758 0.000 7.137

9
5.8053 × 104 1.2687 × 104 4.58

90◦ conical 3.568 3.568 7.137 3.7767 × 104 1.9031 × 104 1.98
hemispherical 2.379 3.568 7.137 2.8194 × 104 1.9446 × 104 1.45

1.0
flat 5.216 0.000 5.216

12
3.4508 × 104 4.6660 × 103 7.40

90◦ concal 4.346 2.608 5.216 2.2355 × 104 5.7253 × 103 3.91
hemispherical 3.477 2.608 5.216 2.0443 × 104 5.7923 × 103 3.53

* The submerged part of WECs under the still water level (SWL) with different bottom shapes is composed of one
or two part(s): the vertical cylindrical part is denoted as d1, and the non-flat bottom part d2.

4.2. Layout Selection of WECs

WECs are arranged in the following way, the distance between float centers L1 = 4r, the
distance between float and center of the pontoon outside the platform L2 > r + R, and the
maximum number of WECs on one side of the truss round-up to (L – 2(R + r))/4r. Layouts
of the flat bottom-shaped WEC with various 2r/d are given in Table 5. Corresponding
arrangements combined with the OC4 platform are displayed in Figure 4.

Table 5. Layout of cylindrical WEC with flat bottom.

2r/d d (m) 2r (m) n L1 (m) L2 (m)

3.00 3.779 11.338 6 22.676 13.662
2.50 4.016 10.040 6 20.080 14.960
1.50 4.758 7.137 9 14.274 10.726
1.00 5.216 5.216 12 10.432 9.353
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4.3. Wave Power of WECs
4.3.1. Wave Power with Different 2r/d

Power performance is the key index to test whether the hybrid system integrates well.
Total wave power Ptotal versus incident wave periods for WECs with different bottom
shapes are compared in Figure 5. For the same 2r/d, the performance of wave power for
WEC with the hemispherical bottom is almost as good (Figure 5a,b,d) or slightly better
(Figure 5c) as that with the conical bottom. The total wave power of both these two
is larger than that of WEC, with a flat bottom in all incident waves for various values
of 2r/d. Specifically, the annual wave power of WEC with a 90◦ conical bottom and
with a hemispherical bottom increases by 32.5%/35.1%, 26.0%/29.1%, 27.2%/43.0%, and
24.7%/29.2% compared with cylindrical WEC with the flat bottom when 2r/d = 3.0, 2.5, 1.5,
and 1.0, respectively. It is consistent with Zhou et al.’s discovery [29] that the single WEC
with hemispherical bottom has the best energy conversion performance without being
combined on the wind platform.

The variation of total wave power for various 2r/d is similar; that is, it gradually
increases until the peak value, fluctuates near the peak, and then decreases gradually.
Additionally, as the value of 2r/d becomes smaller, total wave power decreases. That means
larger WECs are preferred in capturing more wave energy in a specific sea state, coincident
with the hybrid system consisting of a WindFloat platform with a 5 MW wind turbine [29].

Additionally, the resonance period of WECs shifts down to a smaller period due to
the coupling hydrodynamic forces between the platform and WECs; a phenomenon also
observed in Hu et al.’s research [29]. Further, the offset amplitudes for WECs with a 90◦

conical bottom and a hemispherical bottom are larger than that with a flat bottom when
the value of 2r/d is fixed. The resonance period for WEC with a 90◦ conical bottom and
with hemispherical bottom was 4.65 s/4.62 s, 4.65 s/4.62 s, 4.91 s/4.91 s, and 4.99 s/4.99
s, while for WEC with a flat bottom is 4.83 s, 4.83 s, 5.11 s, and 5.15 s, corresponding to
2r/d = 3.0, 2.5, 1.5, and 1.0, respectively. Moreover, for WEC with the same bottom shape,
the offset amplitude of the resonance period increases as 2r/d increases.

4.3.2. Relative Heave at Different Positions

For further explanation, optimal PTO damping and relative heave motion (its two
main factors) versus incident wave periods at three different locations (1#, 2#, and 3#,
illustrated in Figure 4a) of the hybrid system are explored in Figure 6, taking the case of
2r/d = 3.0 for example.
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Figure 5. Comparisons of total wave power of the hybrid system with flat, 90◦ conical, and hemispherical
bottoms for various values of 2r/d: (a) 2r/d = 3.0; (b) 2r/d = 2.5; (c) 2r/d = 1.5; (d) 2r/d = 1.0.
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Figure 6. The optimal PTO damping and relative heave motion versus incident wave period of WECs
with different bottom shapes in the case of 2r/d = 3.0: (a) bopt; (b) Float 1#; (c) Float 2#; (d) Float 2#.

Near the resonance period (T = 5.18 s) of the target sea, optimal PTO damping of
WECs with all three bottom shapes has little difference and is quite small. Compared to the
cylindrical WEC with a flat bottom, the offset of the relative heave motion of WECs with
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90◦ conical and hemispherical bottoms is quite large at location 1#, moderate at location 2#,
and small at location 3#. These facts lead to the total wave power not reaching the peak
near the resonance period, and the value corresponding to WECs with 90◦ conical and
hemispherical bottoms is more significant than that with a flat bottom.

Near T = 12.0 s, optimal PTO damping reaches the peak, and the increased values
of WECs with 90◦ conical and hemispherical bottoms are relatively large compared to a
cylindrical WEC with a flat bottom. The relative heave motion of WECs with all three
bottom shapes has little difference and is quite small at locations 1#, 2#, and 3#. This creates
the phenomenon that the total wave power presents relatively upward near T = 12.0 s.

4.4. Platform Motion and Mooring Force
4.4.1. Platform Motion

Motion response is also important in evaluating the performance of the hybrid system
since substantial impacts can be observed. Figure 7 displays the motions of the OC4
platform, combined with WECs with flat, 90◦ conical, and hemispherical bottoms, for
2r/d = 3.0, with the motion of a single platform given as reference.
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Figure 7. Motions of OC4 platform, combined with WEC with flat, 90◦ conical, and hemispherical
bottom shapes (2r/d = 3.0): (a) Surge; (b)Heave; (c) Pitch.

In Figure 7a, compared to the surge motion of a single platform, the platform combined
with various bottom-shaped WECs manifests little increase or decrease in different wave
period ranges. Bottom shapes hardly affect the surge motion of the platform.

In Figure 7b, working near the resonance period in the heave direction (i.e., Theave = 17.5 s),
the heave motion of the hybrid system is reduced compared to a single platform due to a
viscous force caused by the addition of PTO. Whereas, in the range of 8.0 s–16.0 s, the
heave motions of all three with different bottom shapes are much larger than that with
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a single platform. The heave motion of the hybrid system with WECs with 90◦ conical
and hemispherical bottoms is larger than that with conical bottoms. This variation may be
consistent with the optimal PTO damping coefficient given in Figure 6a, indicating that
PTO force plays a major role in the heave motion of the platform in this wave period range.
In the rest waves (3.0 s–7.0 s), there is little difference in heave motion between the hybrid
system with three different bottom-shaped WECs and a single platform.

In Figure 7c, variation of pitch motion is generally similar to, but not as substantial
as, the behavior of heave motion in the wave period smaller than the resonance period
(i.e., Tpitch = 20.6 s) of the platform in the pitch direction. In the range of 3.0 s–10.0 s, the
hybrid system fluctuates slightly in the pitch direction. In the range of 10.0 s–17.0 s, the
pitch motion of the hybrid system with WECs with 90◦ conical and hemispherical bottoms
is slightly larger than that with conical bottoms. The pitch motions of all three with different
bottom shapes are much larger than that with a single platform. In the range of 17.0 s–20.0 s,
the pitch motion of the hybrid system is reduced compared to a single platform.

4.4.2. Mooring Force

Mooring horizontal force, vertical force, and pitch moment versus incident wave
periods are illustrated in Figure 8, taking case 2r/d = 3.0, for example. Variation of mooring
force (horizontal force, vertical force, and pitch moment, respectively) is similar to that of
motion displacement (surge, heave, and pitch, respectively) of the platform.
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Figure 8. Variations of horizontal mooring force, vertical force, and pitch moment versus incident
wave periods in the hybrid system combined with WEC with different bottom shapes (2r/d = 3.0):
(a) Horizontal force; (b) Vertical force; (c) Pitch moment.

In Figure 8a, compared to the horizontal force of a single platform, the platform com-
bined with various bottom-shaped WECs manifests little increase or decrease in different
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wave period ranges. Bottom shapes hardly affect the horizontal force of the platform. In
Figure 8b, working near the resonance period in the heave direction (i.e., Theave = 17.5 s)
of the platform, the vertical force of the hybrid system is reduced compared to a single
platform. Whereas, in the range of 8.0 s–16.0 s, the vertical forces of all three with different
bottom shapes are much larger than that with a single platform. The vertical force of the
hybrid system with WECs with 90◦ conical and hemispherical bottoms is slightly larger
than that with conical bottoms. In the rest waves (3.0 s–7.0 s), there is little difference in
vertical force between the hybrid system with three different bottom-shaped WECs and
a single platform. In Figure 8c, in the range of 3.0 s–10.0 s, the hybrid system fluctuates
slightly in pitch moment. In the range of 10.0 s–17.0 s, the pitch moment of the hybrid
system with WECs with 90◦ conical and hemispherical bottoms is larger than that with
conical bottoms. The pitch moments of all three with different bottom shapes are much
larger than that with a single platform. In the range of 17.0 s–20.0 s, the pitch motion of the
hybrid system is reduced compared to a single platform.

4.5. Hydrodynamic Optimization Analysis of the Distance between WECs and the Platform

Configuration of WECs is of vital importance for the performance optimization of
the hybrid system. The influence of the distance L3 of WECs protruding out the sides of
the triangular frame of the platform on power performance and motion response of the
hybrid system is explored, given in Figure 9. A hemispherical bottom-shaped WEC with
2r/d = 3.0 is chosen to be studied in an operational sea state.
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4.5.1. Wave Power

Figure 10 gives the wave power of the hybrid system versus the incident wave period
for various distances L3 protruding out the sides of the triangular frame of the platform.
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values of L3: (a) Total wave power; (b) Annual wave power.

In Figure 10a, near the resonance period (T = 5.18 s) of the target sea, the wave period
corresponding to the peak value of total wave power shifts towards a larger period. As the
distance between WECs and the platform increases, the offset amplitude and the peak value
of total wave power gradually become larger. Till L3 = 4.0r, the peak value decomposes
into several smaller peaks. Near T = 12.0 s, the wave period corresponding to the peak
value begins to move towards a smaller period gradually. This peak value becomes larger
with the increase in distance.

Figure 10b gives the annual average power generation according to Equation (8), in
which the joint distributions Sij, considered as the weight coefficients for different sea
states, are listed in Table 3, and wave power generations per wave amplitude versus
incident wave period are given in Figure 5. Hence, the annual average power generations
in Figure 10b are not directed against only one sea state but are weighted based on a
specific sea state. This value is 58.4 kW, 61.2 kW, 66.7 kW, 69.0 kW, 65.2 kW, and 63.4 kW,
corresponding to the distance L3 =0, 0.5r, 1.0r, 1.5r, 2.0r, and 4.0r, respectively. It can be
concluded that case L3 = 1.5r has the best annual average power generation performance of
the hybrid system at the given sea state. In practical engineering applications, adjusting the
distance between WEC and the sides of the triangular frame of the platform can enhance the
total power performance of the hybrid system. For example, when the distance L3 = 1.5r,
wave power generation can be improved by up to 18.2%, compared to the original design
method directly placed on the platform, beneficial to synergism between wave energy and
wind energy.

4.5.2. Platform Motion

Figure 11 gives the surge, heave, and pitch motion of the OC4 platform for various
distances L3 with a single platform for comparison. In Figure 11a, as the distance between
WEC and the sides of the platform increases, the surge motion of the platform in the range
of 10.0 s–14.0 s decreases, with little difference in other ranges of wave period. In Figure 11b,
except for L3 = 4.0r, the peak value and its corresponding wave period of the heave motion
of the hybrid system are seldom affected by the distance L3. In Figure 11c, as distance L3
increases, the peak value of pitch motion increases in the range of 8.0 s–14.0 s, and this
value decreases in the range of 17.0 s–20.0 s. Meanwhile, in the range of 8.0 s–14.0 s, the
wave period corresponding to the peak of pitch shifts forward to a smaller one.
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5. Conclusions

Based on a frequency-domain coupled hydrodynamic model, the shape, the PTO
damping, the layout of the PAWECs combined with a semi-submersible floating wind
platform are optimized, and their influences on the power performance, mooring force,
and motion response of the hybrid system are explored under a wave condition measured
in the Yellow Sea, China. The main conclusions are:

(1) The annual power generation of a PAWEC can be improved by 30% by using a 90◦

conical or hemispherical bottom instead of a flat bottom. To all of the three kinds
of PAWECs using a flat, 90◦ conical, or hemispherical bottom, the hydrodynamic
coupling changes the added mass of the PAWECs, hence their heaving natural period;

(2) Similar to the situation where the wind platform is fixed, the platform's motion does
not influence the selection result of the size of the PAWECs. The larger the diameter
and the diameter-to-draft ratio, the more wave power is generated;

(3) The resonant heave and pitch motion of the platform can be reduced by the power
take-off damping force exerted by the PAWECs. On the other hand, the surge motion
changes a little;

(4) Variation of the mooring loads (horizontal force, vertical force, and pitch moment) is
similar to that of the motion responses (in the surge, heave, and pitch) of the platform;

(5) Different protruding distances L3 similarly change the surge and heave motion re-
sponses of the platform. However, the larger the protruding distance causes, the
larger the pitch motion response. There exists an optimal protruding distance where
the maximum power can be achieved. In this study, this optimal power generation
occurs while L3 is 1.5 times the PAWEC radius, which is 18.2% higher than that while
the PAWECs are installed on the sides of the triangular frame of the platform. This
finding could be generalized to similar hybrid systems.
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The frequency-domain analysis proposed for a hybrid system combining large floating
platforms and WECs is fast and preferable for linear hydrodynamic analysis. However,
it also has some limitations. It is applied to the simulation, assuming the motions of
the structure are small amplitudes. It also cannot reflect the transient responses of the
structure or the nonlinearities due to PTO systems, wave forces, mooring forces, or the
compressibility of the air trapped.

The above findings can provide an approach for the hydrodynamics optimization
of the layout of a wind–wave hybrid system. It illustrates a clear understanding of the
influence of layout on power performance and motion response and gives a preferred
configuration at an operational sea state. This study could promote the synergy of joint
wave and wind energy exploitation, guiding practical engineering.
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