Abstract
Ocean thermal energy conversion (OTEC) is à system in which electricity is produced using small temperature difference of warm surface water and deep cold water in oceans. This paper analyzes the dynamic stability and performance simulation results of a solar and ocean thermal energy conversion (SOTEC) system connected to a power grid through undersea cables. In SOTEC, the temperature of warm sea water was boosted by using a typical low-cost solar thermal collector. The complete system model is established from the dynamics of each subsystem and their interconnections. Specifically, we examine stability and performance of the power system against such disturbance conditions as slow variations of solar radiation and severe three-phase shortcircuit fault at the power grid. Simulation results indicate that the design of a power system stabilizer can improve the damping of power system under various disturbance conditions.