Abstract
This study focuses on addressing the challenge of integrating the tangled mathematical model of the mooring system into an effective control synthesis. The presented synthesis framework utilises the impedance-matching technique to achieve the desired controller performance by adapting the control parameters to align with the dynamic characteristics of the moored wave energy device. By leveraging this technique, the simulation framework provides a means to effectively incorporate the intricate mooring dynamics into the control synthesis process. Furthermore, this paper aims to delve into the concept of defining a representative control action by examining the input-exciting force of the feedback-controlled system. Through a straightforward case study, the authors demonstrate the significant impact of the mooring on the system dynamics and underscore the applicability of the proposed simulation framework. Moreover, the paper verifies the importance of considering the controlled system’s exciting input when addressing control synthesis, particularly in panchromatic conditions.