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Abstract: With the progress of research on ocean thermal energy conversion, the stabI have checked
and revised all. le operation of ocean thermal energy conversion experiments has become a problem
that cannot be ignored. The control foundation for stable operation is the accurate prediction of
operational performance. In order to achieve accurate prediction and optimization of the performance
of the ocean thermal energy conversion experimental platform, this article analyzes the experimental
parameters of the turbine based on the basic experimental data obtained from the 50 kW OTEC
experimental platform. Through the selection and training of experimental data, a GA-BP-OTE (GBO)
model that can automatically select the number of hidden layer nodes was established using seven
input parameters. Bayesian optimization was used to complete the optimization of hyperparameters,
greatly reducing the training time of the surrogate model. Analyzing the prediction results of the
GBO model, it is concluded that the GBO model has better prediction accuracy and has a very low
prediction error in the prediction of small temperature changes in ocean thermal energy, proving the
progressiveness of the model proposed in this article. The dual-objective optimization problem of
turbine grid-connected power and isentropic efficiency is solved. The results show that the change
in isentropic efficiency of the permeable device is affected by the combined influence of the seven
parameters selected in this study, with the mass flow rate of the working fluid having the greatest
impact. The MAPE of the GBO model turbine grid-connected power is 0.24547%, the MAPE of the
turbine isentropic efficiency is 0.04%, and the MAPE of the turbine speed is 0.33%. The Pareto-optimal
solution for the turbine grid-connected power is 40.1792 kW, with an isentropic efficiency of 0.837439.

Keywords: GA-BP-OTEC model; ocean thermal energy conversion (OTEC); OTEC experimental
platform; pareto-optimal solution

1. Introduction

Ocean thermal energy refers to the heat contained between warm surface seawater
and deep cold seawater. As a renewable energy source, it has the advantages of being
clean, pollution-free, having large reserves, and good stability [1], and is considered a
highly potential and valuable marine resource for development. The essence of ocean
thermal energy conversion (OTEC) is to convert thermal energy into electrical energy,
which can also provide energy for large deep-sea equipment and small underwater mobile
equipment [2]. The organic Rankine cycle [3], as the most basic OTEC closed cycle, has
been widely studied.

In order to improve the thermal efficiency of ocean thermal energy conversion systems
from a theoretical analysis perspective, extensive research has been conducted. Jung In
Yoon et al. [4] proposed an efficient R717 regenerative OTEC cycle with an expansion valve
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and cooler, which reduces the waste heat absorbed by the condenser through the cooler
and gas-liquid separator and reduces the absorbed heat through the regenerator. Miljkovic
introduced an ejector into the basic Rankine cycle [5] and designed a new cycle that allows
a portion of the working fluid at the condenser outlet to enter the injector, reducing the
pressure at the turbine outlet. The efficiency of this cycle is 3.057%. Based on the Rankine
cycle, Kalina proposed a new power cycle using an ammonia/water mixture as the working
fluid—the Kalina cycle [6]. The efficiency of the Kalina cycle is 1.6–1.9 times that of the
Rankine cycle. Professor Haruna Uehara of Saga University in Japan proposed a new type
of closed ocean thermal energy conversion power generation cycle system, the Uehara
Cycle [7], which greatly improves efficiency through the combination of two-stage turbines
with intermediate extraction and the main cycle and evaporation separation cycle [8]. In
2012, the First Institute of Oceanography of the State Oceanic Administration (now the
First Institute of Oceanography, MNR) proposed a new cycle method, abbreviated as the
Guohai cycle. Currently, the thermal efficiency of the Guohai cycle is the highest, about
5.1% [9]. Ge Yunzheng et al. [10] designed a 7.5 kW ammonia turbine with an isentropic
efficiency of 87% in a one-dimensional design. Through three-dimensional verification, the
isentropic efficiency of this structural turbine under design conditions can reach 85%. Yang
et al. [11,12] selected five parameters, including evaporation temperature, condensation
temperature, temperature difference between evaporator and condenser, and working
fluid flow rate, as decision variables for the optimization design of the ocean thermal
energy conversion system. This maximizes the net output power per unit area and energy
efficiency. They established a simulation model of the ocean thermal energy conversion
system using Aspen and MATLAB and proposed corresponding control strategies. The
highest cycle thermal efficiency is 3.2%.

In order to further explore the performance of OTEC, relevant experiments have been
conducted on the OTEC system. The investment cost of ocean thermal energy conversion
power plants is high, and building indoor experimental platforms to conduct simulation
research experiments is an effective means to reduce research costs and shorten research
and development cycles. There are currently three indoor experimental platforms reported,
located at the First Institute of Oceanography of the Ministry of Natural Resources of China,
Reunion Island in France, and Saga University in Japan [13–15]. The First Institute of
Oceanography of the Ministry of Natural Resources of China has established a 15 kW indoor
experimental platform [13,16,17], using the complete Rankine cycle with pure ammonia as
the working fluid. The laboratory uses room temperature water as the cold source and high-
temperature gas as the heat source to heat seawater. However, the simulated temperatures
of surface seawater and deep seawater used in the experiment are both higher than the
actual sea conditions [13,18]. France has built an ocean thermal energy test prototype with
an equal power of 15 kW on the island of Reunion [14,19]. The working fluid is ammonia,
and the cycle structure is the Rankine cycle, which is a 1/250 scaled model of its planned
10 MW thermal energy power plant. The 30 kW indoor experimental platform built by Saga
University in Japan [15] adopts a high-performance Uehara cycle structure and is equipped
with a deep seawater comprehensive utilization module, including 10 t/day seawater
desalination equipment, hydrogen manufacturing and storage equipment, lithium recovery
basic experimental equipment, etc., which are of great significance for promoting in-depth
research on deep seawater comprehensive utilization technology. Alexandre et al. [20] used
the moving boundary method to dynamically model a full liquid evaporator and tested it
on a 15 kW ocean thermal energy conversion power generation experimental platform on
the island of Reunion. The predicted results of the dynamic model were in good agreement
with the experimental results.

Although there are few experimental platforms for OTEC, researchers have made sig-
nificant progress in ORC experiments. Dong et al. [21] demonstrated, through experiments,
the impact of expander speed on ORC system performance under variable operating condi-
tions. Jin et al. [22] studied the effect of external loads on the performance of a 3 kw ORC
experimental system. Zhang et al. [23] conducted experimental research on the matching
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characteristics of ORC operating parameters, indicating that the net output power shows
an increasing trend with the increase of engine load. Shao et al. [24] conducted experi-
mental research on the performance and characteristics of kilowatt level ORC systems
and tested power generation systems under different cooling conditions. It was found
that the mass flow rate of cold water has a significant impact on the operating status of
the system and turbine. Li Jifei et al. [25] conducted an experimental study on the impact
of changes in heat source conditions on the operating characteristics of organic Rankine
cycle units. The stability time of organic Rankine cycle units after the flow step is much
shorter than that of the temperature step. Feng Yongqiang et al. [26] obtained 950 sets of
experimental data using a 3 kW ORC test bench and established a performance prediction
model using reverse neural network principles. The net output power prediction error was
only 0.03 kW–0.04 Kw. Guo Yanan et al. [27] built an ORC system experimental setup using
R245fa as the working fluid. The author analyzed the influence of temperature, pressure,
and speed on the output power, temperature drop, efficiency, and other parameters of the
turbine. Zhang et al. [28] compared the efficiency of ORC systems with rated powers of
3 kW and 10 kW through experiments, focusing on the effects of heat sources and radiators.
The experiments showed that ORC systems with higher rated power were more optimal.
Hijriawan et al. [29] investigated the effect of different motor frequencies on the ORC
system of R134a with a turbo expander.

In the field of thermal energy utilization, many people have conducted research on pre-
dicting unknown and unmeasured data and obtaining optimal operating parameters. Most
of the predictions are based on Rankine cycles, as machine learning methods are receiving
increasing attention in ORC. Artificial neural network technology (ANN) is widely used
to establish prediction models due to its self-learning, nonlinear, and arbitrary function
approximation capabilities [26]. Oguz Arslan [30] used ANN to optimize the supercritical
ORC-binary system and pointed out that Levenberg Marguardt (LM) is the best algorithm
applied to the system. Xianglong Luo [31] developed a performance prediction method
based on artificial neural networks and proposed a systematic method for quickly eval-
uating ORC performance using existing or new fluids. Fubin Yang et al. [32] established
a neural network-based ORC system prediction model, studied the impact of seven key
operating parameters on the power output of the ORC system, and conducted performance
prediction and parameter optimization for the ORC system. Rushdie et al. [33] proposed a
program that combines artificial neural networks and artificial bee colonies (ABC) to opti-
mize the Rankine cycle. Davide Ziviani [34] proposed an artificial neural network modeling
method in the ORC system to achieve higher precision mapping extender performance
for system simulation. Laura Palagi [35] proposed an optimization model for the multi-
objective optimization of small organic Rankine cycles based on a neural network proxy
model, which is suitable for solving highly nonlinear constrained optimization problems
in typical energy system designs. Mohammad Ali Emadi [36] applied genetic algorithms
and artificial neural networks to the multi-objective optimization of new multi-generation
systems. Wang et al. [37] proposed an integrated method for reasonable real-time machine
learning in ORC research, comparing the ORC prediction models of backpropagation neu-
ral networks (BP) and support vector regression (SVR). Through training, rapid prediction
of system efficiency was achieved. Peng et al. [38] used an artificial neural network based
on the REFPROP computational database to model the thermodynamic processes of over
a hundred working fluids, aiming to predict the properties of basic ORC (BORC) and
regenerative ORC (RORC) using machine learning methods. Chen et al. [39] reduced the
complexity of the system by establishing a high-precision artificial neural network model
to predict the pressure drop of the system.

Looking back at previous research, artificial neural network technology has mainly
been used to reduce modeling time and save computational costs. On this basis, many
people have explored the integration of neural networks and ORC. However, due to the lack
of experimental platforms, small temperature differences in simulated seawater changes,
and small differences between data in the OTEC cycle, the prediction effect of establishing
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a neural network is not ideal. In order to achieve accurate prediction and optimization of
the performance of the ocean thermal difference energy experimental platform, based on
the 50 kW ocean thermal difference energy experimental platform built by the research
group, this article established an improved GBO model using 213 sets of experimental data,
improved the original backpropagation neural network, and wrote a program method
to automatically determine the number of hidden layer nodes. Through the Bayesian
hyperparameter optimization method, the optimal hyperparameters were obtained, and a
prediction model suitable for the ocean thermal energy conversion experimental platform
was established to achieve accurate prediction of performance parameters such as grid-
connected power. The multi-objective optimization of turbine grid-connected power and
isentropic efficiency was completed, providing a theoretical basis and data guidance for
the stable operation and intelligent control of the ocean thermal gradient energy platform.

2. Materials and Methods
2.1. Description of the Test Bench

Figure 1 is a schematic diagram of a 50 kW OTEC experimental prototype. The
principle of power generation is that warm seawater exchanges heat with the circulating
working fluid in the evaporator, causing the circulating working fluid to transform from
a liquid state to a high-pressure gas state. The turbine starts generating electricity under
the pressure, and the exhausted gas flowing through the turbine enters the condenser
to exchange heat with cold seawater and is pressurized by the working fluid pump in a
liquid state for the next cycle. This 50 kW ocean thermal energy conversion experimental
platform is currently the most powerful ocean thermal energy conversion experimental
platform. Unlike traditional OTEC experimental platforms, it can achieve free regulation
of temperature, fully simulate real seawater temperature, and directly conduct sea trials.
Figure 2 shows the 50 kW prototype of ocean thermal energy conversion power generation.
According to the annual variation of surface seawater temperature in the South China Sea in
2016 as shown in Table 1, the operating temperature range required for the experimental test
platform is as follows: cold source 4 ◦C and heat source 25–30 ◦C. The lower the temperature
of the heat source, the greater the heat exchange required between the evaporator and
condenser, and the greater the mass flow of the working medium and cold water. The
experimental prototype consists of three parts, namely the warm water circuit, the dual-
turbine OTEC circuit, and the cold water circuit. The working fluid is R134a, and the key
component parameters are designed according to the design method of a heat source of
28 ◦C and a cold source of 4 ◦C. The ideal structural working fluid cycle temperature–
entropy change values are shown in Table 2.
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Figure 2. 50 kW ocean thermal energy conversion power generation prototype.

Table 1. Annual variation of surface seawater temperature in the South China Sea in 2016.

Month Temperature/◦C Month Temperature/◦C Month Temperature/◦C

1 25 5 29.7 9 29.1
2 24.6 6 30.1 10 28.8
3 25.6 7 29.9 11 27.8
4 27.9 8 29.5 12 26.4

Table 2. Ideal structural working fluid cyclic temperature entropy change value.

State Temperature
(◦C)

Pressure
(kPa)

Density
(kg/m3)

Specific Enthalphy
(kJ/kg)

Specific Entropy
(kJ/kg·K)

1 24 645.78 31.389 411.82 1.7166
2 7.999 387.61 19.115 401.39 1.7166
2′ 7.999 387.61 18.961 402.95 1.7222
3 8 387.61 1267.9 210.84 1.0388
4 8.1070 645.78 1268.6 211.03 1.0388

2.1.1. Warm and Cold Water Circuits

The warm and cold water circuits of this experimental prototype are mainly controlled
by two coordinated units, namely an air-cooled heat pump unit (with an auxiliary water
pump) and a water source heat pump unit. Their function is to heat the 26 ◦C warm water
output by the evaporator in the ocean temperature difference energy circulation system
to 28 ◦C, and cool the 6 ◦C cold water output by the condenser to 4 ◦C. The warm and
cold water, after reaching a certain temperature, enter the warm and cold water tanks,
respectively. The warm water enters the evaporator through the warm water pump, and the
cold water enters the condenser through the cold water pump, achieving the simulation of
the actual temperature difference between warm surface seawater and deep cold seawater.
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The mass flow calculation formula for warm and cold water is shown in Equations (1) and
(2), and the key parameters are shown in Table 3.

Table 3. Key parameters of warm and cold water circuits.

Parameter Value Unit

Warm water pump Mass flow 191.5 kg/s
Temperature 28 ◦C

Cold water pump Mass flow 184 kg/s
Temperature 4 ◦C

Warm water insulation water tank Volume 30 m3

Cold water insulation water tank Volume 30 m3

Warm water quality flow rate:

mw =
Qeva

cw × (Twi − Two)
(1)

Cold water quality flow rate:

mc =
Qcon

cc × (Tco − Tci)
(2)

where Q is the heat absorption, T is the inlet and outlet temperature, and c is the specific
heat capacity.

2.1.2. Dual Turbine OTEC Circuit

The dual turbine OTEC circuit mainly includes an evaporator, condenser, turbine,
working fluid pump, and working fluid pipe. Both the evaporator and condenser are
equipped with full liquid heat exchangers, among which the twin turbine generator is a
direct drive permanent magnet synchronous generator set, using air floating bearings. The
relevant parameters are calculated in Equations (3)–(8), and the key parameters are shown
in Table 4. The cyclic theoretical efficiency of the system is as follows:

η0 =
(h1 − h2)− (h4 − h3)

h1 − h4
(3)

R134a cycle mass flow rate:

m f =
Qeva

h1 − h4
=

50/η0ηtηm

h1 − h4
(4)

where ηt = 85%, ηm = 90%, ηp = 60%.
Evaporator absorbs heat:

Qeva = m f (h1 − h4) (5)

Condenser heat dissipation:

Qcon = m f (h2 − h3) (6)

Turbine shaft power:
Wt = ηt × m f (h1 − h2) (7)

Turbine grid connected power:

Wnet = 0.9Wt (8)
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Table 4. Key parameters of dual turbine OTEC circuit.

Parameter Value Unit

Evaporator
Heat exchange 1608.56 kW

Evaporation temperature 24 ◦C
Evaporation pressure 645.78 kPa

Warm water mass flow rate 191.5 kg/s

Condenser

Heat exchange 1545.68 kW
Condensation temperature 8 ◦C

Condensation pressure 387.61 kPa
Cold water mass flow rate 184 kg/s

Working fluid pump
Working fluid mass flow rate 8 kg/s

Operating temperature 7.9 ◦C
Inlet pressure 384.86 kPa

Outlet pressure 650.99 kPa

Turbine

Inlet temperature 24 ◦C
Inlet pressure 632.23 kPa

Outlet temperature 9 ◦C
Outlet pressure 393.96 kPa

2.2. Measurement Device and Operating Method

The measurements in this experiment mainly include temperature, pressure, flow rate,
and rotational speed. Temperature transmitters, pressure transmitters, flow transmitters,
liquid level transmitters, and speed transmitters were used, respectively. The relevant
transmitters were calibrated for experimental errors before the experiment, and all were
within the acceptable range. The specifications and parameters are shown in Table 5.

Table 5. Transmitter specification parameters.

Instrument Name Specification Parameters

Temperature transmitter accuracy class: A-level ±(0.15 + 0.002|t|) ◦C; −50~200 ◦C
Pressure transmitter accuracy class: ±0.1%; −0.1~1.6 Mpa

Flow transmitter accuracy class: ±0.5%
Speed transmitter accuracy class: ±0.2%

Temperature and pressure transmitters are placed at the inlet and outlet of the turbine,
respectively, and a speed transmitter is installed at the airfoil bearing to measure the turbine
speed. The data is uploaded to the control cabinet to achieve signal data acquisition and
detection functions. The generator is connected to the grid cabinet through a three-phase
rectifier and uploads data to the experimental testing platform, allowing direct reading of
the grid power.

In practical experiments, the turbine generator, as the most important component
of OTEC, has three important evaluation indicators: grid-connected power, isentropic
efficiency, and rotational speed. Grid-connected power can measure the power generation
capacity of the experimental test platform, isentropic efficiency can measure the power
generation state of the turbine, and rotational speed can monitor the state of the turbine
and air bearing in real time. Among them, the grid-connected power and rotational speed
of the turbine motor can be directly measured, while the isentropic efficiency needs to be
calculated. The calculation formula is shown in Equation (9), where ∆Hact is the actual
enthalpy drop of the turbine, and ∆Hise is the isentropic enthalpy drop of the turbine.

ηtur =
∆Hact

∆Hise
(9)

When the initial temperature reaches the specified operating conditions of 28 ◦C and
4 ◦C, the bypass valve is closed and the turbine inlet valve is gradually opened. After
the turbine inlet opening reaches 100%, the experimental data are recorded every 1 s and
allowed to run stably for 35 min. The recording is then terminated. A total of 2113 data
points are recorded, and a test point is taken every 10 s. This study ultimately selected
213 test points for training and testing ANNs. The parameters of these test points are
shown in Table 6.
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Table 6. Test point parameters.

Test Point mw
(m3/h)

mc
(m3/h)

Ttur,in
(◦C)

Ptur,in
(bar)

Ttur,out
(◦C)

Ptur,out
(bar)

mf
(kg/s)

Wnet
(kW) ηtur

ntur
(rpm)

1 648.000 559.51 22.27286 4.71991 12.86531 3.19965 6.782315 30.00000 0.80288 9389.46777
2 720.49 558.07 22.25116 4.72512 12.64106 3.20197 6.567218 30.10000 0.83069 9389.46777
3 738.37 556.77 22.24031 4.75232 12.71340 3.20544 6.895445 30.70000 0.79951 9382.23340

. . . . . . . . . . . . . . . . . . . . .
211 825.35 807.86 24.02705 5.05671 12.10576 3.14120 7.389667 41.50000 0.83746 10,264.75684
212 822.53 823.22 24.01982 5.04688 12.08044 3.14120 7.292357 41.30000 0.84615 10,275.60742
213 822.23 825.61 24.02344 5.05035 12.15278 3.14410 7.374606 41.30000 0.83812 10,384.11523

2.3. Algorithm Model
2.3.1. GA-BP Neural Network

A BP neural network is a multi-layer feedforward neural network, which was de-
scribed and analyzed in detail by Rumelhart and McClelland in a book in 1986 [40]. The
commonly used three-layer structure is the input layer, hidden layer, and output layer.
The basic idea of BP neural network learning and training is to continuously modify the
weights and thresholds of the network under given input and output information, so that
the network can achieve the given input–output mapping relationship.

After determining the structure of the BP neural network, the initial weights and
thresholds are randomly generated, but they have a significant impact on the convergence
speed and prediction accuracy of the network and cannot be accurately obtained. In
response to this, the genetic algorithm can be used to minimize prediction error, with initial
weights and thresholds as design variables to find the optimal weights and thresholds. The
obtained optimal weights and thresholds can be used as weights and thresholds for the BP
neural network. This not only enables network training to have faster convergence speed
but also better prediction accuracy.

Set the initial population size to gen_num, calculate the fitness function of each popu-
lation, select chromosomes with higher fitness through roulette wheel gambling, and form
a new population for the next iteration after crossing and mutation. The equation can be
expressed as follows:

f (x) = Tansig(x) =
ex − e−x

ex + e−x , f (x) ∈ (0, 1) (10)

A1 = Tansig(W1 × X + b1) (11)

ŷ = W2 × A1 + b2 (12)

f itness = (ŷ − y)2 (13)

Let the input data be X, if it is true, the output is y, and after model prediction, the
output is ŷ, W1 is the weight matrix connecting the input layer and the hidden layer, b1 is
the deviation between the connection input layer and the output layer, W2 is the weight
matrix connecting the output layer and the hidden layer, and b2 is the deviation between
connecting the output layer and the hidden layer.

2.3.2. GP-BP-OTEC Neural Network

The input layer of the GA-BP neural network selects seven parameters as input layer
parameters, including turbine inlet temperature and pressure, turbine outlet temperature
and pressure, temperature and cold water mass flow, and working medium mass flow.
The turbine grid-connected power, isentropic efficiency, and turbine speed are used as
output layer parameters to construct a single hidden-layer GP-BP-OTEC model. The GP-
BP-OTEC (GBO) neural network flowchart is shown in Figure 3. Among them, the number
of hidden layer nodes has a significant impact on the prediction accuracy of neural network
prediction, and in the subsequent parameter selection process, if the number of hidden
layer nodes is considered, it will become more complex. Therefore, this article determines
the number of hidden layer nodes before parameter selection to reduce the complexity of



Energies 2024, 17, 4310 9 of 20

the model and improve its accuracy. The network model diagram and its pseudo-code are
shown in Figure 4.
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2.3.3. GBO Neural Network Model Evaluation Indicators

When evaluating GBO, mean square error (MSE), goodness of fit (R2), and mean
absolute percentage error (MAPE) are selected as evaluation indicators. The smaller the
MSE value and the closer the MAPE value is to 0, the higher the model accuracy. The
closer the R2 value is to 1, the higher the model fit. The equations for MSE, R2, and MAPE
are expressed as follows:

MSE =
1
Q

Q

∑
k=1

[y(k)− t(k)]2 (14)

R2 = 1 − ∑k[y(k)− t(k)]2

∑k[t − t(k)]2
(15)

MAPE =
100%

Q

Q

∑
k=1

∣∣∣∣y(k)− t(k)
t(k)

∣∣∣∣ (16)

Among them, y(k) is the predicted value, and t(k) is the actual experimental data; y
and t are the average values of the predicted and experimental data, respectively.

3. Results and Discussion
3.1. Experimental Data Analysis

In order to better understand the operation of the OTEC system, this section mainly
analyzes the mutual influence between system parameters and system evaluation indicators.
The mass flow rates of warm and cold water and working fluid are measured by flow
transmitters, and the turbine inlet and outlet temperatures, pressures, grid-connected
power, speed, and isentropic efficiency of the turbine are calculated as shown in Section 3.2.

Figures 5–7 show the changes in the experimental process over time. The changes
in system parameters are shown in Figure 5. After about 700 s, the experiment basically
entered a stable operating state, with the mass flow rate of warm water maintained at
750 m3/h and the mass flow rate of cold seawater maintained at 730 m3/h. The turbine
inlet temperature gradually increased over time, while the turbine inlet pressure also
increased, indicating a positive correlation between turbine inlet temperature and pressure.
The turbine outlet temperature first decreased and then increased, while the turbine outlet
pressure showed the same trend.
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Figure 6 shows the changes in three evaluation indicators. It can be seen that the
turbine grid-connected power is positively correlated with the speed. As the experiment
begins, the turbine grid-connected power shows an upward trend. When the experiment
proceeds to about 1000 s–1500 s, only the turbine inlet temperature rises, while the turbine
outlet temperature remains basically unchanged. Therefore, the turbine inlet temperature,
pressure, and power are positively correlated. At around 1500 s–1600 s, the turbine outlet
temperature rises, and the trend of turbine output power increases slowly. From the above,
it can be concluded that the turbine outlet temperature pressure and output power are
negatively correlated, and the change in turbine inlet temperature has a greater impact
on the system. The mass flow of warm water increases around 1600 s–1700 s, while the
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temperature of cold water remains basically unchanged. The inlet temperature of the
turbine also increases in the same trend, and the increase in turbine power becomes larger;
From 1850 s to 2000 s, as the mass flow rate of cold water increases, the temperature
of both warm and cold water remains relatively constant. The inlet temperature of the
turbine follows a similar trend, and the increase in turbine power is also greater. Therefore,
there is a positive correlation between the temperature of warm and cold water and the
output power of the turbine. In summary, there is an interactive relationship between the
parameters of each system and the output indicators.

As shown in Figure 7, the change trend of the mass flow rate of the working medium
is basically consistent with the change trend of the turbine grid-connected power, but the
isentropic efficiency does not have a consistent change trend with a certain parameter,
which should be affected by comprehensive parameters. Using the Relieff algorithm for
feature selection and single-objective prediction, the results are shown in Figure 8. All
parameters are correlated with the isentropic efficiency, and the mass flow rate has the
greatest impact on it. If the number of retained features is changed, it can be found that the
R2 value decreases significantly. Therefore, these parameters must be selected as input data.
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3.2. GBO Model Analysis

After establishing the GBO model, it is necessary to set its parameters and training
functions to improve the accuracy of prediction. The parameters that need to be determined
include the learning rate, initial population size, crossover probability, and mutation
probability. The ratio of training set to testing set used in this article is 8:2, with 40 sets of
testing sets randomly selected for analysis. Additionally, the BP neural network comes with
a built-in validation function, eliminating the need for setting a separate validation set.

3.2.1. The Impact of the Training Function on the GBO Neural Network

According to previous research, different training functions use different training
algorithms, resulting in significant differences in the prediction results of network models.
This article selects five different training functions (‘trainlm’, ‘trained’, ‘traingdm’, ‘trainrp’,
‘traincgb’). Traind is a common gradient descent method that adjusts the weights and
thresholds of the network along the negative gradient direction of the network performance
parameters. Traingdm represents a gradient descent algorithm with momentum, which
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is also a batch processing feedforward neural network training method. It not only has
faster convergence speed but also introduces a momentum term, effectively avoiding the
occurrence of local minimum problems in network training. Trainrp is a rebound BP
algorithm used to eliminate the impact of the gradient modulus on network training and
improve training speed. Traincgb uses the Plwell–Beale algorithm to determine whether the
adjustment direction of weights and thresholds returns to the negative gradient direction
by judging the orthogonality of the front and back gradients. Trainlm is one of the most
popular algorithms in BP neural networks, using Levenberg–Marquardt backpropagation.

From Figure 9, it can be seen that the R2 values using trainlm are the highest, at 0.996,
0.9979, and 0.9858, respectively, while the R2 values using trainrp and traincgb are basically
the same.
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3.2.2. Initial Parameter Selection

During the parameter adjustment process of neural networks, it is common to man-
ually adjust the above training parameters for repeated training to select the optimal
parameters. However, there are some problems. First, the training time is too long. Second,
because the neural network training process is a complex superimposed process, it is not
very accurate or judge whether the composite conditions are optimal by changing only a
single parameter. Therefore, this article chooses to use a Bayesian optimizer to optimize
the GBO neural network algorithm to find the optimal parameter values to construct a
regression model. The Bayesian optimizer is a black-box optimizer used to find optimal
parameters. The algorithm has a large number of continuous parameters in the parameter
space and has a relatively short running time. The initial parameter set and the optimization
range of the hyperparameters involved in the algorithm are shown in Table 7. The selection
and range of the hyperparameters are empirically selected.

Table 7. Hyperparameter optimization range.

Parameters Initial Min Max

Learning rate 0.1 0.01 0.8
Population size 50 30 120

Crossover probability 0.8 0.6 0.9
Mutation probability 0.02 0.01 0.2
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From Figure 10, it can be seen that the R2 of the optimized model has been improved,
with the maximum output power R2 of the turbine reaching 0.99942, the isentropic efficiency
R2 of the turbine being 0.99906, and the speed R2 of the turbine being 0.98764. All three
output parameters have good fitting goodness. The final parameter values for the model
are shown in Table 8.
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Table 8. Final parameter selection for the GBO.

Parameters Value

Learning rate 0.1
Train function trainlm

Population 70
Number of hidden layer nodes 10

Crossover probability 0.8
Mutation probability 0.2

Training precision 0.00001
Hidden layer function tansig
Output layer function purelin

3.3. Model Accuracy Prediction and Evaluation

The grid-connected power, isentropic efficiency, and rotational speed of 40 groups of
turbines were predicted, respectively. The prediction results and their errors of the turbine
grid-connected power are shown in Figure 11. It can be seen that the true values and
the predicted values are basically fitted, with a mean square error (MSE) of 0.010633, a
maximum error of 0.246 kW, and an average absolute percentage error (MAPE) of 0.24547%.

The prediction results and errors of the isentropic efficiency of the permeability are
shown in Figure 12. It can be seen that the true values and predicted values are basically
fitted, with a MSE value of 1.9168 × 10−7, a maximum error of 0.00135, and an MAPE of
0.04%.
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The prediction results and their errors of turbine speed are shown in Figure 13. It
can be seen that the real values and the predicted values are basically fitted, except for
a small number of data points with deviations. The MSE value is 2050, and the MAPE
is 0.33%. The reason for the large MSE value is that the speed itself has a large base,
basically at 10,000 rpm, so the mean square error will also be large, but its maximum error
is only 121 rpm, which is 1% of the actual data, so it meets the experimental prediction
requirements.
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3.4. Multi-Objective Optimization

Based on the analysis of experimental data, it is clear that operating parameters play
an important role in the overall system performance. The reasonable selection of operating
parameters can effectively improve system performance. As a key component of the
experiment, the turbine’s power generation effect is crucial. For the system, its turbine
grid-connected power and isentropic efficiency are the two most important evaluation
indicators. The higher these two indicators are, the better the turbine’s power generation
effect is. In order to achieve the best results at the same time, this section uses the NSGA-II
genetic algorithm to perform multi-objective optimization on two evaluation metrics based
on the GBO model. The basic parameters of the NSGA-II are shown in Table 9. Since this
article uses air-bearing technology, it is necessary to limit the turbine speed. Considering
the energy balance relationship between parameters and the actual experimental data, the
constraints shown in Equation (17) need to be met, and the multi-objective optimization
expression under design conditions is shown in Equations (18)–(20).

Ttur,in > Ttur,out; Ptur,in > Ptur,out (17)

Opt = min{Wnet, ηth}; ntur ≤ 12500 (18)
→
X = [mw, mc, Ttur,in, Ptur,in, Ttur,out, Ptur,out, m] (19)

[600, 600, 22, 4, 11, 3, 6] ≤
→
X ≤ [800, 800, 24, 5, 13, 4, 8] (20)

Table 9. The specific parameter of NSGA-II.

Parameter Value

Population size 50
Iterations 100

Crossover probability 0.8
Mutation probability 0.1

The Pareto optimization results are shown in Figure 14, where each point represents an
optimal situation. It can be seen from the graph that there is no ideal point that maximizes
both. In order to select the optimal result, it is necessary to normalize it first, as shown in
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Figure 15. The normalization results of two optimization objectives should reach 0.5 or
above at the same time, and the two performance schemes are relatively balanced. This
article uses the LINMAP method for optimal screening of data. The LINMAP method
calculates the distance between each solution and the ideal point ( f1max, f2max), and the
solution with the smallest distance is the globally optimal solution. The distance between
Plan i and the ideal point is given by Equation (21):

li+ =

√
( f1i − f1max)

2 + ( f2i − f2max)
2 (21)
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The No. 26 scheme is selected as the final scheme, with the specific parameters shown
in Table 10. Under this scheme, the grid-connected power of the turbine is 40.1792 kW, and
the isentropic efficiency is 0.837439.

Table 10. Parameters of Scheme No. 26.

Parameter Numerical Value Unit

mw 760.8 m3/h
mc 665 m3/h

Ttur,in 24 ◦C
Ptur,in 5 bar
Ttur,out 11.01 ◦C
Ptur,out 3.14 bar

m 7.95 kg/s
Wnet 40.1792 kW
ηtur 0.83749

4. Conclusions

This article analyzes the turbine experimental parameters based on 2113 sets of ba-
sic experimental data obtained from the 50 kW OTEC experimental platform. Among
them, 213 groups were used to establish a GBO model, considering the influence of seven
operating parameters including turbine inlet temperature and pressure, turbine outlet
temperature and pressure, the mass flow of warm and cold water, and the mass flow of
working medium on the turbine grid-connected power, isentropic efficiency, and speed.
The optimal output performance was obtained using the NSGA-II genetic algorithm. The
results are as follows:

1. The mass flow rate of warm and cold water, the inlet temperature and pressure of
the turbine, and the grid-connected power of the turbine are positively correlated.
The change in mass flow rate is consistent with the change in turbine output power.
The outlet temperature and pressure of the turbine are negatively correlated with
the grid-connected power of the turbine; the isentropic efficiency of the permeable is
affected by the combined influence of seven operating parameters, all of which are
essential, with the mass flow rate of the working fluid having the greatest impact.

2. This article ultimately chooses to use the trainlm training function and uses a Bayesian
optimizer to optimize the hyperparameters of the GBO model. The number of hidden
layer nodes is automatically determined by an improved BP algorithm, reducing
training time and determining the number of hidden layer nodes to be 10;

3. The trained GBO model has good fitting accuracy for the three output parameters,
with the maximum R2 of turbine grid-connected power reaching 0.99942, the R2 of
turbine entropy efficiency reaching 0.99906, and the R2 of the turbine speed reaching
0.98764. The maximum errors of the three parameters are 0.246 kW, 0.00135, and
121 rpm, respectively, meeting the experimental accuracy requirements;

4. Within a reasonable range of parameter variations, the grid-connected power and
isentropic efficiency of the turbine cannot be optimized simultaneously. The Pareto
frontier is obtained and normalized, and the optimal result obtained using the LIN-
MAP method is a turbine grid-connected power of 40.1792 kW and an isentropic
efficiency of 0.837439.

In summary, this article achieves the accurate prediction of performance parameters
such as grid-connected power and completes a multi-objective optimization of turbine
grid-connected power and isentropic efficiency, laying the foundation for the study of
stable operation and control of ocean temperature difference energy platforms.
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Nomenclature

m Mass flow rate, m3/h or kg/s c cold
N Rotational speed, rpm w warm
W Power; kW f working fluid
p Pressure, bar Acronyms
T Temperature, ◦C OTEC Ocean Thermal Energy Conversion
Subscripts ANN Artificial Neural Network
exp expander GA Genetic Algorithm
con condenser BP Back Propagation
tur turbine MSE Mean Squared Error
in inlet R Correlation coefficient
out outlet MAPE Mean Average Percentage Error
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