Abstract
In this article, we present the numerical analysis performed on a compact mechanical-based direct drive wave energy converter (WEC), in order to improve its performance on longer wave periods. For this work, the numerical modeling of the point absorber is done with the help of an open-source code written in MATLAB, WEC-Sim and the hydrodynamic parameters of the WEC are determined using the BEM code AQWA. From the past experience, it is a known fact that the range of frequencies for which a point absorber can perform satisfactorily is less if they are small-sized. In this work, we make an effort to increase the operational bandwidth of a point absorber and to match the natural period of the system with the period of sea waves, without increasing its size (diameter). During the process, the variation in different hydrodynamic coefficients and performance parameters, triggered by the proposed design alteration is studied. In the end, it has been concluded that the proposed modification was able to improve the operational bandwidth of the device and the resonant frequency of the system was reduced, as expected.