Abstract
Tidal renewable energy is a promising alternative energy resource, and marginal seas are known as excellent sites for tidal energy exploitation. In-stream and tidal energy devices are less exposed to extreme weather events than wind energy. Nevertheless, during tropical storms, the currents may intensify to levels that threaten the integrity of the devices. This paper presents Hurricane Odile and its impact on the currents in the Gulf of California (GC) as a worst case scenario. A methodology to analyze the impact and its potential effects on tidal energy converters installed within the region are presented. The analysis is based on predictions obtained with a 3D shallow water model forced by tides and the meteorological conditions generated by Odile. A tidal model with no wind forcing was used for validation of the tidal model predictions. After validation, the two models were used to analyze the maximum anomaly in surface currents and sea surface height caused by the passage of Odile, and to analyze at which depth the devices could be deemed safe from any impact of the hurricane. Some anomalies extended throughout the water column, even in the deep regions of the GC. This paper highlights the importance of including the meteorological forcing in evaluations of tidal range or in-stream renewable energy resources and introduces new measures of device exposure to the current anomalies.