Abstract
The design, development and evaluation of a novel wave energy converter (WEC) device, called the ShoreSWEC, in a South African port development is presented. Based on the device requirements, site selection criteria were specified and applied to identify a suitable deployment location. A wave modeling procedure was developed to determine the operational wave conditions and available wave power resource at the selected location. The site was found to have a low mean annual average resource of approximately 2.3 kilowatt per meter wave crest (kW/m) due to its relatively sheltered location. The wave model was further used to determine design storm conditions and a structural stability analysis of the device was conducted.
Experimental tests were performed to evaluate the hydrodynamic conversion efficiency of a single chamber of the device at its most conservative orientation, under a variety of wave energy conditions. The effect of a floor incline and an additional chamber on the performance of the system was investigated. The incline improved efficiency for low wave heights, making it ideal for the low wave power resource conditions of the site, whilst the multi-chamber system experienced increased performance at high wave periods. A comparison between the ShoreSWEC and a conventional oscillating water column (OWC) WEC showed that the OWC extracted 72% more energy, highlighting the sensitivity of performance on device orientation. A three-dimensional (3D) numerical model of the experimental setup was developed. The numerical model provided comparable water surface elevations inside the flume and chamber, yet predicted significantly higher internal chamber pressures and overall efficiency. The electricity generation potential of a 10 chamber ShoreSWEC at the specified location, approximated from the experimental results and 11 years of hindcast wave data, was found to be 6 kW on average for a 15 kW capacity system.
Results of this study highlighted the need for greater understanding of the hydrodynamic characteristics of a full length device. Experimental tests in a 3D wave basin on a scaled full length ShoreSWEC model are therefore recommended. Once conducted, South Africa will be one step closer to the deployment of the full scale SWEC device.