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Abstract. In recent years, with the excessive use of non-renewable energy sources, energy 
shortage has become a major problem for countries around the world, and the development of 
marine renewable energy has become urgent. As an important renewable energy source in the 
future, wave energy is one of our important research objects. This paper completes the design of 
the maximum wave energy output power and establishes the motion model of the float and the 
oscillator and the optimization model of the maximum average output power in the wave energy 
devices. This work helps people use wave energy reasonably and provides theoretical support 
for designing a new generation of wave energy equipment. In this paper, the motions of the float 
and oscillator in this wave energy device are modeled by Newton’s theorem and Lagrange’s 
equation, and then the displacement and velocity of the float and oscillator under the pendulum 
motion at different moments are solved by using the fourth-order Runge-Kutta method. The 
maximum average output power of the PTO system is solved by building an optimization model 
with a constant damping coefficient and a non-damping coefficient, followed by the traversal 
method and genetic algorithm. 

1. Introduction 
In recent years, influenced by environmental degradation and economic crisis, more people hope to 
vigorously develop renewable energy [1]. Scientists have found that wave energy has an extremely high 
energy density [2], with wave power generation attracting widespread attention as its main form of 
development. Wave power devices can work in a variety of complex environments, which is expensive 
and difficult to study through offshore experiments alone [3]. Combining mathematical modeling and 
analysis, it is cheaper and easier to achieve.  

To improve the efficiency of the wave energy generation system and maximize the output power, the 
motion of the float and vibrator in the wave energy device is simulated by Newton’s law and Lagrange 
equation. The fourth-order Runge-Kutta method is used to solve the average output power of the PTO 
system by using the damping vibration equation of multiple degrees of freedom. The float and oscillator 
are balanced in static water at the initial moment. When the damping coefficient is fixed and the damping 
coefficient is changed, the excitation forces of the float and oscillator in the wave are calculated 
respectively. The displacement and velocity of the float and oscillator at different times are given [4]. 
In this paper, by integrating the displacement and velocity of vertical oscillation with the angular 
displacement and velocity of longitudinal oscillation, the output power equation of the float is derived, 
and an optimization model is established to solve the maximum output power and the corresponding 
optimal damping coefficient under different damping coefficients, so as to maximize the average output 
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power of the PTO system. It provides a feasible method to improve the output power of the wave power 
generation system. 

The main innovations and contributions of this paper are as follows: 
• This paper focuses on the importance of wave energy in the utilization of renewable energy and 

uses mathematical modeling to establish and optimize the wave energy output power model to 
reduce the cost of field investigation. 

• In this paper, wave energy output models are established under the two conditions that the 
damping coefficient of the linear damper takes a value within [0, 100000] and the damping 
coefficient is proportional to the absolute value of the relative velocity of the float and the 
oscillator within [0, 100000], extending the application range of the model. 

• In this paper, with the help of MATLAB software, the traversal method and genetic algorithm 
are used to solve and draw the established model, and the relationship between the maximum 
output power and the optimal damping coefficient is visually expressed. 

• This paper compares the time consumed by the traversal method and the genetic algorithm to 
solve the model and draws the conclusion that the genetic algorithm has the advantage in time 
complexity when solving such problems. 

2. Model Assumptions and Notation 

2.1. Assumptions 
We make the following assumptions about the model to highlight the core factors of the problem and 
reduce the impact of secondary factors: 

• Seawater is an ideal fluid, non-viscous, non-rotating and non-compressible. 
• In damped motion, the spring static deformation and the effect of gravity cancel each other out. 
• The system under the action of linear periodic micro-amplitude waves from the initial moment 

downward motion, the following is positive, the initial moment is the origin of coordinates and 
potential energy is zero. 

• The center of gravity G of the float is on the waterline surface [5]. 
• The PTO is within the working range and does not exceed the elastic limit of the spring. 

2.2. Notations 
Important notations used in this paper are listed in Table 1. 

Table 1. Symbol description and noun definition. 
Symbol Definition Symbol Definition 

Z The displacement of the float by the 
pendulum motion 𝑀𝑀ℎ Additional mass under wave action 

𝐹𝐹𝑒𝑒 Wave excitation force in the direction of 
pendulum movement on the float x The motion displacement of the oscillator 

𝑅𝑅0 Damping coefficient of linear dampers θ1(t) The longitudinal rocking angle displacement 
of the float at time t 

N Damping coefficient of vertical 
oscillation I The moment of inertia of float around the 

rotation axis 
w Incident wave frequency J∆θ Float pitch additional moment of inertia 

f Amplitude of longitudinal rocking 
excitation moment θ2 (t) The angular shift of the oscillator at time t 

k Spring stiffness 𝑚𝑚55 Wave excitation moment generated by the 
float swing 

M Mass of float 𝑐𝑐55 Static water vertical swing recovery torque 
coefficient 
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Nθ The longitudinal damping coefficient   

3. Model construction and solving 

3.1. Modeling the motion of floats and oscillators in a wave energy device 
In this part, we establish the motion models respectively under two conditions: the damping coefficient 
of the linear damper is 10000N·s/m and the power of the absolute value of the damping coefficient and 
the relative velocity of the float and the oscillator is 0.4, and the proportionality coefficient is 10000. 

3.1.1. Modeling of oscillators and floats under constant damping 
First of all, we have: 

𝑄𝑄1 = −𝑅𝑅0�̇�𝑥 + 𝑅𝑅0�̇�𝑧,𝑄𝑄2 = 𝐹𝐹𝑒𝑒−𝐹𝐹𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑅𝑅𝑒𝑒𝐻𝐻𝐻𝐻𝑅𝑅𝐻𝐻𝑒𝑒𝑅𝑅𝐻𝐻𝑒𝑒 + 𝑅𝑅0�̇�𝑥 − 𝑅𝑅0�̇�𝑧 − 𝑁𝑁�̇�𝑧            (1) 
According to the kinetic energy theorem: 

𝑇𝑇 = 1
2

(𝑀𝑀�̇�𝑧2 + 𝑚𝑚�̇�𝑧2)                                                              (2) 
From the elastic potential energy, it can get: 

𝑉𝑉 = 1
2
𝑘𝑘(𝑧𝑧 − 𝑥𝑥)2                                                                 (3) 

From the Lagrangian equation, it has: 
𝐻𝐻
𝐻𝐻𝐻𝐻

(𝜕𝜕𝑇𝑇𝐾𝐾𝐾𝐾
𝜕𝜕�̇�𝑧

) − 𝜕𝜕𝑇𝑇𝐾𝐾𝐾𝐾
𝜕𝜕𝑧𝑧

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧

= 𝑄𝑄1                                                       (4) 
𝐻𝐻
𝐻𝐻𝐻𝐻

(𝜕𝜕𝑇𝑇𝐾𝐾𝐾𝐾
𝜕𝜕�̇�𝑥

) − 𝜕𝜕𝑇𝑇𝐾𝐾𝐾𝐾
𝜕𝜕𝑥𝑥

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

= 𝑄𝑄2                                                     (5) 
The above equations can be solved to derive the differential model of float and oscillator motion, 

which is shown as follows: 
(𝑀𝑀 + 𝑀𝑀ℎ) �̈�𝑧 = 𝐹𝐹𝑒𝑒 − (�̇�𝑧 − �̇�𝑥) 𝑅𝑅0 − 𝑁𝑁�̇�𝑧 − 𝐹𝐹𝐻𝐻𝑅𝑅 − 𝑘𝑘 (𝑧𝑧 − 𝑥𝑥)                             (6) 

m𝑥𝑥 ̈ = 𝑅𝑅0(�̇�𝑧 − �̇�𝑥)+k (z-x)                                                   (7) 
Since the system is stationary at the initial moment, knowing from the boundary conditions: 

When t = 0, 𝑧𝑧 ̇ = 0, z = 0, x = 0,  𝑥𝑥 ̇ = 0, �̇�𝑧 = 𝐻𝐻𝑧𝑧
𝐻𝐻𝐻𝐻

, �̇�𝑥 = 𝐻𝐻𝑥𝑥
𝐻𝐻𝐻𝐻

,  �̈�𝑧 = 𝐻𝐻�̇�𝑧
𝐻𝐻𝐻𝐻

 and �̈�𝑥 = 𝐻𝐻�̇�𝑥
𝐻𝐻𝐻𝐻

 
The damping coefficient of the linear damper in the first case is 10000 N·s/m (i.e., 𝑅𝑅0 = 10000, and 

the period T = 2π/w). 
In summary, we build the first motion model: 

(𝑀𝑀 + 𝑀𝑀ℎ) �̈�𝑧 = 𝐹𝐹𝑒𝑒 − (�̇�𝑧 − �̇�𝑥) 𝑅𝑅0 − 𝑁𝑁�̇�𝑧 − 𝐹𝐹𝐻𝐻𝑅𝑅 − 𝑘𝑘 (𝑧𝑧 − 𝑥𝑥) 
m�̈�𝑥 = 𝑅𝑅0 (�̇�𝑧 − �̇�𝑥) + k (z - x) 
𝐹𝐹𝑒𝑒 = 𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓 (𝑤𝑤𝑤𝑤 + 𝜑𝜑) 

When t = 0, 𝑧𝑧 ̇ = 0, z = 0, x = 0, 𝑥𝑥 ̇ = 0 
𝐹𝐹𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑅𝑅𝑒𝑒𝐻𝐻𝐻𝐻𝑅𝑅𝐻𝐻𝑒𝑒𝑅𝑅𝐻𝐻𝑒𝑒 = 𝐹𝐹𝐵𝐵𝐵𝐵𝐻𝐻𝐻𝐻𝐻𝐻𝑅𝑅𝐻𝐻𝐻𝐻 = 𝜌𝜌𝜌𝜌𝑟𝑟2𝑔𝑔𝑧𝑧 

�̇�𝑧 = 𝐻𝐻𝑧𝑧
𝐻𝐻𝐻𝐻

, �̇�𝑥 = 𝐻𝐻𝑥𝑥
𝐻𝐻𝐻𝐻

, �̈�𝑧 = 𝐻𝐻�̇�𝑧
𝐻𝐻𝐻𝐻

, �̈�𝑥 = 𝐻𝐻�̇�𝑥
𝐻𝐻𝐻𝐻

 
𝑅𝑅0 = 10000 

3.1.2. Non-constant damping modeling 
The damping coefficient of the linear damper is changed, and the change case is to change the damping 
coefficient from a constant to a first-order differential equation related to the oscillator and float 
velocities. 

And the case of this linear damping coefficient is: 
  R0 = 10000 ∗ �|ż − ẋ|                                                                (8) 

Where the scale factor is 10000 and the power exponent is 0.5. 
In summary, the modified model of the non-constant damping model is as follows: 

(M + 𝑀𝑀ℎ) z̈ = Fe − (ż − ẋ) R0 − Nż − FHR − k (z − x) 
mẍ = R0(ż − ẋ) + k (z-x) 

Fe = fcos (wt + φ) 
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mẍ = R0 (−ẋ) + k (z-x) 
Q1 = −R0ẋ + R0ż 

Q2 = Fe + R0ẋ − R0ż − Nż 
When t = 0, z ̇= 0, z = 0, x = 0, x ̇= 0 

ż =
dz
dt

 ,  ẋ =
dx
dt

  , z̈ =
dż
dt

 , ẍ =
dẋ
dt

 

R0 =10000 ∗ �|ż − ẋ|  

3.1.3. Model solving 
The various parameters at different incident wave frequencies in the model solution are shown in Table 
2. The physical and geometric parameter values for the floats and oscillators are shown in Table 3. The 
relevant data are obtained from the National Marine Science Data Center Network. 

Table 2. Various parameters at different incident wave frequencies. 
Parameter Frequency 1 Frequency 2 

Incident wave frequency  1.4005 (s-1) 2.2143 (s-1) 
Sag added mass 1335.535 (kg) 1165.992 (kg) 

Additional moment of inertia for pitch  6779.315 (kg·m2) 7131.29 (kg·m2) 
Damping coefficient of swing wave  656.3616 (N·s/m) 167.8395 (N·s/m) 
Damping coefficient of pitch wave  151.4388 (N·m·s) 2992.724 (N·m·s) 

Amplitude of heave excitation force  6250 (N) 4890 (N) 
Amplitude of pitch excitation moment  1230 (N·m) 2560 (N·m) 

 
Table 3. Physical parameters and geometric parameter values for the floats and oscillators. 

We use the following steps to complete the model solution process: 
1) 0.2s is set as the time step, and the total time is 𝑇𝑇40−𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑅𝑅 = 40 × 2 × ���179.4555𝑓𝑓. 
2) The second-order binary differential equation is solved by using the fourth-order Runge-Kutta 

method. 
3) The coefficients required for the system of equations are obtained from Table 2 and Table 3. Due 

to the uncertainty of the phase of the float at the beginning, it is found that it could be taken as 𝜑𝜑=0, 
Fe = 𝑓𝑓cos (𝑤𝑤𝑤𝑤). 

4) The displacement and velocity of the obtained float and oscillator are calculated. 
5) The above steps are repeated with the float and oscillator motion data recorded every 0.2 seconds 

during each cycle and graphed from the data. 

3.1.4. Model Results 
In the case of the fixed damping coefficient and variable damping coefficient, the wave excitation force 
of float and oscillator is shown in Figure 1. 

Parameter Short-Cut 
process Oscillator height (m) Short-Cut 

process 
The quality of float  4866 (kg) Density of sea water  0.5 (kg/m3) 

Bottom radius of float  1 (m) Density of sea water  1025 (kg/m3) 
Height of cylinder part of float 3 (m) Spring stiffness  80000 (m) 

Height of the cone part of the float 0.8 (m) Spring the original 
length  0.5 (m) 

Oscillator quality  2433 (kg) Torsion spring stiffness  250000 (N·m) 
Radius of the vibrator  0.5 (m) Torsion spring stiffness  250000 (N·m) 
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Figure 1. The displacement of the float and the oscillator in both cases 

To more clearly explore the vibration law of float and vibrator and judge their vibration types, we 
compare the relative velocity and relative displacement of float and vibrator under two different damping 
coefficients. To highlight the contrast effect, the relative displacement and relative velocity of the float 
relative to the earth and the oscillator relative to the float under different conditions are respectively 
taken, and the final results are shown in Figure 2 and Figure 3.

  
Figure 2. Comparison of z1,𝑧𝑧2 − 𝑧𝑧1under 

different damping conditions 
Figure 3. Comparison of ż 1 and ż 2 − ż 1 

under different damping conditions 
It can be seen in Figures 1, 2 and 3: 
• In both cases, the maximum displacement of the float and oscillator is less than 1m when it is 

stable. 
• When the float and oscillator are just subjected to the wave force, they will do intense movement, 

and after a period of time, they will do periodic reciprocating motion at the equilibrium position 
steadily after a period of time. 

The above two points show that our model is more reasonable, and is in line with the real situation, 
the object is disturbed by the first irregular changes and then into a stable simple harmonic movement, 
which is consistent with our mechanical analysis. 

We take the data generated at the time t of 10s, 20s, 40s, 60s, and 100s, and record the data in Tables 
4 and 5, respectively. 

Table 4. The first case: displacement and velocity of the float and oscillator at a constant damping 
coefficient. 

Time (s) 
Float Oscillator 

Displacement 
(m) Speed (m/s) Displacement 

(m) Speed (m/s) 

10 -0.19592 -0.65640 -0.21529 -0.69960 
20 0.59255 -0.24046 0.66428 -0.27225 
40 0.29545 -0.34343 0.29661 0.33324 
60 0.31443 0.49360 -0.35135 -0.51555 

100 -0.08359 0.60406 -0.08403 0.623044 
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Table 5. The second case: displacement and velocity of float and oscillator with unsteady damping 
coefficient. 

Time (s) 
Float Oscillator 

Displacement 
(m) Speed (m/s) Displacement 

(m) Speed (m/s) 

10 -0.20547 0.69429 -0.23101 0.69510 
20 0.611250 -0.25946 0.68131 -0.20336 
40 0.32108 -0.35568 0.29843 0.31039 
60 0.31804 0.49596 -0.36836 0.52774 

100 -0.08859 0.60406 -0.08403 0.623044 
 

From the model results of the first and the second cases, combined with the data in Table 4 and Table 
5, we can see that when the displacement and velocity of the linear damper is constant damping 
coefficient (i.e., R0 = 10000) and its damping coefficient is non-constant damping coefficient (i.e., R0 = 
10000 ∗ �|ż − ẋ|, the scale factor is 10000, the power is 0.5), the velocity and displacement of the float 
and the oscillator and the damping coefficient of the damper exist. 

3.2. Maximum average power output of the PTO system 
In order to increase the application scenario of the mathematical model of the optimal damping 
coefficient of linear damper, we calculate the maximum output power and corresponding optimal 
damping coefficient of the following two cases respectively: 

• The damping coefficient is constant and takes a value within the interval [0, 100000]. 
• The damping coefficient is proportional to the power exponent of the absolute value of the 

relative velocities of the float and vibrator. The scale coefficient is valued in the interval [0, 
100000], and the power exponent is valued in the interval [0, 1]. 

3.2.1. Constant damping coefficient modeling 
A mathematical planning optimization model is established with the following variables and constraints: 

1) Objective function: the average output power of the damper. 
The study shows that the total power of the PTO system is equal to the sum of the spring power and 

the damper power, but because the elastic potential energy generated by the PTO system cannot be 
transferred directly to the generator, the average output power of the PTO system cannot be calculated 
directly. We can solve this by calculating the total average power of the spring and damper over 40 
cycles. 

The average output power of the spring is: 
𝑃𝑃 = 1

𝑇𝑇 ∫ 𝑅𝑅0 (�̇�𝑧 − �̇�𝑥)2𝑇𝑇
0                                                             (9) 

Z = max (𝑃𝑃)                                                           (10) 
2) Decision-making variables: 

𝑅𝑅0 ∈ [0, 100000]                                                         (11) 
3) Constraints: 
Hydrodynamic equation constraint: 

�𝑀𝑀𝑓𝑓 +𝑀𝑀ℎ� �̈�𝑧 + 𝑅𝑅𝑝𝑝𝐻𝐻𝐻𝐻(�̇�𝑧 − �̇�𝑥) + 𝑁𝑁�̇�𝑧 + 𝐾𝐾𝑧𝑧 + 𝑘𝑘 (𝑧𝑧 − 𝑥𝑥) = 𝐹𝐹𝑒𝑒                               (12) 
m𝑥𝑥 ̈ = 𝑅𝑅0 (�̇�𝑧 − �̇�𝑥)+𝑘𝑘 − (𝑧𝑧 − 𝑥𝑥)                                                (13) 

Under periodic constraints, to determine a more stable maximum average output power, we will 
select at least 40 cycles to solve the maximum average output power, namely: 𝐓𝐓 ≥ 𝟒𝟒𝟒𝟒 𝟐𝟐𝛑𝛑

𝐰𝐰
. 

The overall mathematical planning optimization model is as follows: 
𝑃𝑃 = 1

 𝑇𝑇 ∫ 𝑅𝑅0 (�̇�𝑧 − �̇�𝑥)2𝑇𝑇
0   

Z = max (P) 
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�𝑀𝑀𝑓𝑓 +𝑀𝑀ℎ��̈�𝑧 + 𝑅𝑅PTO(�̇�𝑧 − �̇�𝑥) + 𝑁𝑁�̇�𝑧 +𝐹𝐹𝐻𝐻𝑅𝑅 + 𝑘𝑘(𝑧𝑧 − 𝑥𝑥) = 𝐹𝐹𝑒𝑒 
m�̈�𝐱 = 𝐑𝐑𝟒𝟒(�̇�𝐳 − �̇�𝐱)+k (z-x) 

T≥ 𝟒𝟒𝟒𝟒 𝟐𝟐𝛑𝛑
𝐰𝐰

 

3.2.2. Modeling of unsteady damping coefficient 
As the modeling process is similar to the above, only the damping coefficient becomes 𝑅𝑅0 = 100000 ∗
�|�̇�𝑧 − �̇�𝑥|. Therefore, we omit the modeling process, and the following is the new mathematical model: 

𝑃𝑃 =  1
 𝑇𝑇 ∫ 𝑅𝑅0(�̇�𝑧 − �̇�𝑥)2𝑇𝑇

0  

Z = max (𝑃𝑃) 
�𝑀𝑀𝑓𝑓 + 𝑀𝑀ℎ� �̈�𝑧 + 𝑅𝑅𝑝𝑝𝐻𝐻𝐻𝐻(�̇�𝑧 − �̇�𝑥) + 𝑁𝑁�̇�𝑧 + 𝐾𝐾𝑧𝑧 + 𝑘𝑘 (𝑧𝑧 − 𝑥𝑥) = 𝐹𝐹𝑒𝑒 

m�̈�𝑥 = 𝑅𝑅0(�̇�𝑧 − �̇�𝑥)+k (z-x) 

𝑇𝑇 =
1
2

(𝑀𝑀�̇�𝑧2 + 𝑚𝑚�̇�𝑧2) 

𝑉𝑉 =
1
2
𝑘𝑘(𝑧𝑧 − 𝑥𝑥)2 

3.2.3. Constant damping factor model solving 
If only the traversal method is used to solve the average output power of the PTO system, the time 
complexity is relatively high and the comparison experiment is lacking. In order to calculate the average 
power of the spring and the average power of the damper more accurately and quickly, we use the 
traversal method and the genetic algorithm to solve the model respectively. Because the traversal 
algorithm idea is relatively simple, we omit the list. 

The wave energy coefficient identified by the genetic algorithm means that the wave energy 
calculation model is embedded in the genetic algorithm in the mathematical model [6], and the process 
is shown in Figure 4. 

 
Figure 4. Genetic algorithm solving flow chart 

The specific implementation steps of the genetic algorithm are as follows: 
1) The basic parameters of wave energy and the number of iterations are set. 
2) The number of individuals in the population is denoted as M, and the corresponding damping 

coefficient of M individuals is in the input population. 
3) The objective function is defined and the corresponding average output power 𝑃𝑃  is calculated. 
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4) The real-time output power 𝑃𝑃(𝑤𝑤) at fixed intervals (0.1s here) is calculated and recorded. 
5) The phase adjustment of M individuals is calculated by comparing the actual measured data with 

the real-time output power. 
6) Whether the set number of iterations is reached is checked. If it is not reached, the genetic 

algorithm is used to generate a new generation of population and return to step 2. If it is reached, the 
damping coefficient corresponding to the minimum output power in M individuals is recorded, and the 
cycle ends. 

3.2.4. Model Results 

3.2.4.1 Constant damping coefficient 

 
Figure 5. The graph of the optimal constant damping coefficient is solved by the 

traversal method 

As can be seen from Figure 5, the curves of the maximum average output power and optimal constant 
damping coefficient solved by the traversal method show a trend of first increasing and then decreasing, 
indicating that the model conforms to the normal actual situation. It can be concluded from the figure 
that the optimal average output power is 121.18 W and the optimal constant damping coefficient is 
3.27×104N·s/m. 

3.2.4.2 Unsteady damping coefficient 

 
Figure 6. Iteration to find the optimal non-constant damping factor graph 

From Figure 6, it can be concluded that when the traversal method is used to solve the unsteady damping 
coefficient, the proportional coefficient and power index corresponding to the maximum average output 
power of the PTO system are obtained, thus determining the optimal unsteady damping coefficient. As 
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can be seen from the figure, the 3D model is a surface that gradually increases and then decreases from 
both sides, which conforms to the model law of this problem. It can be obtained from the figure that the 
optimal average output power is 121.1008 W and the optimal steady-state damping coefficient is 
3.27×104 N·s/m. 

In order to ensure the accuracy of the experimental results, we use the genetic algorithm to solve the 
optimal abnormal damping coefficient of this problem again for the comparison experiment. The 
specific algorithm idea and process are shown in Figure 4. The final result is Figure 7. 

 
Figure 7. Genetic algorithm is used to solve the optimal non-constant 

damping coefficient 
As can be seen from Figure 7, we have basically reached the maximum output power in the 12th 

iteration by using the genetic algorithm, and the output power is basically unchanged in the subsequent 
iterations. So we get Max (𝑃𝑃) = 122.934 W. The results are similar to those obtained by the traversal 
method, which shows that the calculated results have a certain precision. 

3.2.5. Time contrast 
Table 6. Comparison of time used by different algorithms. 
The traversal algorithm 991.177 (s) 
Genetic algorithm  118.231 (s) 

From Table 6, we see that when solving the optimal unsteady damping coefficient, the time spent by 
using the traversal method is 838.34% of the time spent by using the genetic algorithm. Therefore, 
genetic algorithms have a faster processing speed when solving similar problems compared to the 
traversal method. 

4. Conclusion 
In this paper, we solve the motion model of float and oscillator by Lagrangian equation, which makes 
our model the solid and reliable physical principle and mathematical foundation, and its theoretical part 
is highly convincing, credible and easier to be understood and learned. The optimization model of the 
output power is solved by using the genetic algorithm, which makes our model results clearer and the 
calculation process more transparent, and it also compares the genetic algorithm with the traversal 
method, which can help you choose the algorithm better when studying this problem. The model in this 
paper does not take into account the effect of friction and should be derived by the energy method. The 
model has high availability and can be extended to different locations in the water with waves to study 
and explore the energy problem in the wave vibration problem. We can extend the corresponding model 
to the air, for example, to explore the movement of hot air balloons through the air. At the same time, 
you can also focus on the energy side and compare the seismic waves. At the same time, the model is 
also suitable for the viscous fluid swamp, debris flow [7], etc. Therefore, the model also has a wide 
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application prospect in the prevention of natural disasters. Finally, it also provides a reference for 
exploring the maximization of the energy utilization model [8]. 
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