Abstract
This study assesses the feasibility and profitability of marine hybrid clusters, combining wave energy converters (WECs) and offshore wind turbines (OWTs) to power households and marine aquaculture. Researchers analyzed two coastal sites: La Serena, Chile, with high and consistent wave energy resources, and Ensenada, Mexico, with moderate and more variable wave power. Two WEC technologies, Wave Dragon (WD) and Pelamis (PEL), were evaluated alongside lithium-ion battery storage and green hydrogen production for surplus energy storage. Results show that La Serena’s high wave power (26.05 kW/m) requires less hybridization than Ensenada’s (13.88 kW/m). The WD device in La Serena achieved the highest energy production, while PEL arrays in Ensenada were more effective. The PEL-OWT cluster proved the most cost-effective in Ensenada, whereas the WD-OWT performed better in La Serena. Supplying electricity for seaweed aquaculture, particularly in La Serena, proves more profitable than for households. Ensenada’s clusters generate more surplus electricity, suitable for the electricity market or hydrogen conversion. This study emphasizes the importance of tailoring emerging WEC systems to local conditions, optimizing hybridization strategies, and integrating consolidated industries, such as aquaculture, to enhance both economic and environmental benefits.