Abstract
The transition towards low-carbon energy systems requires the adoption of emerging renewable technologies that can diversify energy matrices and reduce greenhouse gas emissions. The present study evaluates the technical and economic feasibility of implementing a Reverse Electrodialysis (RED) plant for Salinity Gradient Energy (SGE) generation on the coast of Tuxpan, Veracruz, Mexico. This area has significant freshwater and seawater resources but high fossil-fuel dependence. A conceptual design was developed considering local hydrological and salinity conditions, membrane performance, and pre-treatment requirements. The analysis applied Levelized Cost of Energy (LCOE) and Net Present Value (NPV) methodologies to six water source combinations. Results indicate that the most favorable scenario, combining effluents from the municipal wastewater treatment plant and the Tuxpan river mouth, achieved the highest potential energy yield. However, high capital (USD 1.54 million) and operational costs resulted in negative NPVs, limiting short-term economic viability. Environmental assessment suggests RED could improve water quality and reduce pollutant discharge, though potential construction and operational impacts require mitigation. Despite current cost barriers, RED integration in coastal regions with similar characteristics offers a promising pathway for clean energy generation and environmental restoration, particularly if coupled with cost-reduction strategies and policy incentives.