Abstract
Researchers are exploring adding wave energy converters to existing oceanographic buoys to provide a predictable source of renewable power. A ”pitch resonator” power take-off system has been developed that generates power using a geared flywheel system designed to match resonance with the pitching motion of the buoy. However, the novelty of the concept leaves researchers uncertain about various design aspects of the system. This work presents a novel design study of a pitch resonator to inform design decisions for an upcoming deployment of the system. The assessment uses control co-design via WecOptTool to optimize control trajectories for maximal electrical power production while varying five design parameters of the pitch resonator. Given the large search space of the problem, the control trajectories are optimized within a Monte Carlo analysis to identify optimal designs, followed by parameter sweeps around the optimum to identify trends between the design parameters. The gear ratio between the pitch resonator spring and flywheel are found to be the most sensitive design variables to power performance. The assessment also finds similar power generation for various sizes of resonator components, suggesting that correctly designing for optimal control trajectories at resonance is more critical to the design than component sizing.