Abstract
This paper describes the development of a framework using a genetic algorithm in order to aid in the design of a mooring system for offshore renewable energy devices. This framework couples numerical models of the mooring system and structural response to cost models in order for the genetic algorithm to effectively operate considering multiple objectives. The use of this multi-objective optimization approach allows multiple design objectives such as minimum breaking load and the material cost to be minimized simultaneously using an automated mathematical approach. Through the application of this automated approach, a wider set of designs will be considered allowing the system designers to select a design which appropriately balances the trade-off between the competing objectives. In this work, a set of mooring designs that represent efficient solutions for the stipulated constraints are found and presented. The developed framework will be applicable to other offshore technology subsystems allowing multi-objective optimization and reliability to be considered from the design stage in order to improve the design efficiency and aid the industry in using more systematic design approaches.