Abstract
The comprehension of the dynamic behavior and energy flow characteristics of triboelectric nanogenerators on water is a prerequisite for enhancing wave energy conversion efficiency and output performance, yet these data have always been lacking, impeding their progress in harnessing blue energy. Herein, a series of meticulously conducted experiments aim to unveil the interaction between water waves and the geometrical structures of floating triboelectric nanogenerators (F-TENGs). The six degrees of freedom (6DoF) information of various F-TENGs under wave excitation is received for the first time by employing the new high-tech Infrared Optical Capture System and precision numeric analysis. Based on statistical data from 118 research papers, the most universally applicable modes/parameters are systematically explored, as well as the non-rigid body models. The six-dimensional kinematic radar matrices and energy gradient curves, peeled from the calculation and statistics of the 6DoF data, have comprehensively illuminated the dynamic behavior and energy flow of F-TENGs while interacting with water waves. These results can serve as an enlightening framework for structural design and facilitate the optimization of F-TENG in harnessing blue energy.