Abstract
Tethered-UnderSea-Kites (TUSK) represent a new electric power generation concept for harvesting the energy of the tidal current. A TUSK system has the advantage of increasing the extracted power from the tidal flow compared to a traditional static tidal turbine of the same size. This paper deals with the modeling and control of a TUSK tidal generator in order to estimate the energy production of such a system. A model of the generator drive mounted on a TUSK is presented in this paper. The produced power is periodically variating depending on the kite's motion into the sea and a suitable Maximum-Power-Point-Tracking (MPPT) algorithm for controlling the generator speed has been developed in order to maximize the power production. The developed control strategy of the drive has been experimentally verified with a 35kVA laboratory emulator of the TUSK and experimental results of several power production profiles are shown.