Abstract
In the present study, two computational procedures, based on the blade element momentum theory and computational fluid dynamics, were developed for open water performance prediction of horizontal axis tidal stream turbines. The developed procedures were verified by comparison with other computational results and existing experimental data and then, applied to a turbine design process. The results of the open water performance prediction were discussed in terms of the efficiency and accuracy of the design process. For better cavitation inception performance, a raked tip turbine design was proposed and analyzed with the developed procedure.