Abstract
To find an efficient and economic way to convert wave energy, a one-base multi-buoy offshore floating wave energy converter Sharp Eagle Wanshan is designed, consisting of four absorbing buoys, one semi-submersible barge, and other components. The working principle of the device is described in this paper. An experiment of a 1:13.78 model machine was carried out to test the hydrodynamic performance of the device and make an initial evaluation for the design The influence of wave period, wave height, work load and wave direction was tested. After construction, two-stage open sea tests have been finished in the waters near Wanshan Islands from November 2015 to June 2016. The device showed great power generation capacity with total generated output of 30530.57 kWh, and largest daily generation of 1847.09 kWh. During the open sea tests, the energy conversion efficiency was measured, and results show that capture width ratio of Wanshan remains higher than 20% in the wave period between 4 and 6.5 s and wave height range of 0.6–1.8 m. After operating in a wide range of conditions, including a tropical storm on May 27, amounts of tests data, experiences and lessons have been obtained and will be summed up and presented in the paper.