Abstract
Accurate evaluations of the available and technically exploitable wave energy resources are fundamental to optimise the design and implementation of energy converters in the marine environment. However, long-term resource assessments have been primarily conducted for large-scale devices in offshore energetic locations, thus ignoring onshore sites such as harbours with easier access, installation and accessibility to devices. Here, we conducted a ten-year evaluation of the performance of wave energy converters (WECs) off Roscoff harbour (northern Brittany, France). As the site of application shows moderately energetic conditions, particular attention was dedicated to small-scale WECs by adapting ratings to the local wave climate. This investigation combined (i) a high-spatial resolution (~5 m) hindcast database established with SWAN with (ii) generic and specific assessments of WEC performance. We exploited, in particular, scaled power matrices derived from the Oyster technology to assess the capacity factors and energy output of devices. In addition to characterising the annual and seasonal variability of the available resource off the harbour breakwater, this investigation provided further insights for optimising WECs, including experimental prototypes. It is therefore suggested that this type of evaluation be considered for the assessment of small- and/or full-scale energy converters in the marine environment.