Abstract
A model to predict wave power conversion from arbitrary arrays of oscillating water columns is presented. Based on linear potential theory and idealized non-diffracting machines, it relies on a published analytical solution for the flow field generated by a single oscillating pressure patch on the ocean surface. Estimates of wave power conversion are obtained for several array configurations and well-defined wave resources at two sites in Hawaii, using a single-processor computer. Such results illustrate the versatility and computational efficiency of the model. The proposed approach allows a relatively easy evaluation of interferences among individual machines. This would be useful in optimizing the spatial arrangement of oscillating water columns in large wave farms.