Abstract
In order to increase the performance of horizontal tidal turbines, a multi-objective optimization model was proposed in this study. Firstly, the prediction model for horizontal tidal turbines was built, which coupled the blade element momentum (BEM) theory and the CFD calculation. Secondly, a multi-objective optimization method coupled the response surface method (RSM) with the multi-objective genetic algorithm NSGA-II was applied to obtain the optimal blade profiles. The pitch angle and the chord length distribution were chosen as the design variables, while the mean power coefficient and the variance of power coefficient were chosen as the objective functions. With the mean power coefficient improved by 4.1% and the variance of power coefficient decreased by 46.7%, results showed that both objective functions could be improved.