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Background
• A major challenge that hinders the economic viability of WECs is the development of 

highly efficient Power Take-Off (PTO) control algorithms.
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The control performance is 
significantly degraded when the 
control is designed without 
considering the PTO unit

• On the other hand, directly developing a model-based control w.r.t all subsystems from 
wave to wire is extremely cumbersome.

• Reinforcement learning based method may offer a solution given it is model-free, 
adaptive, and robust.

• On one hand, conventional model-based controls for WECs are typically developed 
without considering the PTO dynamics (e.g., impedance matching), which may be 
misleading.



Background
• We have previously developed a Deep Reinforcement Learning (DRL) 

based control that is able to optimize the performance of the WEC in a 
global manner via direct interaction with the environment [1]. 

• The developed control collects real-time reward (electrical power output), 
and states to train the action-value function and determine the next action 
by maximizing the target. 

• On paper, we have proved promising performance of the DRL control in 
terms of both power production and power quality. 

• However, the practical performance of this control remains unknown.

On paper, we have shown that the 
proposed control is able to 
outperform some state-of-the-art 
controls in energy production.

[1] Zou, S., Zhou, X., Weaver, W. and Abdelkhalik, O., 2022. Deep reinforcement learning control of wave energy 
converters. IFAC-PapersOnLine, 55(27), pp.305-310.



Background
• Therefore, the research team at MTU collaborated with OSU 

on a TEAMER project to experimentally validate and analyze 
the practical performance of the DRL control.

• The main objective is to answer the following research 
questions:

      (1) What is the practical performance of DRL control in terms 
of power production, adaptivity, robustness, computational 
speed, and losses? 
      (2) What are the challenges and limitations of practically 
implementing DRL control? 

LUPA single body heaving configuration and the actual hardware 
in the wave flume.

LUPA power electronics and PTO unit

Component Brand Part Number Specification
Generator Akribis ADR220-B175-S/P-J/K-3.0-

RA-26B-P25-Z75 
Continuous Torque: 50Nm

Encoder Renishaw L-9517-9448-05-B
 

Resolution: 26 bit

Drive ElmoMC G-OBOE 13A/230VAC ECTSW 
ENC SRC FIN+FAN 

Peak Current: 26A

Load Cells Futek FSH00971 Capacity: 4448N
VRU Xsens MTI-20-2A8G4 Roll/Pitch: 0.5O

Draw Wire Micro-Epsilon WDS-1000-P60-SR-SSI Resolution: 0.012mm

Symbol Quantity Value Unit
𝝉𝝉𝒄𝒄𝒄𝒄 Continuous Torque 46 N.m

𝝉𝝉𝒑𝒑𝒑𝒑 Peak Torque 137.9 N.m

𝑲𝑲𝒕𝒕 Torque Constant 8.51 N.m/Arms

𝛀𝛀𝒎𝒎𝒎𝒎𝒎𝒎 Max Speed 150 rpm



Methodology: LUPA numerical model
• An experimentally calibrated LUPA numerical model (for 

single-body heaving configuration) is used for control training 
[2].

• The hydrodynamics is modelled as:
      𝑚𝑚𝑧̈𝑧 = 𝐹𝐹𝑒𝑒𝑒𝑒 + 𝐹𝐹𝑟𝑟 + 𝐹𝐹ℎ𝑠𝑠 + 𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝 + 𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
      It is noted that in addition to the drag force, the force 𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 
represents physical system losses that include the mechanical 
friction and electromagnetic damping/inertia in the motor.
       𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = −𝐶𝐶𝑙𝑙𝑙𝑙𝑧̇𝑧
      where this force initially is assumed to be zero in our 
pretraining, but later found to be necessary to add (due to model 
mismatch) and calibrated according to testing data.
       

During the actual experiments, 
the research team did observe 
significant mechanical losses in 
the drivetrain.

LUPA response under a regular wave with a height of 
0.2m and a period of 2s (wave rider mode).

[2] Bosma, B., Beringer, C. and Robertson, B., 2023, September. Experimental passive and reactive control of a 
Laboratory Scale WEC Point Absorber. In Proceedings of the European Wave and Tidal Energy Conference (Vol. 15).



Methodology: DRL control
• Next, the DRL control is developed for LUPA to maximize the wave power 

production.  A time-varying PI control law is applied:
      𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃 = −𝐾𝐾𝑖𝑖 𝑡𝑡 𝑧𝑧 𝑡𝑡 − 𝐾𝐾𝑝𝑝 𝑡𝑡  𝑧̇𝑧(𝑡𝑡)
      where the PI gains are adapted based on discrete actions:
       𝐴𝐴 = {𝑎𝑎| 𝛿𝛿𝐾𝐾𝑖𝑖 , 0 , 0, 𝛿𝛿𝐾𝐾𝑝𝑝 , 0,0 , −𝛿𝛿𝐾𝐾𝑖𝑖 , 0 , (0,−𝛿𝛿𝐾𝐾𝑝𝑝)} 

• The optimal action of the DRL agent is determined by maximizing the target 
network:

       �𝑄𝑄 = 𝑟𝑟 + 𝛾𝛾max
𝑎𝑎𝑎

𝑄𝑄(𝑠𝑠′,𝑎𝑎′;𝜃𝜃𝑖𝑖−)             Target network
       𝑄𝑄 = 𝑄𝑄(𝑠𝑠,𝑎𝑎;𝜃𝜃𝑖𝑖)                                      Prediction network
       where s and r represents the state and reward collected from the environment:
       𝑠𝑠 = 𝑧𝑧, 𝑧̇𝑧
       𝑟𝑟 = 𝑃𝑃𝑚𝑚 = −𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑧̇𝑧

• The network parameters θi will be trained such that the error between the target 
network and prediction network will be minimized:

         ∇𝜃𝜃𝑖𝑖𝐿𝐿 𝜃𝜃𝑖𝑖 = 𝐸𝐸𝑠𝑠,𝑎𝑎,𝑟𝑟,𝑠𝑠𝑠[ �𝑄𝑄  − 𝑄𝑄 ∇𝜃𝜃𝑖𝑖𝑄𝑄(𝑠𝑠, 𝑎𝑎, ; 𝜃𝜃𝑖𝑖)]

      

       

St a t e  (s)

Re w a rd  𝑟𝑟 = 𝑃𝑃𝑚𝑚

DRL Ag e n t

Ac t ion
𝑎𝑎 = [𝛿𝛿𝐾𝐾𝑖𝑖 ,𝛿𝛿𝐾𝐾𝑝𝑝]

𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃 



Method: Physical implementation
• The experimental setup of LUPA is presented in the figures. More specifically, LUPA 

uses EtherCAT connections to communicate with varied sensors and motor power 
electronics via a SpeedGOAT machine. 

• The pre-trained control (a Neural Network) is directly deployed to the SpeedGOAT 
machine via a MATLAB/SIMULINK block “generatePolicyBlock” (very 
straightforward!).

• During the real-time tests, the processing time of the DRL control is very small, 
which is around 0.008ms << 1ms as the sampling rate.

• In addition, no significant noise has been found for key measurements.

SpeedGOAT real-
time machine

EtherCAT 
communications



Results: Testing of the DRL control
• Despite the easy process of control real-time implementation, the control 

performance is very poor in practice initially. 

• An optimal feedback control (OFC) is also tested to benchmark the 
performance of the DRL control [2]. 

• It is found that the control failed due to the following reasons:

       (1) Model mismatch

       (2) Random initial conditions

       (3) Nonlinear events

       (4) Process noises

The DRL shows a very promising performance in the numerical environment, and absorbs nearly the same power 
as an impedance-matching control (considered as the theoretical maximum).

However, only 1 out of 14 prepared DRL control 
works, all the other control failed (goes to the 
boundary for instability protection).

On paper performance
Practical performance



Results: Model mismatch
• A significant model mismatch is observed during the testing, mainly due to the nonlinear 

PTO loss.

• Motion of LUPA is overpredicted under both controlled and uncontrolled conditions. 
Physically, this is due to the significant mechanical loss in the drivetrain (belt connection 
with the motor). 

• This additional PTO loss is dependent on the operating conditions of LUPA.
• To address this issue, additionally PTO damping is now added to the model as a linear 

damping with the damping coefficient being a random number in:

    𝑃𝑃𝑇𝑇𝑂𝑂𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∈ 𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝 − 300, 𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝 + 100

        where 𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝 is identified by matching the system responses under varied conditions.

Wave Conditions H = 0.15 m

T = 1.75s 

H = 0.15 m

T = 2.25s 

H = 0.15 m

T = 2.5s 

H = 0.15 m

T = 2.75s 

H = 0.2m

T = 1.75s 

H = 0.2m

T = 2.25s 

𝒄𝒄𝒑𝒑𝒑𝒑𝒑𝒑 (N.s/m) 500 700 800 900 1200 800

System response of LUPA after fixing this PTO loss



Results: Random initial conditions

• In numerical simulations, control typically starts from fixed initial conditions (e.g., zero displacement and velocity).  However, in tests, 
the control is enabled manually after a few waves pass the WEC (due to the tank setup).

• It is found that the control is highly sensitive to initial conditions.

• The following example shows that the control performance can be significantly different under the same wave condition, but only with a 
different control enable time.

The control quickly 
goes to unstable due 
to the initial condition 
and transient.

The initial velocity is away from 
zero which is ‘unseen’ by the 
trained DRL control 



• It is found that the control performance can be significantly impacted by 
nonlinear events. 

• The so-called nonlinear events are characterized by unexpected positive or 
negative impulses in motion amplitude, which can easily disrupt the control. 

• Physically, these events may be caused by nonlinear wave behavior (e.g., due 
to the wave paddle) or nonlinearities in mechanical drivetrain/wave-structure 
interaction.

Results: Nonlinear events

Clear nonlinear events happened at 260s and 
530s, with the largest deviation around 54%. This 
further leads to a 138% change in system 
response.

Nonlinear wave events exampleOther nonlinear events

No apparent wave events, but the control goes unstable around 
323s, caused by a dramatic low peak of the system response 
(magnitude change of 21.38%).



• Significant process noise is also observed during the tank tests. Although the process noise has a 
smaller impact on the system responses (e.g., compared to nonlinear events), it still may impact the 
control performance.

• Physically, this process noise may result from varied sources such as fluctuations of the waves, 
uncertainties, and unmodelled nonlinearities in the drivetrain and wave-buoy interaction.

Results: Process noise

Clear variation in the magnitude of the system response of LUPA 
even under regular wave conditions. 



• The mentioned uncertainties and nonlinearities that significantly impact the control 
performance are now included in the training.

      More specifically:

      (a) random control start time such that the initial conditions for the control are 
random

      (b) directly modify the system response (70% to 130%) within a random time 
window

      (c) normally distributed white noise

      (d) linear PTO loss with a random damping coefficient selected from a certain range.

• The control performance is significantly improved.

Results: Improvement H = 0.15m and T = 2.25s Third event does not cause noticeable 
motion change may because the device 
already run in a waverider mode.



• In addition to the improvement on the training environment, 
we have also investigated the impact of different selections 
of observation states on the control.

• Representative observation states used in the literature are 
tested.

• From this table, it is clear that S1 and S6 are the optimal 
selections.

• The detailed performance of the DRL control with S6 is 
further tested.

Results: Improvement with different states Observation Expression Power Performance

(H = 0.15m, T=1.75s)

S1 𝑠𝑠 =  (𝑧𝑧,𝑣𝑣) 4W

S2 𝑠𝑠 = (𝑧𝑧, 𝑣𝑣,𝐻𝐻𝑠𝑠 ,𝑇𝑇𝑝𝑝) Unstable, no Power

S3 𝑠𝑠 = (𝑧𝑧,𝑣𝑣,𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃) Unstable, no Power

S4 𝑠𝑠 = (𝑧𝑧, 𝑣𝑣,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) Unstable, no Power

S5 s= (𝑧𝑧,𝑣𝑣,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝐻𝐻𝑠𝑠 ,𝑇𝑇𝑝𝑝,𝑎𝑎𝑡𝑡−1) 2.5W

S6 𝑠𝑠 = (𝑧𝑧,𝑣𝑣,𝐻𝐻𝑠𝑠,𝑇𝑇𝑝𝑝,𝑎𝑎𝑡𝑡−1) 4W

S7
𝑠𝑠 = (𝑧𝑧,𝑣𝑣,

Σ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑁𝑁 )

2.7W

S8
𝑠𝑠 = (𝑧𝑧, 𝑣𝑣,𝐻𝐻𝑠𝑠 ,𝑇𝑇𝑝𝑝,

Σ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑁𝑁 )

Unstable, no Power

H = 0.2m and T = 1.75s

Two significant wave events occurred at 171 and 283s, the control tends 
to maintain the PI gains with only slight disturbances (riding through the 
events in contrast to being adaptive when S1 is used).



• Comparing the performance of the DRL control with S1 and S6 as the observation states, we can tell that when S6 is selected, the 
control exhibits a more robust performance, while is less adaptive.

• This feature is well-suited to be applied to regular waves. Therefore, S6 is selected for all regular wave tests.

• After all the improvements, the DRL control now shows a promising performance in practice.

Results: Regular waves

The power produced by DRL 
control is 56.8% higher since 
the OFC control only applies 
damping, while the DRL 
control allows spring effect 
within the same motion 
constraint.

The control performance is 
close to the optimal solution 
(obtained via tank-based grid 
search).



• The performance of the DRL control is further tested with the 
irregular wave, which has a significant height of 0.21m and a peak 
period of 3.09s.

• For irregular waves, the observation state S1 (displacement and 
velocity) is selected instead of S6 since S6 is found to be too stiff.

• The control gain shows a strong adaptivity subject to the system 
responses.

• The power harvested by the DRL control is 11.6W, 14W, and 15.5W 
under the same wave condition with three different random seeds.  
This is significantly better than the OFC control (5.4W).

Results: Irregular waves

Gain increase when 
there is a strong 
motion.

Vice versa

Hs = 0.21m and Tp = 3.09s



Conclusions
• The DRL control is trained using the MATLAB/Simulink Deep Learning Toolbox, which is found to integrate straightforwardly with 

the real-time system (SPEEDGOAT). 

• The processing time of DRL control in real time is found to be very small (around 0.008 ms) and is significantly smaller than the 
sampling rate (1 ms).

• The robustness of the control in practice is critical, and it is important to introduce significant randomness during training (such 
as nonlinear events, random initial conditions, nonlinear drivetrain losses, process noises, etc.).

• The performance of the control in terms of power production and robustness is significantly impacted by the selected 
observation states. It is found when the displacement and velocity are selected, the control is optimal and adaptive but slightly 
less robust (so recommended for irregular waves). In contrast, when displacement, velocity, significant wave height, period, and 
prior action are the states, the control is more robust but less adaptive (so recommended for regular waves).

• The DRL control shows a promising performance in terms of power production.  For regular waves, its performance is close to 
the practical maximum for small waves, and significantly better for larger waves.  For irregular waves, the DRL control is also 
significantly better.

More content about this test can be found at https://mhkdr.openei.org/submissions/628
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