Abstract
Unlike conventional hydro and tidal barrage installations, water current turbines in open flow can generate power from flowing water with almost zero environmental impact, over a much wider range of sites than those available for conventional tidal power generation. Recent developments in current turbine design are reviewed and some potential advantages of ducted or “diffuser-augmented” current turbines are explored. These include improved safety, protection from weed growth, increased power output and reduced turbine and gearbox size for a given power output. Ducted turbines are not subject to the so-called Betz limit, which defines an upper limit of 59.3% of the incident kinetic energy that can be converted to shaft power by a single actuator disk turbine in open flow. For ducted turbines the theoretical limit depends on (i) the pressure difference that can be created between duct inlet and outlet, and (ii) the volumetric flow through the duct. These factors in turn depend on the shape of the duct and the ratio of duct area to turbine area. Previous investigations by others have found a theoretical limit for a diffuser-augmented wind turbine of about 3.3 times the Betz limit, and a model diffuser- augmented wind turbine has extracted 4.25 times the power extracted by the same turbine without a diffuser. In the present study, similar principles applied to a water turbine have so far achieved an augmentation factor of 3 at an early stage of the investigation.