Abstract
An infinite array of evenly spaced groups of oscillating bodies is considered. All groups (or ‘attenuators’) are equal and they have the same directional orientation. The angle of wave incidence is arbitrary. Regular waves diffracted and radiated from the bodies interfere constructively into rays of plane waves propagating away from the array. The number of rays depends on the ratio between the wavelength and the interspacing between adjacent groups. To each ray there corresponds one term in the ‘array radiation resistance matrix’. The maximum wave power absorbed by the array is derived under the assumption of linear theory and of unconstrained amplitudes of the oscillating bodies. It is found that, apart from exceptional cases, all of the incident wave power may be absorbed by the array provided the total number of oscillating modes in each group is at least as large as the number of rays. It is then explicitly demonstrated that the condition for maximum power absorption is that all rays have a vanishing intensity. Further, some previously known general relations between scattered waves and radiated waves have been extended.