Abstract
The feasibility and optimization of small unmanned mobile marine hydrokinetic (MHK) energy platforms for harvesting marine current energy in coastal and tidal waters are examined. A case study of a platform based on the use of a free-surface waterwheel (FSWW) mounted on an autonomous unmanned surface vehicle (USV) was conducted. Such platforms can serve as recharging stations for aerial drones (UAVs), enabling extension of the UAVs’ autonomous operating time. An unmanned MHK platform potentially meets this need with sustainable power harvested from water currents. For the case study, six different waterwheel configurations were field-tested in the Intracoastal Waterway of South Florida in support of determining the configuration that produced the most power. Required technologies for unmanned operations of the MHK platform were developed and tested. The data from the field-testing were analyzed to develop an empirical relation between the wheel’s theoretical hydrokinetic power produced and the mechanical power harnessed by the MHK platform with various waterwheel configurations during field-testing. The field data was also used to determine the electrical power generated by the FSWW configurations during field-testing. The study has led to the development of standardized testing procedures. The empirical relation is used to examine predicted power production through scaling up different physical aspects of the waterwheel.