Abstract
This paper proposes a novel hybrid marine renewable energy-harvesting system to increase energy production, reduce levelized costs of energy and promote renewable marine energy. Firstly, various marine renewable energy resources and state-of-art technologies for energy exploitation and storage were reviewed. The site selection criteria for each energy-harvesting approach were identified, and a scoring matrix for site selection was proposed to screen suitable locations for the hybrid system. The Triton Knoll wind farm was used to demonstrate the effectiveness of the scoring matrix. An integrated energy system was designed, and FE modeling was performed to assess the effects of additional energy devices on the structural stability of the main wind turbine structure. It has been proven that the additional energy structures have a negligible influence on foundation/structure deflection (<1%) and increased system natural frequency by 6%; thus, they have a minimum influence on the original wind system but increased energy yield.