Abstract
The marine hydropower system proposed in this study creates a tidal jet generator from a seawater exchange type breakwater, with empty space similar to a basin to store ocean water. Due to the water level difference between the inner and outer sides of the breakwater, strong and uni-directional jets are generated. The energy from the jets is captured by turbines in the breakwater ducts.
In this study, the proposed system is first introduced. The design process for a new turbine and its preliminary performance in open water conditions, estimated using Computational fluid dynamics (CFD), are presented. Experiments with the turbine in a Circulating water channel (CWC) at Pusan National University were also carried out. The results from the simulations and experiments with the same conditions were compared to verify the CFD accuracy. The turbine performance in a duct is estimated; the target power can be generated using the newly developed turbine.