Abstract
A comprehensive review of hydrokinetic energy converters based on alternating lift technology (ALT) is pro-vided. Emphasis is on nonlinear oscillators based on Flow Induced Vibration (FIV) or Oscillation (FIO). Due to strong coupling in Fluid-Structure Interaction (FSI), and in order to maximize the hydrokinetic harnessed energy, design of nonlinear oscillators and analysis by model tests or computational fluid dynamics dominates this area. Research confirmed that the nonlinear oscillator can harvest energy from a stochastic excitation modeled by a generic wide spectrum, and overcome the most severe oscillator limitations: specifically, the need for continuous frequency tuning due to the narrow bandwidth response, and low efficiency outside the narrow bandwidth oscillator response. This review covers the following aspects of nonlinear oscillators in ALT converters: (1) Geometric changes in oscillator cross-section; e.g., circular, square, rectangular, or trilateral shapes. (2) Passive turbulence control of FIV/FIO. (3) Position based nonlinear stiffness. (4) Multi-cylinder synergistic FIV/FIO. (5) Mechanically linked oscillators. (6) Velocity-based, nonlinear, adaptive harnessing damping.