Abstract
A wave energy converter (WEC) of point absorber type is tested at the west coast of Sweden. The buoy is a vertical cylinder. The linear generator on the seabed has limited stroke length. Large waves cause the generator to reach its maximum stroke length. As this happen, a spring in the generator is compressed, causing the buoy to instantly come to rest. During this process the force between the buoy and the generator is measured. Also the acceleration of the buoy is measured. This process and the extreme forces on the generator hull is described and the study shows that the magnitude of this force is greatly influenced by the added mass of the buoy and thus the buoy geometry. The ratio between the extreme forces on the hull and the forces during normal operation will affect the dimensioning and economy of the WEC. Force acting between generator and buoy were measured during various events as the WEC was operating. Heave added mass was derived from the measurements and found to be greater than the theoretical value.