Abstract
In this paper, an upper bound approach is used to determine the maximum power available to tidal stream turbines placed at five sites along the west coast of Peninsular Malaysia. A depth-averaged hydrodynamic model of the Malacca Strait is built and validated against field measurements. Actuator disc theory is then used to introduce rows of tidal stream turbines as line sinks of momentum and to determine the maximum time-averaged power available to rows of both moderately sized and very large turbines, placed strategically at the locations of highest naturally occurring kinetic energy flux. Results suggest that although the Malaysian tidal stream energy resource is not large enough to make a significant contribution to the country’s energy mix, there may yet be opportunities to use low-speed tidal turbines in small-scale and off-grid electricity generation schemes. Methods are described in detail and links to source codes and results are provided to encourage the application of this simple, yet effective resource assessment methodology to other promising tidal energy sites.