Abstract
Coastal communities face unique challenges in maintaining continuous service from critical infrastructure. This research advances capabilities for evaluating the impact of using wave energy to desalinate water on the resilience of coastal communities. The study focuses on the feasibility of using wave energy conversion to provide drinking water to communities in need and applying resilience metrics to quantify its impact on the community. To assess the feasibility of wave-powered desalination, this research couples the open-source software Wave Energy Converter SIMulator (WEC-Sim) and Water Network Tool for Resilience (WNTR). This research explores variations in both the wave resource (location, seasonality, and duration) and the ability to maintain drinking water service during a disruption scenario by applying the simulation framework to three case studies, which are based on communities in Puerto Rico. The simulation framework provides a contextualized assessment of the ability of wave-powered desalination to improve the resilience of coastal communities, which can serve as a methodology for future studies seeking the integration of wave-powered desalination with water distribution systems.