Abstract
With the continuous improvement of people’s interest in ocean exploration, research on deep-water profiling floats has received more and more attention. Energy supply is the key factor that restricts the working hours of deep-water floats. For this consideration, a marine current energy converter for deep-water profiling floats is proposed in this paper. A spiral involute blade is designed so that energy can be captured in two directions. Specifically, in the shallow sea area, the energy of the radial current is captured, and in the deep-sea area, the axial relative flow energy of the floats’ autonomous up and down motions is captured. This captured energy is then converted into electrical energy to charge the battery and extend the working time of the floats. The novel spiral involute blade has unique hydrodynamic characteristics. The turbine’s self-starting performance and its capacity coefficient are the main research topics studied using the computational fluid dynamics technique. Through numerical analysis and simulation, the self-starting response range and energy capture were obtained. This paper verifies the feasibility of this innovative idea using a theory analysis and provides the basis for future prototype testing and further applied research.