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Abstract

This paper presents the calibration of a high-fidelity Power Take-Off (PTO) model for Wave Energy Converters
(WECs) using experimental data from recent wave tank testing of the WaveBot device at the U.S. Navy’s MASK
Basin. The model integrates detailed representations of PTO control, motor dynamics, and inverter behavior, includ-
ing switching-level simulation of power electronics. By tuning the model parameters, this study demonstrates good
agreement between simulated and measured system responses and losses. The experimentally calibrated model serves
as a foundation for optimal control design of WECs to maximize PTO efficiency. More specifically, a novel control
that enables a time-varying DC bus voltage is proposed, and the simulation results show a 62% reduction in inverter
losses, which improves the PTO efficiency by 48.5% compared to an unoptimized PTO architecture.
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1 Introduction

Ocean wave energy resources are abundant, consistent, and have a high power density compared to other renewable
energy resources such as solar and wind [1]. In addition to supplying power to the grid, wave power also has its unique
strength in supporting the growth of the blue economy, given that it is at-sea and available all day. Significant research
efforts have been made in developing wave energy conversion technologies, including hydrodynamic modeling [2, 3,
4], PTO control [5, 6, 7], resource assessment [8, 9, 10], mooring design [11], etc. However, wave energy conversion
technology is still in its infancy, and many challenges need to be addressed to facilitate its economic viability.

One long-standing challenge of state-of-the-art WEC technologies is the inefficient conversion of mechanical power
into useful electricity. A large volume of literature focuses on developing advanced controls that maximize the me-
chanical power production of the WEC; however, it often overlooks the losses in the PTO unit. This typically leads
to significantly degraded electrical power generation or even negative power, which poses significant concerns for
practical applications [12]. Only limited studies in the literature are dedicated to understanding the performance and
developing controls for the power electronics in the PTO unit [13, 14], which is the major source of power losses.

To address this gap, the authors have recently developed a high-fidelity wave-to-wire model that holistically consid-
ers hydrodynamics, PTO control, Permanent Magnet Synchronous Motor (PMSM) dynamics, and inverter dynamics
[15]. The dynamic behavior of the power electronics is directly simulated (to the level of transistors), with losses
comprehensively considered, including motor copper losses, inverter conduction losses, and switching losses, aiming
to accurately capture the losses in the PTO unit. This preliminary study found that the DC bus voltage and switching
frequency have a significant impact on PTO losses. It is also found the PTO energy conversion efficiency can be im-
proved by up to 61.78% under optimal DC voltage and switching frequency compared to the unoptimized case. This
indicates significant opportunities exist in customizing the designs for PTO unit for specific WECs rather than directly
employing Commercial Off-the-Shelf (COTS) components which are typically overdesigned for WEC applications.
Despite the opportunities presented, the developed high-fidelity model is not calibrated with experimental data (al-
though model parameters are set to match the real hardware) in terms of detailed system responses and losses. There-
fore, building upon this prior effort, we will further improve the model fidelity by calibrating it using detailed exper-
imental testing data in this study. As far as the experimental data is concerned, the research team at Sandia National
Laboratories (SNL) conducted wave tank tests of the WaveBot device at the U.S. Navy’s Maneuvering and Sea Keep-
ing (MASK) Basin and published the open-source testing data [16]. It is noted that this test focuses on investigating the
PTO performance, and rich measurements were collected, including three-phase current/voltage, DC current/voltage,
motor torque, velocity, and power measured on the mechanical side, AC side, and DC side under varied wave con-
ditions. This data is leveraged in this study to adjust the high-fidelity PTO model to ensure the model accurately
predicts both dynamic responses and losses. The calibrated model is then simulated across different wave conditions
and parameter setups to present the impact of key parameters on system efficiency. In addition to the modeling effort, a
new control that allows a time-varying DC bus voltage is also derived in this study. This time-varying DC bus voltage
represents the minimum voltage required to supply the desired instantaneous PTO torque, which significantly reduces
losses in the PTO drivetrain.

This paper is organized as follows: the modeling and control are introduced in Section. II, and the results are discussed
in Section. III. Finally, the conclusion is drawn in Section. IV.

2 Methodology

The complete configuration of the drivetrain of WaveBot is presented in Fig. 1. Specifically, the heave motion of the
WaveBot is converted into rotational motion through a rack-and-pinion mechanism. This rotational motion then drives
the rotor of a PMSM, generating three-phase electrical power. The generated AC power is subsequently converted to
DC via an AC/DC inverter, which controls the torque output of the electric machine by regulating the AC voltage.

It is worth noting that this study focuses on the model calibration only for the PTO unit. More specifically, the
modeling of the mechanical side, which includes the hydrodynamics as well as the model for the magnetic spring
(which is incorporated to physically provide a negative spring effect) [16], is not considered. Instead, the direct
measurements of the mechanical side of the complete system (e.g., the buoy velocity, PTO force, and motor angle)
will be applied as inputs to the PTO model to simulate the PTO performance. This is because there exist uncertainties
and nonlinearities in the dynamics on the mechanical side, and modeling this part itself is a nontrivial task that is
currently beyond the scope of this study.
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Figure 1: Overall wave-to-wire configuration. It is noted that this paper focuses on the PTO unit.

Furthermore, this section will first introduce the high-fidelity model of the PTO unit. Next, the detailed derivation of
the new control that enables a time-varying DC bus voltage will be presented.

2.1 PTO model

The high-fidelity PTO model is developed in Simscape/Simulink, and is mainly composed of the PMSM, motor drive,
and the DC bus. Given that this model does not simulate the hydrodynamic behavior of the WEC, it receives the
measured velocity (of the WEC) and the commanded PTO force as inputs and simulates the actual PTO force output,
which aligns with the working mechanism of the PTO unit in practice.

2.1.1 Permanent Magnet Synchronous Motor

Physically, the PMSM is driven by the linear motion of WaveBot via a rack and pinion system (which converts the
linear motion to rotation), as presented in Fig. 1. The PMSM is controlled by the motor drive to produce the desired
three-phase current, such that it supplies a desired PTO force acting on the WEC. It is typically challenging to directly
work with the motor model in the ABC domain; therefore, the rotating reference frame method is applied:

d , cos(,)  cos(@. —F)  cos(@ +F) ||a

q| =3 |~sin@) - sin(@, - ) —sin(@. + F)||b M
1 1 1

0 3 2 2 ¢

Here, the transformation between the ABC and the DQ frames is the Park transformation. 6, denotes the electrical
rotor angle, which is computed as the product of the number of pole pairs (n,,) and the mechanical rotor angle (6,,),
i.e., 6, = n, X 6,,. After conducting the transformation, the resulting motor dynamics is:

Va = Rsiq + Lgiq — npwizL,
vy = Ryig + Lyiy + npyw(igLy + Ym) (2)
In this equation, R, represents the equivalent resistance of the stator windings, while L; and L, denote the stator

inductance along the d-axis and g-axis, respectively. Additionally, y,, refers to the flux linkage of the permanent
magnet. Furthermore, the resulting motor torque is calculated as:

3, ..
T, = znp(lq(lde + Wm) - ldquq) €))

The actual motor used in the experimental campaign is Applied Motion MF0310100-COX, and the specifications of
the motor provided by the manufacturer can be found in [17]. These parameters will be further tuned subject to the
experimental data.

2.1.2 Motor Drive

The motor drive is composed by six Insulated Gate Bipolar Transistor (IGBT) switches with a standard three-phase
two-level architecuture. In the proposed high-fidelity model, the behaviors of these switches are explicitly modelled
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(such that the model can accurately predict the switching losses and conduction losses). The model of a single IGBT
is:
vee = vi(1 = RouGoyy)
icE = Ron
veeGogfs otherwise

, ivaE > Vf&G>Vth

“4)

In this equation, icg and v¢g refer to the collector-emitter current and voltage, respectively. G denotes the gate voltage,
vy is the forward voltage, and vy, represents the threshold voltage. Moreover, R,, and G, correspond to the on-state
resistance and off-state conductance, respectively. Moreover, the diode is implemented in parallel with the IGBT,
which is also modeled using the piecewise linear model. It is noted that a fixed junction capacitance is added to the
diode. Both the conduction losses and switching losses in the drive are considered. In this case, the conduction losses
are directly reflected in the system responses. To avoid excessive computational cost, the heat transfer mechanism
of the switches is not modeled. Instead, the switching losses are calculated according to the on and off events of the
switches, and for each event, the losses are modeled as:

VcE  IcE
Eon = Eon,O— s (5)
VCE nom LCE,nom
VCE  IcE
Eorr = Eofro (6)

VCE,nom iCE,nom

where E,, o and E, /1, are the on and off losses measured at vcg jom and icg nom, Tespectively. The calibrated parameters
of the IGBT and Diode will be summarized in the results section.

2.1.3 Field Oriented Control

A standard Field Oriented Control (FOC) is applied in the PTO unit to produce the desired PTO force. It is noted that
this control differs from the new DC bus voltage control that will be presented in the next section, which has a control
objective of minimizing the power losses in the drivetrain under certain load and speed conditions. The FOC control
defines the desired DQ frame current according to the PTO force command as:

id,ref =0

. 2
lgref = T (7)

e,ref3np l,[/m
where the reference motor torque can be computed from the command PTO force as: T,,.s = Fproseftm- The
FOC control then receives the feedback signals on the three-phase current and computes the control by applying a
proportional-integral (PI) control law:

Varef = Kpalia = iarer) + Kia f(id — g ef)dt ®)
Varef = Kp,q(iq - iq,ref) + Ki,q f(lq - iq,ref)dt (9)

Here, K, 4, K, 4, Ki4, and K;, are the proportional and integral gains of the PI control respectively. The resulting
current control vg,.r and v, .y Will be transferred to the reference voltage in three-phase and supplied using a space
vector Pulse Width Modulation (SVPWM) method (which controls the on and off of the switches).

2.1.4 DC bus voltage control

A novel control that is proposed in this study is the DC bus voltage control (DCVC). In a standard electrical drivetrain
setup, the DC bus voltage is typically a constant value. It was found in our prior study [<empty citation>] that
the DC bus voltage and the switching frequency have a significant impact on the PTO efficiency. More specifically,
minimizing the DC bus voltage and switching frequency contributes to reducing the losses; however, this minimization
is not unlimited. For instance, an extremely low switching frequency will significantly impact the tracking of the
desired PTO force (e.g., dramatic rippling of the current/force) and also increase the losses. As far as the DC bus
voltage is concerned, it cannot be too low, as it would otherwise fail to supply the voltage required by the PTO force.
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Finding this lower limit is a challenging problem, especially for the DC bus voltage, given that it is dependent on
the operational conditions (e.g., current and speed), which therefore are inherently time-varying. Accordingly, in this
paper, we focus on deriving the lower limit of the DC bus voltage. Meanwhile, the minimum switching frequency is
selected as the smallest constant value among those experimentally tested.

The derivation starts from the assumption that the DC bus voltage shall be sufficient to supply the desired three-phase
voltage. The phase voltage can be computed as [18]:

Vie
If I, > 0, T+ conducting : V, = 7" — LR,

Vac
If I, > 0, D- conducting : V, = _Td —LRona

Vie
If I, < 0, T- conducting : V, = — ; - LR,
Vie
If I, < 0, D+ conducting : V, = 2" — LRona (10)

where in this equation, V, and I, represent the A phase voltage and current respectively. In addition, 7+ and D+
denote the upper bridge IGBT and diode. Rearranging this equation, in order to supply the desired phase voltage, the
DC bus voltage must satisfy:

Vdc

> [Val + |LalRon Y

Next, we need to derive the maximum magnitude of the phase voltage and current, and relate them to the operational
conditions. In Eq. 2, we know that if the FOC control works properly, then at steady state:

Vi = npwiyL,
Vy = Riy + nywiy, (12)

It is noted that, in addition to the differentiation terms, the i;-related terms are also eliminated, given that the FOC
control regulates the D-axis current to zero. Apply inverse Park Transformation, the voltage in the ABC frame can be
expressed as (given that the system is balanced):

Va = Vgcos(8) — V, sin()
2 2
Vi, = V,cos(8 — ?ﬂ) — Vg sin(6 — ?ﬂ)
2r . 2n
V.=V, cos(8 + ?) + Vg sin(6 + ?) (13)

It is clearly visible from this set of equations that the phase voltage has the same magnitude but a different phase shift,

and:
|V,| < ./Vj +V2 (14)

Now we have obtained the upper bound of one term in the inequality presented in Eq. 11. With regard to |I,|, this
upper bound can be similarly derived by using the inverse Park Transformation:

Ll < B+ =11 (15)

Substitute Eq. 14 and 15 into Eq. 11, we can now derive the minimum DC bus voltage needed to supply the desired
PTO force as:

Vdc,min =2 Vj + Vg + |Iq|Ron) (16)

where V; and V, in the equation will be computed using Eq. 12. Essentially, the minimum DC bus voltage is deter-
mined by the operational conditions: Ve pmin = f(I;, w).
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3 Results

The results are presented in this section, which include the model calibration, system performance under varied op-
erational conditions, and the performance of the new control. The simulations are performed in MATLAB/Simscape
using a fixed-step solver with a time step of 2.5 x 10~’s. The simulations are performed on a computer with an Intel
Core i7-12700 2.10 GHz processor and 32 GB of RAM. The cost of a 20 s numerical simulation is around 3.6 hrs.

3.1 Model Calibration: Motor

The model calibration can be mainly divided into two parts: motor and inverter model calibration. The motor model
is calibrated by matching certain system responses such as three-phase current and voltage, and the motor torque.
Initially, the motor specifications provided by the manufacturer are directly applied in the numerical simulations, and
the predicted system behavior is compared with the experimental data. The first mismatch found is the motor torque
calculation. Under the FOC control, the motor torque shall be expressed as (based on Eq. 3):

T, = %n,,zﬁmiq = % 1lq 17)
Both motor torque and the Q-axis current are measured experimentally, so it is relatively straightforward to identify
the correct torque constant as: K, = 4.85N/A instead of 7.186N/A (as provided by the manufacturer).
Next, Fig. 2 presents the comparison between the simulated and experimentally measured phase voltage and current
(expressed in the Q frame). The corresponding wave condition has a height of 0.127m and a period of 3.3s. Moreover,
the magnitude of the desired Q axis current is around 22.65A, and the resulting magnitude of the buoy velocity is
around 0.472m/s. It is noted that the comparison between the phase voltage and current in the D frame is not presented
since: (1) the D frame current is regulated to be zero under the FOC control; (2) the D frame voltage does not
contribute to the active AC power calculation (only contributes to the reactive power). Therefore, the model tuning
focuses on the alignment of Q axis voltage and current. However, we do observe a slight mismatch in the simulated
and experimentally measured D axis voltage, which is likely due to the motor’s nonlinear behavior. Given that this
voltage does not impact the power calculation, the study of this nonlinear effect is out of the scope of the current study.
It is clearly visible in the figure that the model provides a good prediction of the Q axis current. However, the predicted
Q axis voltage exhibits a clear phase shift compared to the experimental data. This phase shift has a significant impact
on the AC power calculation (as shown in Fig. 2(c)), where the numerically simulated AC power is 116.35W in contrast
to 178.43W in the experimental data (34.8% error).

(a) (b) (c)
30 1000
-
20 ——Experimental ——Experimental
10 20 o 500
g 0 s §- AL
< ——Numerical A e
=< - 0 20 E;‘::ir:vcu:mal Q v
10 > ' — < o0
-20 -20
-30 -500
840 845 850 855 860 865 -40 840 845 850 855 860 865
Time(s) 840 845 850 855 860 865 Time(s)

Time(s)

Figure 2: Comparison between the numerical prediction and experimental data in terms of Q-axis current, voltage,
and AC power using manufacturer-provided parameters.

To fix this phase shift, the parameters of the motor are further tuned by using a trial-and-error method. It is found by
lowering the stator resistance and the contribution of the last term in Eq. 2, the prediction of the Q axis voltage has a
good agreement with the experimental data:

vy = 0.6Rsiy + Lyiy + nyw(igLy + 0.9¢,,) (18)
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Figure 3: Complete PTO unit performance after tuning the motor parameters.

It is also worth noting that the 0.9 coefficient added to this equation represents a reduced contribution of the term
rather than a reduced flux linkage (which would otherwise impact the motor torque calculation). The calibrated motor
parameters are summarized in Table. 1.

The complete PTO unit performance after tuning

the parameters is presented in Fig. 3. From this

figure, we can see that the calibrated model now Table 1: Calibrated Motor Parameters

provides a good prediction of various system re-

sponses. Specifically, the phase shift of the Q axis _ ¥ arameter (Motor) Description Value

voltage is now corrected (as shown in Fig. 3(e)), Ly d-axis inductance 52 mH

AC powerprediction (Fi. 3 numerically s L Gaxis inductance - 52 mH
Wi icti ig. : numerically simu- .

lated is 169.51W versus experimentally measured R; Stator resistance 02898 Ohm

178.43W, with only a 5% error). As presented in K, Torque constant 4.85 N/A

Fig. 3(b), the predicted PTO force is slightly larger n, Number of pole pairs 24

than the experimental measurement, which may be
due to mechanical losses and nonlinearities. Fi-
nally, although the improved model shows good agreement with the experimental data in terms of system responses,
there still exists a significant mismatch in the DC power calculation, which requires tuning of the parameters in the
inverter model.

3.2 Model Calibration: Inverter

The calibration of the inverter model focuses on matching the DC power generation, which is calculated by subtracting
the inverter loss from the AC power. The inverter loss is mainly composed of conduction loss and switching loss,
which are primarily affected by the resistance of the IGBT and diode, as well as the switch-on and switch-off losses.
Therefore, the objective of the inverter model calibration is to identify the correct resistance and switch-on/off losses
such that the model-predicted conduction and switching losses are in good agreement with the experimental data.

However, it is noted that the collected testing data does not naturally provide a breakdown of losses from AC to DC.
Therefore, an assumption is made in this study to isolate different types of losses: the switching loss increases linearly
with the increase of the switching frequency, while the conduction loss remains unaffected.
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The experimental data is further processed according to this
assumption. The corresponding wave condition has a height
of 0.127m and a period of 3.3s. The experimental data cov-
ers the WaveBot performance under 4 different DC bus volt-
ages: [125, 152, 226, 300.5]V, 5 different switching frequencies:
[2000, 4000, 6000, 8000, 10000]JHz, and 9 different operational
conditions (basically different PI gains for the hydrodynamic con-
trol) quantified by 1,: [14.2, 17, 18.3, 19.4, 20, 20.9, 22.55, 22.65,
24.35]A. To isolate the switching loss from the total losses, the loss
data under a specific DC bus voltage (e.g., V4. = 226V) and a spe-
cific operational condition (e.g., I, = 20A), while with different
switching frequencies, is selected. Based on the assumption, the
change of the total loss subject to the switching frequency shall be
only contributed by the switching loss. Therefore, the increment of
the loss every 2000Hz of increase of the switching frequency is cal-
culated (e.g., [6.7766, 6.8584, 6.6648, 7.2424]W), which is further
averaged to compute the slope of the switching loss (which is im-
pacted by the DC bus voltage and Q axis current):

Py, = c(Vge, Iq)st

Vg =226, 1q=20A

d
40
—-Exp

30 —Curve fit
»n
8
=20
H
»n

10

0
0 2000 4000 6000 8000

10000
Time(s)

Figure 4: Linear curve fitting of the switching
loss against the experimental data.

19)

The switching loss then can be computed at different switching frequencies (Fig. 4). After repeating this procedure
for different DC bus voltage and Q axis current, the switching loss can now be isolated (as well as the conduction loss)
from the total loss under varied operational conditions. Fig. 5 (a) and (c) show the breakdown of switching loss and
conduction loss under different conditions from the experimental data. It is noted that the switching loss map is only

presented for one DC bus voltage (226V).

Switching loss exp (Vdc = 226V) Switching loss num (Vdc = 226V)
24 T 35 24 [
30
22 . 22
25
20 » 20
o 20 k=3 20
18 ‘ - 18 15
16 ‘ 10 16 10
— 5
2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
(a) Fsw ) Fsw
Conduction loss exp Conduction loss num
24 45 24
45
40 40
35
35
30
30 25
20
150 200 250 300 150 200 250 300
(c) Ve (d) Vac

Figure 5: Comparison between the numerical prediction and experimental data in terms of switching loss and conduc-

tion loss.
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According to the isolated switching loss

and conduction loss from the experimen- Table 2: Calibrated Inverter Parameters

tal data, the resistance of the IGBT and .

diode are identified to be 0.2310hm and _Farameter (IGBT) Description Value

1.5 x 10~*Ohm, respectively. Moreover, R, On-state Resistance 0.231 Ohm
the switching on and off losses are iden- Gosy g-axis inductance 1 x 1078 1/Ohm

tified to be 0.0577J and 0.0433J, respec-

tively. The switching loss and conduc- Vih Threshold Voltage 0.6V

tion loss predicted by the calibrated inverter vy Forward Voltage 0.1v
model are presented in Fig. 5 (b) and (d), Eono Switch-on Loss 0.0577]
whlch.show good agreement .between the Eofro Switch-off Loss 0.0433]
numerical model and the experimental data. LEL

It is noted that the loss maps are generated ~ Parameter (Diode) Description Value
according to 5s numerical simulations (in- Rond On-state Resistance 1.5 x 1074 Ohm
stead of 20s, which is only applied for fiedi- Gopra Off-state Resistance 1 x 108 1/Ohm
cated system response analysis, e.g., Fig. 6, ’

which however shall be sufficient for elec- Vid Forward Voltage 0.1V
trical power to converge) due to the signifi- Cy Junction Capacitance 50pF

cant simulation cost (3.6hr for each case run
for more than 100 cases). The Root Mean
Squared Error (RMSE) for conduction loss prediction is around 5.8, and for switching loss is approximately 1.8.
Finally, the calibrated inverter parameters are summarized in Table. 2.

3.3 Control performance

After the numerical model is calibrated based on the experimental data, the performance of the new control is assessed.
The detailed system responses under the new control are presented in Fig. 6. The corresponding wave condition has
a height of 0.127m and a period of 3.3s. It is noted that in addition to the minimized DC bus voltage, the switching
frequency is also minimized to 2000Hz. As shown in Fig. 6(c), the DC bus voltage exhibits a clear time-varying
pattern with a maximum value around 55.7835V and a minimum value around 10.1766V, which is significantly lower
than the tested DC voltages (minimum 125V and maximum 300.5V). It is also evident that this small DC bus voltage
is sufficient to supply the desired PTO force, as shown in Fig. 6(b) in terms of the Q axis current tracking.

Finally, with regard to power production, the generated mechanical, AC, and DC power are 321.7458W, 188.9081W,
and 157.4694W, respectively. The resulting motor loss is 132.8377W, inverter conduction loss is 30.4191W, and
switching loss is 1.0196W. Compared to an unoptimized PTO architecture (with DC voltage at 300.5V and switching
frequency of 10kHz), where the inverter conduction loss is 40.5518W and switching loss is 42.1738W, the proposed
control effectively reduces the inverter losses by 62%. The overall PTO efficiency is improved from 33% to 49%.

4 Conclusion

This paper presents the calibration of a high-fidelity PTO model using data obtained from a recent experimental
campaign conducted by SNL at the MASK Basin for the WaveBot device. The high-fidelity model is composed of
the motor and motor drive, which directly model the dynamic behavior of the switches and aim to provide an accurate
prediction of different types of losses (e.g., motor conduction loss, inverter conduction loss, switching losses) in the
drivetrain. By adjusting the model parameters, the numerical model shows good agreement with the experimental data
in terms of system responses and power losses. In addition, a novel control that allows time-varying DC bus voltage
is proposed in this research. The performance of the control is assessed using the calibrated model, and the simulation
results show that the losses in the drivetrain can be effectively reduced by 62% with an optimal PTO architecture,
significantly improving PTO efficiency by 48.5%. In the future, the research team plans to test this novel control on
the WaveBot device to demonstrate its real-world performance.
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Figure 6: System responses of the PTO unit under the new control.
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