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Background

A major challenge that hinders the economic viability of WECs is the development of

highly efficient Power Take-Off (PTO) control algorithms. Reinforcement

On one hand, conventional model-based controls for WECs are typically developed Learnin g

without considering the PTO dynamics (e.g., impedance matching), which may be

misleading.

On the other hand, directly developing a model-based control w.r.t all subsystems from """""""""""""""""""""""""""
wave to wire is extremely cumbersome. /,,/’”;uoy

Reinforcement learning based method may offer a solution given it is model-free,
adaptive, and robust.
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Background

We have previously developed a Deep Reinforcement Learning (DRL)

based control that is able to optimize the performance of the WEC in a

global manner via direct interaction with the environment [1].
The developed control collects real-time reward (electrical power output),
and states to train the action-value function and determine the next action

by maximizing the target.

On paper, we have proved promising performance of the DRL control in

terms of both power production and power quality.

However, the practical performance of this control remains unknown.

On paper, we have shown that the
proposed control is able to
outperform some state-of-the-art
controls in energy production.
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[1] Zou, S., Zhou, X., Weaver, W. and Abdelkhalik, O., 2022. Deep reinforcement learning control of wave energy

converters. IFAC-PapersOnLine, 55(27), pp.305-310.
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Background

* Therefore, the research team at MTU collaborated with OSU
on a TEAMER project to experimentally validate and analyze

the practical performance of the DRL control.

* The main objective is to answer the following research

questions:

(1) What is the practical performance of DRL control in terms
of power production, adaptivity, robustness, computational

speed, and losses?

(2) What are the challenges and limitations of practically

implementing DRL control?
LUPA power electronics and PTO unit

LUPA single body heaving configuration and the actual hardware

in the wave flume.
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Table. LUPA Physical Specifications

Specification Value m

g
q',ﬁ End Stop Scale 1/20 m/m

Float Diameter 1 m
Total height 3.7 m
PTO Stroke Length 0.5 m
Power Mass 436 kg

Electronics Motor Continuous Torque 46 Nm

Water Depth 2.7 m

)

Continuous Torque: 50Nm

Resolution: 26 bit
Peak Current: 26A
Capacity: 4448N
Roll/Pitch: 0.59

Resolution: 0.012mm



Methodology: LUPA numerical model

* An experimentally calibrated LUPA numerical model (for Specifications  Value  Unit
single-body heaving configuration) is used for control training

[2] Mass kg
. 9 PTO strok 0.5
* The hydrodynamics is modelled as: e "
.e Moment of 66.17 Kg.m~"2
. . .. Moment of 65.33 Kg.m*2
It is noted that in addition to the drag force, the force Fj, s Inertia (Y)
represents physical system losses that include the mechanical ";'::;‘:;’Ef et REmnAZ
friction and electromagnetic damping/inertia in the motor. Quadratic Drag 0.1
_ . coefficient
Fioss = —Ciqz

where this force initially is assumed to be zero in our
pretraining, but later found to be necessary to add (due to model

mismatch) and calibrated according to testing data. During the actual experiments, e .y
the research team did observe " 4

significant mechanical losses in
the drivetrain.

LUPA response under a regular wave with a height of
0.2m and a period of 2s (wave rider mode).
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[2] Bosma, B., Beringer, C. and Robertson, B., 2023, September. Experimental passive and reactive control of a Time(s)
Laboratory Scale WEC Point Absorber. In Proceedings of the European Wave and Tidal Energy Conference (Vol. 15).



Methodology: DRL control

Next, the DRL control is developed for LUPA to maximize the wave power
production. A time-varying Pl control law is applied:

Fpro = —K;(£)z(t) — K, (t) z(t)

where the Pl gains are adapted based on discrete actions:

A = {a|(6K;,0), (0,6K,), (0,0), (—8K;,0), (0, —5K,)}

The optimal action of the DRL agent is determined by maximizing the target
network:

Q =r+ymaxQ(s’,a’;6;) Target network
a’
Q =Q(s,a;6;) Prediction network
where s and r represents the state and reward collected from the environment:
s = [z, 7]
r = Py = —FproZ

The network parameters 6; will be trained such that the error between the target
network and prediction network will be minimized:

VBiL(Hi) = Es,a,r,st[(é — Q)VBiQ(Sr a,; 6;)]

DRL Agent

Action / \

a = [6K;, 6K,]

A

a

FPTO

State (s)

Reward r = B,




Method: Physical implementation

The experimental setup of LUPA is presented in the figures. More specifically, LUPA
uses EtherCAT connections to communicate with varied sensors and motor power

electronics via a SpeedGOAT machine.

The pre-trained control (a Neural Network) is directly deployed to the SpeedGOAT

machine via a MATLAB/SIMULINK block “generatePolicyBlock” (very

straightforward!).

During the real-time tests, the processing time of the DRL control is very small,
which is around 0.008ms << 1ms as the sampling rate.

In addition, no significant noise has been found for key measurements.
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Results: Testing of the DRL control

Despite the easy process of control real-time implementation, the control
performance is very poor in practice initially.

An optimal feedback control (OFC) is also tested to benchmark the
performance of the DRL control [2].

It is found that the control failed due to the following reasons:
(1) Model mismatch

(2) Random initial conditions

(3) Nonlinear events

(4) Process noises

On paper performance
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The DRL shows a very promising performance in the numerical environment, and absorbs nearly the same power
as an impedance-matching control (considered as the theoretical maximum).



Results: Model mismatch

Heave Displacement as Wave Rider for H=0.15m T=2.25s
0: ‘ ‘ ‘ I ——Numerical Model

* Asignificant model mismatch is observed during the testing, mainly due to the nonlinear e

0.05

* Motion of LUPA is overpredicted under both controlled and uncontrolled conditions.
Physically, this is due to the significant mechanical loss in the drivetrain (belt connection
with the motor).
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* To address this issue, additionally PTO damping is now added to the model as a linear
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where ¢, is identified by matching the system responses under varied conditions.
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Results: Random initial conditions

In numerical simulations, control typically starts from fixed initial conditions (e.g., zero displacement and velocity). However, in tests,

the control is enabled manually after a few waves pass the WEC (due to the tank setup).

different control enable time.

It is found that the control is highly sensitive to initial conditions.
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* |tis found that the control performance can be significantly impacted by

Results: Nonlinear events nonlinear events.
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negative impulses in motion amplitude, which can easily disrupt the control.
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Results: Process noise

* Significant process noise is also observed during the tank tests. Although the process noise has a

smaller impact on the system responses (e.g., compared to nonlinear events), it still may impact the
control performance.

* Physically, this process noise may result from varied sources such as fluctuations of the waves,
uncertainties, and unmodelled nonlinearities in the drivetrain and wave-buoy interaction.

Clear variation in the magnitude of the system response of LUPA
even under regular wave conditions.
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Results: Improvement

The mentioned uncertainties and nonlinearities that significantly impact the control

performance are now included in the training.

More specifically:

(a) random control start time such that the initial conditions for the control are

random

(b) directly modify the system response (70% to 130%) within a random time
window

(c) normally distributed white noise

(d) linear PTO loss with a random damping coefficient selected from a certain range.

The control performance is significantly improved.
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Results: Improvement with different states

H=0.2m and T=1.75s

* In addition to the improvement on the training environment, (a)
we have also investigated the impact of different selections
of observation states on the control.
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Results: Regular waves

Comparing the performance of the DRL control with S1 and S6 as the observation states, we can tell that when S6 is selected, the
control exhibits a more robust performance, while is less adaptive.

This feature is well-suited to be applied to regular waves. Therefore, S6 is selected for all regular wave tests.

After all the improvements, the DRL control now shows a promising performance in practice.

Regular Wave DRL Experimental Results
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Results: Irregular waves

The performance of the DRL control is further tested with the

irregular wave, which has a significant height of 0.21m and a peak
period of 3.09s.

For irregular waves, the observation state S1 (displacement and
velocity) is selected instead of S6 since S6 is found to be too stiff.

The control gain shows a strong adaptivity subject to the system
responses.

The power harvested by the DRL control is 11.6W, 14W, and 15.5W
under the same wave condition with three different random seeds.
This is significantly better than the OFC control (5.4W).
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Conclusions

e The DRL control is trained using the MATLAB/Simulink Deep Learning Toolbox, which is found to integrate straightforwardly with
the real-time system (SPEEDGOAT).

e The processing time of DRL control in real time is found to be very small (around 0.008 ms) and is significantly smaller than the
sampling rate (1 ms).

e The robustness of the control in practice is critical, and it is important to introduce significant randomness during training (such
as nonlinear events, random initial conditions, nonlinear drivetrain losses, process noises, etc.).

e The performance of the control in terms of power production and robustness is significantly impacted by the selected
observation states. It is found when the displacement and velocity are selected, the control is optimal and adaptive but slightly
less robust (so recommended for irregular waves). In contrast, when displacement, velocity, significant wave height, period, and
prior action are the states, the control is more robust but less adaptive (so recommended for regular waves).

e The DRL control shows a promising performance in terms of power production. For regular waves, its performance is close to
the practical maximum for small waves, and significantly better for larger waves. For irregular waves, the DRL control is also
significantly better.

More content about this test can be found at https://mhkdr.openei.org/submissions/628
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