Abstract
Overtopping breakwater for energy conversion (OBREC) is integration between breakwater and wave energy converter (WEC) that allows incoming waves to be stored in the reservoir. The higher the overtopping amount collected in a reservoir, the greater the energy generated will be. Hence, most of the overtopping concept has attempted to maximize the inclusion of water in the reservoir by optimizing geometrical parameters, particularly the ramp angle. However, the studies corresponding to ramp shapes geometries have not been adequately reviewed. Most studies only focused on the usage of linear overtopping ramp shape. There is still limited knowledge on the influence of different ramp shape parameters towards the overtopping wave. Thus, this paper aimed to push the border of available knowledge by investigating the influence of the ramp shape parameters to the overtopping wave discharge through simulation and experimenting approaches. Seven different ramp shapes have been tested under Malaysia’s wave condition and a new ramp shape parameter allowing for maximized overtopping wave on OBREC is presented.